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KNESER-POULSEN CONJECTURE FOR A SMALL
NUMBER OF INTERSECTIONS

IGORS GORBOVICKIS

Abstract. The Kneser-Poulsen conjecture says that if a finite collec-
tion of balls in the Euclidean space Ed is rearranged so that the distance
between each pair of centers does not get smaller, then the volume of the
union of these balls also does not get smaller. In this paper, we prove
that if in the initial configuration the intersection of any two balls has
common points with no more than d+1 other balls, then the conjecture
holds.

1. Introduction

Given a positive integer d, we denote by Ed the d-dimensional Euclidean
space. Let p = (p1, . . . ,pN ) and q = (q1, . . . ,qN ) be two configurations of
N points, where pi ∈ Ed and qi ∈ Ed, for each i = 1, . . . , N . Let | . . . | be the
Euclidean norm. If for all 1 ≤ i < j ≤ N , |pi − pj | ≤ |qi − qj |, we say that
q is an expansion of p and p is a contraction of q. If p0 ∈ Ed, we denote by
Bd(p0, r) the closed d-dimensional ball of radius r in Ed about the point p0.
We define Bd(p0, r) to be an empty set, if r < 0 or if r is not a real number.
We also let Vold represent the d-dimensional volume.

The following conjecture was independently stated by Kneser [7] in 1955
and Poulsen [8] in 1954 for the case when r1 = · · · = rN .

Conjecture 1.1. If q = (q1, . . . ,qN ) is an expansion of p = (p1, . . . ,pN )
in Ed, then for any vector of radii r = (r1, . . . , rN ),

(1.1) Vold

[
N⋃
i=1

Bd(pi, ri)

]
≤ Vold

[
N⋃
i=1

Bd(qi, ri)

]
.

For d = 1, Conjecture 1.1 is obvious. In the case when d = 2, the conjec-
ture was proved by K. Bezdek and R. Connelly in [2].

Theorem 1.2 (Bezdek, Connelly [2]). Conjecture 1.1 holds, when d = 2.
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For d ≥ 3 the conjecture currently remains open.
References to related results as well as the history of this conjecture can

be found in [2] and [5]. In the current paper, we prove the following theorem
which confirms Conjecture 1.1 for d ≥ 3 under some additional assumptions.

Theorem 1.3. Consider a configuration of N closed d-dimensional balls
defined by their centers p = (p1, . . . ,pN ) in Ed and the corresponding radii
r = (r1, . . . , rN ). Assume that the intersection of every pair of these balls
has common points with no more than d+ 1 other balls from the considered
configuration. Then for any expansion q = (q1, . . . ,qN ) ∈ (Ed)N of the
centers p, the inequality (1.1) holds.

As the limiting case of this theorem, we get the following corollary.

Corollary 1.4. Consider a configuration of N closed d-dimensional balls
defined by their centers p = (p1, . . . ,pN ) in Ed and the corresponding radii
r = (r1, . . . , rN ). Assume that the intersection of every pair of these balls
has common interior points with no more than d + 1 other balls from the
considered configuration. Then for any expansion q = (q1, . . . ,qN ) ∈ (Ed)N

of the centers p, the inequality (1.1) holds.

Corollary 1.4 can be viewed as a generalization of the following theorem
proved in [2]

Theorem 1.5 (Bezdek, Connelly [2]). Conjecture 1.1 holds, if N ≤ d+ 3.

The proof of Theorem 1.3 implements the following general idea which
can also be found in other works on related subjects, such as [1], [2] and [3].
Namely, we embed the Euclidean space Ed in a higher dimensional space
and instead of considering d-dimensional ball configurations, we consider
the corresponding higher dimensional objects. Viewing p and q as point
configurations in a higher dimensional space, allows us to consider a piecewise
smooth monotone expansion from p to q. At the same time, the higher
dimensional ball configurations still carry some information about the d-
dimensional ones. It appears that under the assumption of Theorem 1.3 we
can use this information to obtain the inequality (1.1).

Since we will work in spaces of different dimensions, it will be convenient
for the rest of the paper to fix d as in Theorem 1.3. Due to Theorem 1.2 by
Bezdek and Connelly [2], we can assume that d ≥ 3. We will use n to denote
the dimension of an object in case we want to emphasize that this dimension
is not necessarily equal to d.

2. Voronoi regions

In this section, we first recall the definitions of truncated Voronoi regions
and the walls between them. Then we formulate Csikós’ formula (Theo-
rem 2.2).

Let p = (p1, . . . ,pN ) be a configuration of points in En with balls of radii
r = (r1, . . . , rN ) centered at the corresponding points of the configuration.



