Contributions to Discrete Mathematics

SIGNED STAR k-DOMATIC NUMBER OF A GRAPH

SEYED MAHMOUD SHEIKHOLESLAMI AND LUTZ VOLKMANN

Abstract

Let G be a simple graph without isolated vertices with vertex set $V(G)$ and edge set $E(G)$ and let k be a positive integer. A function $f: E(G) \rightarrow\{-1,1\}$ is said to be a signed star k-dominating function on G if $\sum_{e \in E(v)} f(e) \geq k$ for every vertex v of G, where $E(v)=\{u v \in E(G) \mid u \in N(v)\}$. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of signed star k-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(e) \leq 1$ for each $e \in E(G)$, is called a signed star k-dominating family (of functions) on G. The maximum number of functions in a signed star k-dominating family on G is the signed star k-domatic number of G, denoted by $d_{k S S}(G)$.

In this paper we study the properties of the signed star k-domatic number $d_{k S S}(G)$. In particular, we determine the signed star k-domatic number of some classes of graphs. Some of our results extend these one given by Atapour et al. [1] for the signed star domatic number.

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We use [8] for terminology and notation which are not defined here and consider simple graphs without isolated vertices only. For every nonempty subset E^{\prime} of $E(G)$, the subgraph $G\left[E^{\prime}\right]$ induced by E^{\prime} is the graph whose vertex set consists of those vertices of G incident with at least one edge of E^{\prime} and whose edge set is E^{\prime}.

Two edges e_{1} and e_{2} of G are called adjacent if they are distinct and have a common vertex. The open neighborhood $N_{G}(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_{G}[e]=N_{G}(e) \cup\{e\}$. For a function $f: E(G) \rightarrow\{-1,1\}$ and a subset S of $E(G)$ we define $f(S)=\sum_{e \in S} f(e)$. The edge-neighborhood $E_{G}(v)$ of a vertex $v \in V(G)$ is the set of all edges incident with the vertex v. For each vertex $v \in V(G)$, we also define $f(v)=\sum_{e \in E_{G}(v)} f(e)$.

[^0]Let k be a positive integer. A function $f: E(G) \rightarrow\{-1,1\}$ is called a signed star k-dominating function (SSkDF) on G, if $f(v) \geq k$ for every vertex v of G. The signed star k-domination number of a graph G is $\gamma_{k S S}(G)=\min \left\{\sum_{e \in E} f(e) \mid f\right.$ is a SSkDF on $\left.G\right\}$. The signed star k dominating function f on G with $f(E(G))=\gamma_{k S S}(G)$ is called a $\gamma_{k S S}(G)$ function. As assuming $\delta(G) \geq k$ is clearly necessary, we will always assume that when we discuss $\gamma_{k S S}(G)$ all graphs involved satisfy $\delta(G) \geq k$. The signed star k-domination number, introduced by Xu and Li in [11], has been studied by several authors (see for instance $[2,7]$). The signed star 1 -domination number is the usual signed star domination number which has been introduced by Xu in [9] and has been studied by several authors (see for instance $[5,6,10]$).

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of signed star k-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(e) \leq 1$ for each $e \in E(G)$, is called a signed star k dominating family (of functions) on G. The maximum number of functions in a signed star k-dominating family on G is the signed star k-domatic number of G, denoted by $d_{k S S}(G)$. The signed star k-domatic number is well-defined and $d_{k S S}(G) \geq 1$ for all graphs G with $\delta(G) \geq k$, since the set consisting of any one SSkD function forms a SSkD family on G. A $d_{k S S^{-}}$ family of a graph G is a SSkD family containing $d_{k S S}(D) \mathrm{SSkD}$ functions. The signed star 1-domatic number $d_{1 S S}(G)$ is the usual signed star domatic number $d_{S S}(G)$ which was introduced by Atapour et al. in [1].

Our purpose in this paper is to initiate the study of signed star k-domatic number in graphs. We first study basic properties and bounds for the signed star k-domatic number of a graph, some of which are analogous to those of the signed star domatic number $d_{S S}(G)$ in [1]. In addition, we determine the signed star k-domatic number of some classes of graphs.

Observation 1.1. Let G be a graph of order $n \geq 3$ and size m. If $k \in$ $\{n-2, n-1\}$ and $\delta(k) \geq k$, then $\gamma_{k S S}(G)=m$ and hence $d_{k S S}(G)=1$.

Observation 1.2. Let G be a graph of size m with $\delta(G) \geq k$. Then $\gamma_{k S S}(G)=m$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=k$ or $\operatorname{deg}(u)=k+1$.

Proof. If each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=k$ or $\operatorname{deg}(u)=k+1$, then trivially $\gamma_{k S S}(G)=m$.

Conversely, assume that $\gamma_{k S S}(G)=m$. Suppose to the contrary that there exists an edge $e=u v \in E(G)$ such that $\min \{\operatorname{deg}(u), \operatorname{deg}(v)\} \geq k+2$. Define $f: E(G) \rightarrow\{-1,1\}$ by $f(e)=-1$ and $f\left(e^{\prime}\right)=1$ for $e^{\prime} \in E(G) \backslash\{e\}$. Obviously, f is a signed star k-dominating function of G with weight less than m, a contradiction. This completes the proof.

2. Basic properties of the signed star k-Domatic number

In this section we study basic properties of $d_{k S S}(G)$.

Theorem 2.1. Let G be a graph of size m with $\delta(G) \geq k$, signed star k domination number $\gamma_{k S S}(G)$ and signed star k-domatic number $d_{k S S}(G)$. Then

$$
\gamma_{k S S}(G) \cdot d_{k S S}(G) \leq m
$$

Moreover, if we have $\gamma_{k S S}(G) \cdot d_{k S S}(G)=m$, then for each $d_{k S S}$-family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of G, each function f_{i} is a $\gamma_{k S S}$-function and $\sum_{i=1}^{d} f_{i}(e)=1$ for all $e \in E(G)$.

Proof. If $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is a signed star k-dominating family on G such that $d=d_{k S S}(G)$, then the definitions imply

$$
\begin{aligned}
d \cdot \gamma_{k S S}(G) & =\sum_{i=1}^{d} \gamma_{k S S}(G) \leq \sum_{i=1}^{d} \sum_{e \in E(G)} f_{i}(e) \\
& =\sum_{e \in E(G)} \sum_{i=1}^{d} f_{i}(e) \leq \sum_{e \in E(G)} 1=m
\end{aligned}
$$

as desired.
If $\gamma_{k S S}(G) \cdot d_{k S S}(G)=m$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{k S S}$-family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of G and for each $i, \sum_{e \in E(G)} f_{i}(e)=\gamma_{k S S}(G)$, thus each function f_{i} is a $\gamma_{k S S}$-function, and $\sum_{i=1}^{d} f_{i}(e)=1$ for all $e \in E(G)$.

Corollary 2.2. If G is a graph of size m and $\delta(G) \geq k$, then

$$
\gamma_{k S S}(G)+d_{k S S}(G) \leq m+1
$$

Proof. By Theorem 2.1,

$$
\begin{equation*}
\gamma_{k S S}(G)+d_{k S S}(G) \leq d_{k S S}(G)+\frac{m}{d_{k S S}(G)} \tag{2.1}
\end{equation*}
$$

Using the fact that the function $g(x)=x+m / x$ is decreasing for $1 \leq x \leq \sqrt{m}$ and increasing for $\sqrt{m} \leq x \leq m$, this inequality leads to the desired bound immediately.

Corollary 2.3. Let G be a graph of size m and $\delta(G) \geq k$. If $2 \leq \gamma_{k S S}(G) \leq$ $m-1$, then

$$
\gamma_{k S S}(G)+d_{k S S}(G) \leq m
$$

Proof. Theorem 2.1 implies that

$$
\begin{equation*}
\gamma_{k S S}(G)+d_{k S S}(G) \leq \gamma_{k S S}(G)+\frac{m}{\gamma_{k S S}(G)} \tag{2.2}
\end{equation*}
$$

If we define $x=\gamma_{k S S}(G)$ and $g(x)=x+m / x$ for $x>0$, then because $2 \leq \gamma_{k S S}(G) \leq m-1$, we have to determine the maximum of the function
g in the interval $I: 2 \leq x \leq m-1$. It is easy to see that

$$
\begin{aligned}
\max _{x \in I}\{g(x)\} & =\max \{g(2), g(m-1)\} \\
& =\max \left\{2+\frac{m}{2}, m-1+\frac{m}{m-1}\right\} \\
& =m-1+\frac{m}{m-1}<m+1,
\end{aligned}
$$

and we obtain $\gamma_{k S S}(G)+d_{k S S}(G) \leq m$. This completes the proof.
Corollary 2.4. Let $k \geq 1$ be an integer, and let G be a graph of size m and $\delta(G) \geq k$. If $\min \left\{\gamma_{k S S}(G), d_{k S S}(G)\right\} \geq 2$, then

$$
\gamma_{k S S}(G)+d_{k S S}(G) \leq \frac{m}{2}+2 .
$$

Proof. Since $\min \left\{\gamma_{k S S}(G), d_{k S S}(G)\right\} \geq 2$, it follows by Theorem 2.1 that $2 \leq d_{k S S}(G) \leq m / 2$. By (2.1) and the fact that the maximum of $g(x)=$ $x+m / x$ on the interval $2 \leq x \leq m / 2$ is $g(2)=g(m / 2)$, we see that

$$
\gamma_{k S S}(G)+d_{k S S}(G) \leq d_{k S S}(G)+\frac{m}{d_{k S S}(G)} \leq \frac{m}{2}+2 .
$$

Observation 1.1 demonstrates that Corollary 2.4 is no longer true in the case that $\min \left\{\gamma_{k S S}(G), d_{k S S}(G)\right\}=1$.