KNESER-POULSEN CONJECTURE 3

Figure 1. The truncated Voronoi region decomposition of a
union of balls

The following sets are called (extended) Voronoi regions:

(2.1) Cn,i(p, r) = {p0 ∈ En | for all j, |p0 − pi|2 − r2i ≤ |p0 − pj |2 − r2j}.

Remark 2.1. It is easy to check that each Voronoi region Cn,i(p, r) is a convex
polyhedral set, and if (pi, ri) 6= (pj , rj) for i 6= j, then all of them together
tile the whole Euclidean space En.

We consider truncated Voronoi regions Ĉn,i(p, r) = Bn(pi, ri) ∩Cn,i(p, r)
and for each pair of distinct indices i 6= j, we define the wall between two
truncated Voronoi regions asWn−1,ij(p, r) = Ĉn,i(p, r)∩Ĉn,j(p, r). Figure 1
gives an example of the truncated Voronoi region decomposition of a union of
balls. The common boundaries of the shaded regions are the walls between
the corresponding truncated Voronoi regions.

We define the function Vn(p, r) to be the volume of the union of balls from
the ball configuration determined by p and r, that is

(2.2) Vn(p, r) = Voln

[
N⋃
i=1

Bn(pi, ri)

]
.

According to Remark 2.1, the function Vn(p, r) can also be expressed as

Vn(p, r) =

N∑
i=1

Voln

[
Ĉn,i(p, r)

]
.

Consider a smooth (infinitely many times differentiable) motion p(t) =
(p1(t), . . . ,pN (t)) of some configuration of N points in En. Let dij(t) =
|pi(t) − pj(t)|, and let d′ij be the derivative of dij with respect to t. The
following is Csikós’ formula [4] for the derivative of the function Vn(p(t), r).
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Theorem 2.2. Let n ≥ 2 and let p(t) be a smooth motion of a configuration
of points in En such that for each t, all the points are pairwise distinct. Then
the function Vn(p(t), r) is differentiable with respect to t and,

d

dt
Vn(p(t), r) =

∑
1≤i<j≤N

d′ijVoln−1 [Wn−1,ij(p, r)] .

3. Volume of a polyhedral set intersected with a ball

We notice that both the truncated Voronoi regions and the walls between
them can be viewed as intersections of some polyhedral sets with the corre-
sponding balls. In this section, we give relevant statements about the vol-
umes of such sets. It appears that the volume of such a set can be obtained
from the volume of a certain higher dimensional polyhedral set intersected
with a ball. This will play an important role in our argument.

The following lemma is a reformulation of Corollary 6 from [2].

Lemma 3.1. Let P ⊂ En+2 be a polyhedral set, such that all its codimen-
sion 1 facets are orthogonal to some n-dimensional affine subspace X ⊂
En+2. Consider a point p0 ∈ X. Then for every pair of real numbers r and
s, the following derivative exists and satisfies
d

ds
Voln+2

[
P ∩Bn+2(p0,

√
r2 + s)

]
= πVoln

[
X ∩ P ∩Bn+2(p0,

√
r2 + s)

]
.

The following corollary can be proved by applying Lemma 3.1 several
times.

Corollary 3.2. Given a positive integer k, let P ⊂ En+2k be a polyhedral set,
such that all its codimension 1 facets are orthogonal to some n-dimensional
affine subspace X ⊂ En+2k. Consider a point p0 ∈ X. Then for every pair
of real numbers r and s, the following derivative exists and satisfies

dk

dsk
Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
=

πk Voln

[
X ∩ P ∩Bn+2k(p0,

√
r2 + s)

]
.

Given a positive integer n and a non-negative integer k, let Pk
n be the

space of all polyhedral sets in En+2k that are intersections of n half-spaces.
Every half-space in En+2k is uniquely defined by an inequality of the form
〈u,x〉 ≤ c, where u ∈ Sn+2k−1 is a unit vector and c ∈ R is a real number.
This gives a bijection between the set Hn+2k of all half-spaces in En+2k and
Sn+2k−1 × R. This bijection induces a topology on Hn+2k. As the map
(Hn+2k)

n → Pk
n, defined by (H1, . . . ,Hn) 7→ H1 ∩ · · · ∩Hn is surjective, Pk

n

is a quotient space of (Hn+2k)
n, carrying a quotient topology.

Lemma 3.3. For n ≥ 3, consider a polyhedral set P ∈ Pk
n and a point

p0 ∈ En+2k. Then for every pair of real numbers r and s, the following
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derivative exists and satisfies the inequality

(3.1) 0 ≤ dk+1

dsk+1
Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
≤

max

{
1

2
πkσn−1(r

2 + s)
n−2
2 , 0

}
,

where σn−1 is the (n − 1)-dimensional surface volume of the n-dimensional
unit ball. Moreover, the derivative dk+1

dsk+1Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
depends continuously on P and s simultaneously.

Proof. Since P ∈ Pk
n, it can be represented as P =

⋂n
i=1Hi for some half-

spaces Hi ⊂ En+2k. Hence there exists an n-dimensional affine subspace X
that contains the point p0 and is orthogonal to the boundary hyperplanes
of the half-spaces H1, . . . ,Hn. Then Corollary 3.2 implies that

dk+1

dsk+1
Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
=

πk
d

ds
Voln

[
X ∩ P ∩Bn+2k(p0,

√
r2 + s)

]
.

Now according to the chain rule,

(3.2)
dk+1

dsk+1
Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
=

πk

2
√
r2 + s

d

dr̃
Voln [X ∩ P ∩Bn+2k(p0, r̃)]

∣∣∣∣
r̃=
√
r2+s

.

Note that X ∩P ∩Bn+2k(p0, r̃) is the intersection of an n-dimensional poly-
hedral set X ∩ P with a ball of radius r̃. The derivative of the volume of
this set with respect to r̃ is equal to the surface volume of the spherical part
of its boundary. Since this surface volume is non-negative and not greater
than the surface volume of the n-dimensional ball of radius r̃, we obtain the
required inequalities (3.1).

Finally, we notice that the surface volume of the spherical part of the
boundary considered in the previous paragraph, depends continuously on
P ∈ Pk

n, p0, and s simultaneously. Indeed, if the normal vectors of the
boundary hyperplanes ∂H1, . . . , ∂Hn are linearly independent, then the affine
subspace X is uniquely determined for the configuration (P,p0, s), and for
all nearby configurations. In that case the continuity assertion is obvious.
In case the normal vectors of the boundary hyperplanes ∂H1, . . . , ∂Hn are
linearly dependent, then there are infinitely many choices for the affine sub-
space X. However, it follows from (3.2) that the considered surface volume
does not depend on the choice of X. Thus, for a configuration (P̃ , p̃0, s̃)
that is close to the configuration (P,p0, s), we are allowed to choose the
corresponding affine subspaces X̃ and X also to be close to each other. This
implies that the considered surface volumes for the configurations (P,p0, s)
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and (P̃ , p̃0, s̃) are close and continuous dependence of these surface volumes
on the configuration follows.

Now it follows from (3.2) and the above continuity assertion, that when
r2 + s 6= 0, the derivative dk+1

dsk+1Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
also de-

pends continuously on P and s simultaneously. On the other hand, when
r2 + s approaches zero, both the lower and the upper bounds in (3.1) ap-
proach zero as well, which implies that when r2 + s = 0, the derivative
dk+1

dsk+1Voln+2k

[
P ∩Bn+2k(p0,

√
r2 + s)

]
is also continuous in P and s simul-

taneously. �

4. The volumes of the walls and their derivatives

We return to the original setting where we have a configuration of N balls
of radii r1, . . . , rN respectively.

Definition 4.1. Given a vector of radii r = (r1, . . . , rN ) ∈ RN , we say that
a configuration of N points p = (p1, . . . ,pN ) in some Euclidean space En

is (d, r)-nice, if in the configuration of N balls of radii r1, . . . , rN centered
at the corresponding points p1, . . . ,pN the intersection of each pair of balls
has common points with no more than d+ 1 other balls.

From now on we fix the radii r = (r1, . . . , rN ) and we consider a one
parameter family

r(s) =

(√
r21 + s, . . . ,

√
r2N + s

)
,

which coincides with the initial vector of radii r, when s = 0.

Proposition 4.2. Let p = (p1, . . . ,pN ) ⊂ En be a configuration of N dis-
tinct points. Then we have the following.

(i) Each Voronoi region Cn,i(p, r(s)) is a convex polyhedral set completely
determined by p and r and independent of s.

(ii) Each truncated Voronoi region Ĉn,i(p, r(s)) is an intersection of a

fixed convex polyhedral set from part (i) and the ball Bn(pi,
√
r2i + s).

(iii) Each wall Wn−1,ij(p, r(s)) between two truncated Voronoi regions is

an intersection of the ball Bn(pi,
√
r2i + s) with an (n− 1)-dimensional con-

vex polyhedral set independent of s and lying in the radical hyperplane of the
balls Bn(pi, ri) and Bn(pj , rj).

Proof. (i) As it was noticed in Remark 2.1, the Voronoi region Cn,i(p, r(s))
is a convex polyhedral set. Its independence of s follows from its defini-
tion (2.1).