Theorem 2.5. Let G be a graph with $\delta(G) \geq k$ and let $v \in V(G)$. Then

$$
d_{k S S}(G) \leq \begin{cases}\frac{\operatorname{deg}(v)}{k} & \text { if } \operatorname{deg}(v) \equiv k(\bmod 2) \\ \frac{\operatorname{deg}(v)}{k+1} & \text { if } \operatorname{deg}(v) \equiv k+1(\bmod 2)\end{cases}
$$

Moreover, if the equality holds, then for each function f_{i} of a SSkD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ and for every $e \in E(v)$,

$$
\sum_{e \in E(v)} f_{i}(e)=\left\{\begin{array}{cl}
k & \text { if } \operatorname{deg}(v) \equiv k(\bmod 2) \\
k+1 & \text { if } \operatorname{deg}(v) \equiv k+1(\bmod 2)
\end{array}\right.
$$

and $\sum_{i=1}^{d} f_{i}(e)=1$.
Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a SSkD family of G such that $d=d_{k S S}(G)$. If $\operatorname{deg}(v) \equiv k(\bmod 2)$, then

$$
d=\sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \frac{1}{k} \sum_{e \in E(v)} f_{i}(e)=\frac{1}{k} \sum_{e \in E(v)} \sum_{i=1}^{d} f_{i}(e) \leq \frac{1}{k} \sum_{e \in E(v)} 1=\frac{\operatorname{deg}(v)}{k} .
$$

Similarly, if $\operatorname{deg}(v) \equiv k+1(\bmod 2)$, then

$$
\begin{aligned}
d & =\sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \frac{1}{k+1} \sum_{e \in E(v)} f_{i}(e) \\
& =\frac{1}{k+1} \sum_{e \in E(v)} \sum_{i=1}^{d} f_{i}(e) \leq \frac{1}{k+1} \sum_{e \in E(v)} 1=\frac{\operatorname{deg}(v)}{k+1}
\end{aligned}
$$

If $d_{k S S}(G)=\operatorname{deg}(v) / k$ when $\operatorname{deg}(v) \equiv k(\bmod 2)$ or $d_{k S S}(G)=\operatorname{deg}(v) /(k+$ 1) when $\operatorname{deg}(v) \equiv k+1(\bmod 2)$, then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement.

Corollary 2.6. Let G be a graph and $1 \leq k \leq \delta(G)$. Then

$$
d_{k S S}(G) \leq \begin{cases}\frac{\delta(G)}{k} & \text { if } \delta(G) \equiv k(\bmod 2) \\ \frac{\delta(G)}{k+1} & \text { if } \delta(G) \equiv k+1(\bmod 2)\end{cases}
$$

Theorem 2.7. The signed star k-domatic number is an odd integer.
Proof. Let G be an arbitrary graph, and assume that $d=d_{k S S}(G)$ is even. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be the corresponding signed star k-dominating family on G. If $e \in E(G)$ is an arbitrary edge, then $\sum_{i=1}^{d} f_{i}(e) \leq 1$. On the lefthand side of this inequality, a sum of an even number of odd summands occurs. Therefore it is an even number, and we obtain $\sum_{i=1}^{d} f_{i}(e) \leq 0$ for each $e \in E(G)$. This forces

$$
k d=\sum_{i=1}^{d} k \leq \sum_{i=1}^{d} \sum_{e \in E(v)} f_{i}(e)=\sum_{e \in E(v)} \sum_{i=1}^{d} f_{i}(e) \leq 0
$$

which is a contradiction.
An immediate consequence of Theorems 2.5, 2.7 and Corollary 2.6 is the following result.

Corollary 2.8. Let G be a graph with $\delta(G) \geq k$. If $\delta(G)<3 k$ or if G has a vertex v of degree $\operatorname{deg}(v)=3 k+1$, then $d_{k S S}(G)=1$.

Proof. If $\delta(G)<3 k$, then Corollary 2.6 implies that

$$
d_{k S S}(G) \leq \frac{\delta(G)}{k}<\frac{3 k}{k}=3
$$

Applying Theorem 2.7, we deduce that $d_{k S S}(G) \leq 1$ and thus $d_{k S S}(G)=1$. If G has a vertex v of degree $\operatorname{deg}(v)=3 k+1$, then $\operatorname{deg}(v) \equiv k+1(\bmod 2)$ and thus it follows from Theorem 2.5 that

$$
d_{k S S}(G) \leq \frac{\operatorname{deg}(v)}{k+1}=\frac{3 k+1}{k+1}<3
$$

Again Theorem 2.7 leads to the desired result $d_{k S S}(G)=1$.