Parts (ii) and (iii) immediately follow from part (i). �

Now we prove our key lemma.
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Lemma 4.3. (i) Let d ≥ 2, and let k be a non-negative integer. Consider
a (d, r)-nice configuration of N distinct points p = (p1, . . . ,pN ) in Ed+2k.
Then for every pair of indices i 6= j, the (d + 2k − 1)-dimensional volume
Vold+2k−1 [Wd+2k−1,ij(p, r(s))] of the wall between truncated Voronoi regions
is at least k times differentiable as a function of s in a sufficiently small
neighborhood U of the point s = 0. Also for each s ∈ U , the partial derivatives

(4.1)
∂k

∂sk
Vold+2k−1 [Wd+2k−1,ij(p, r(s))]

are non-negative and locally bounded as functions of (p, s).
(ii) If in addition to the conditions of the first part the points of p are

affinely independent, then the partial derivatives (4.1) are locally continuous
in p and s simultaneously.

Proof. For k = 0 the result is obvious, so we can assume that k > 0.
We denote by H the radical hyperplane of the balls Bd+2k(pi, ri) and

Bd+2k(pj , rj). Then according to part (iii) of Proposition 4.2, the hyper-
plane H contains the wall Wd+2k−1,ij(p, r(s)) which corresponds to these
two balls. Let the point p0 be the orthogonal projection of the point pi onto
the hyperplane H and define h = |pi − p0|.

Since the point configuration p is (d, r)-nice and the set of (d, r)-nice point
configurations is open, there exists a neighborhood of the origin U ⊂ R, such
that for all s ∈ U the configuration p is (d, r(s))-nice. This implies that for
all s ∈ U , the wall Wd+2k−1,ij(p, r(s)) can be viewed as the intersection of

the ball B(p0,
√
r2i − h2 + s) with d+1 half-spaces H1, . . . ,Hd+1 in H. This

observation together with Lemma 3.3 proves part (i) of Lemma 4.3.
We notice that if the points of the configuration p are affinely independent,

then both the hyperplane H and the half-spaces H1, . . . ,Hd+1 depend locally
continuously on p. Thus Lemma 3.3 implies part (ii) of Lemma 4.3. �

5. A path between p and q

The proof of Theorem 1.3 is essentially based on choosing an appropri-
ate piecewise smooth path in the space of sufficiently high dimension that
connects the configurations p and q. More detailed arguments follow.

Lemma 5.1. If p(t) = (p1(t), . . . ,pN (t)) is a piecewise smooth motion of a
configuration of centers in Ed+2k with d ≥ 2 and t ∈ [0, 1], such that p(t) is
(d, r)-nice for all t ∈ [0, 1] and its points are affinely independent for all but
finitely many values of t in [0, 1], then the following identity holds:

(5.1)
∂k

∂sk
(Vd+2k(p(1), r(s))− Vd+2k(p(0), r(s)))

∣∣∣∣
s=0

=∫ 1

0

∑
1≤i<j≤N

d′ij
∂k

∂sk
Vold+2k−1 [Wd+2k−1,ij(p(t), r(s))]

∣∣∣∣
s=0

dt,

where the function Vd+2k is defined as in (2.2) and dij(t) = |pi(t)− pj(t)|.
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Proof. It is obvious that

∂k

∂sk
(Vd+2k(p(1), r(s))− Vd+2k(p(0), r(s)))

∣∣∣∣
s=0

=

∂k

∂sk

∫ 1

0

∂

∂t
Vd+2k(p(t), r(s))dt

∣∣∣∣
s=0

.

Now according to Csikós’ formula (Theorem 2.2) we get

∂k

∂sk

∫ 1

0

∂

∂t
Vd+2k(p(t), r(s))dt

∣∣∣∣
s=0

=

∂k

∂sk

∫ 1

0

∑
1≤i<j≤N

d′ijVold+2k−1 [Wd+2k−1,ij(p(t), r(s))] dt

∣∣∣∣∣∣
s=0

.

Finally, it follows from Lemma 4.3 that we can change the order of differen-
tiation and integration in the last expression to obtain

∂k

∂sk

∫ 1

0

∑
1≤i<j≤N

d′ijVold+2k−1 [Wd+2k−1,ij(p(t), r(s))] dt

∣∣∣∣∣∣
s=0

=

∫ 1

0

∑
1≤i<j≤N

d′ij
∂k

∂sk
Vold+2k−1 [Wd+2k−1,ij(p(t), r(s))]

∣∣∣∣
s=0

dt.

�

Corollary 5.2. If d ≥ 2 and p ⊂ Ed+2k is a (d, r)-nice configuration of N
points, where N ≤ d + 2k + 1, then the function ∂k

∂sk
Vd+2k(p, r(s))

∣∣∣
s=0

is
locally continuous in the variable p.

Proof. Since p is (d, r)-nice, all point configurations that are sufficiently close
to p, are also (d, r)-nice. If p′ ⊂ Ed+2k is a configuration of centers that is
sufficiently close to p, then we can connect the configurations p and p′ with
a piecewise smooth path p(t) that satisfies Lemma 5.1. Then Corollary 5.2
follows from the fact that the functions

∂k

∂sk
Vold+2k−1 [Wd+2k−1,ij(p(t), r(s))]

∣∣∣∣
s=0

in the right hand side of (5.1) are bounded, as was shown in Lemma 4.3. �

Corollary 5.3. If d ≥ 2 and p,q ⊂ Ed+2k are two configurations of N
affinely independent points, q is an expansion of p, and the configuration p
is (d, r)-nice, then

∂k

∂sk
Vd+2k(q, r(s))

∣∣∣∣
s=0

≥ ∂k

∂sk
Vd+2k(p, r(s))

∣∣∣∣
s=0

.
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Proof. According to [1], configurations p and q can be connected by a
piecewise smooth motion p(t) so that p(0) = p, p(1) = q, the distances
dij(t) = |pi(t)−pj(t)| are weakly increasing in t and for each t, the points of
p(t) are affinely independent. It follows from Kirszbraun’s theorem [6] that
since the distances dij(t) are weakly increasing and p(0) is (d, r)-nice, p(t)
is (d, r)-nice for all t ∈ [0, 1], and we can apply Lemma 5.1 to get

(5.2)
∂k

∂sk
(Vd+2k(q, r(s))− Vd+2k(p, r(s)))

∣∣∣∣
s=0

=∫ 1

0

∑
1≤i<j≤N

d′ij
∂k

∂sk
Vold+2k−1 [Wd+2k−1,ij(p(t), r(s))]

∣∣∣∣
s=0

dt.

By Lemma 4.3, the derivatives

∂k

∂sk
Vold+2k−1 [Wd+2k−1,ij(p(t), r(s))]

∣∣∣∣
s=0

are always non-negative, and since d′ij ≥ 0, the expression under the integral
in (5.2) is also non-negative. �

Proof of Theorem 1.3. Without loss of generality we may assume that the
points in the configuration p are distinct. Indeed, if a pair of points coincide,
then we can exclude the point that corresponds to a smaller radius. This
does not change the volume of the initial configuration, but can decrease the
volume of the final configuration. Thus, the general case of Theorem 1.3
follows from the case when all points of p are distinct.

Let k be a positive integer, such that d+2k ≥ N −1, and we regard Ed as
the subset Ed = Ed×{0} ⊂ Ed×E2k = Ed+2k. We can view p and q as point
configurations lying either in Ed or in Ed+2k and consider corresponding d-
dimensional and (d+2k)-dimensional volumes Vd(p, r), Vd(q, r), Vd+2k(p, r)
and Vd+2k(q, r).

Note that the sets
⋃N

i=1Bd+2k(pi, ri) and
⋃N

i=1Bd+2k(qi, ri) are unions
of non-overlapping truncated Voronoi regions and according to part (ii) of
Proposition 4.2, we can apply Corollary 3.2 to them. As a result, we obtain
the following identity.

(5.3) πk(Vd(q, r)− Vd(p, r)) =
∂k

∂sk
(Vd+2k(q, r(s))− Vd+2k(p, r(s)))

∣∣∣∣
s=0

.

By Kirszbraun’s theorem, since p is (d, r)-nice and q is its expansion,
q is also (d, r)-nice. Hence according to Corollary 5.2, the right hand side
of (5.3) depends locally continuously on p and q. Let p′,q′ ⊂ Ed+2k be small
perturbations of p and q respectively, such that the configurations p′ and q′

consist of affinely independent points, p′ is (d, r)-nice and q′ is an expansion
of p′. Then it follows from Corollary 5.3 that

(5.4)
∂k

∂sk
(Vd+2k(q

′, r(s))− Vd+2k(p
′, r(s)))

∣∣∣∣
s=0

≥ 0.
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By choosing p′ and q′ arbitrarily close to p and q respectively, we get the
following inequality as a limiting case of (5.4).

∂k

∂sk
(Vd+2k(q, r(s))− Vd+2k(p, r(s)))

∣∣∣∣
s=0

≥ 0.

Together with (5.3) this proves that

Vd(q, r) ≥ Vd(p, r).
�
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