Corollary 2.9. Let G be a graph of size m. Then $\gamma_{k S S}(G)+d_{k S S}(G)=m+1$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=k$ or $\operatorname{deg}(u)=k+1$.

Proof. If each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=k$ or $\operatorname{deg}(u)=k+1$, then $\gamma_{k S S}(G)=m$ by Observation 1.2. Hence $d_{k S S}(G)=1$ and the result follows.

Conversely, let $\gamma_{k S S}(G)+d_{k S S}(G)=m+1$. The result is obviously true for $m=1,2,3$. Assume $m \geq 4$. By Corollary 2.4 , we may assume that $\min \left\{\gamma_{k S S}(G), d_{k S S}(G)\right\}=1$. If $\gamma_{k S S}(G)=1$, then $d_{k S S}(G)=m$, which is a contradiction to Corollary 2.6. If $d_{k S S}(G)=1$, then $\gamma_{k S S}(G)=m$ and the result follows by Observation 1.2.

As an application of Corollary 2.6 and Theorem 2.7, we will prove the following Nordhaus-Gaddum type result.

Theorem 2.10. For every graph G of order n with $\delta(G) \geq k$ and $\delta(\bar{G}) \geq k$,

$$
\begin{equation*}
d_{k S S}(G)+d_{k S S}(\bar{G}) \leq \frac{n-1}{k} . \tag{2.3}
\end{equation*}
$$

If $d_{k S S}(G)+d_{k S S}(\bar{G})=(n-1) / k$, then G is regular, k and $\delta(G)$ are even and n is odd such that $n-1 \equiv 0(\bmod 4)$.
Proof. Since $\delta(G)+\delta(\bar{G}) \leq n-1$, Corollary 2.6 leads to

$$
d_{k S S}(G)+d_{k S S}(\bar{G}) \leq \frac{\delta(G)}{k}+\frac{\delta(\bar{G})}{k} \leq \frac{n-1}{k}
$$

If G is not regular, then $\delta(G)+\delta(\bar{G}) \leq n-2$ and hence we obtain the better bound $d_{k S S}(G)+d_{k S S}(\bar{G}) \leq(n-2) / k$. Thus assume now that G is $\delta(G)$-regular.
Case 1: Assume that k is odd. If $\delta(G)$ is even, then it follows from Corollary 2.6 that

$$
\begin{aligned}
d_{k S S}(G)+d_{k S S}(\bar{G}) & \leq \frac{\delta(G)}{k+1}+\frac{\delta(\bar{G})}{k}=\frac{\delta(G)}{k+1}+\frac{n-\delta(G)-1}{k} \\
& <\frac{\delta(G)}{k}+\frac{n-\delta(G)-1}{k}=\frac{n-1}{k} .
\end{aligned}
$$

If $\delta(G)$ is odd, then n is even and thus $\delta(\bar{G})=n-\delta(G)-1$ is even. Using Corollary 2.6, we find that

$$
\begin{aligned}
d_{k S S}(G)+d_{k S S}(\bar{G}) & \leq \frac{\delta(G)}{k}+\frac{\delta(\bar{G})}{k+1}=\frac{\delta(G)}{k}+\frac{n-\delta(G)-1}{k+1} \\
& <\frac{\delta(G)}{k}+\frac{n-\delta(G)-1}{k}=\frac{n-1}{k} .
\end{aligned}
$$

Combining these two bounds, we conclude that $d_{k S S}(G)+d_{k S S}(\bar{G})<(n-$ 1) $/ k$ when k is odd.

Case 2: Assume that k is even. If $\delta(G)$ is odd, then Corollary 2.6 implies $d_{k S S}(G)+d_{k S S}(\bar{G})<(n-1) / k$ as above. If $\delta(G)$ is even and n is even, then
$\delta(\bar{G})=n-\delta(G)-1$ is odd, and we obtain the bound $d_{k S S}(G)+d_{k S S}(\bar{G})<$ $(n-1) / k$ as above.

Finally, assume that $\delta(G)$ is even and n is odd such that $n-1=4 p+2$. If $d_{k S S}(G)+d_{k S S}(\bar{G})=(n-1) / k$, then we observe that

$$
d_{k S S}(G)=\frac{\delta(G)}{k} \quad \text { and } \quad d_{k S S}(\bar{G})=\frac{\delta(\bar{G})}{k} .
$$

According to Theorem 2.7, these two values are odd integers, say

$$
d_{k S S}(G)=\frac{\delta(G)}{k}=2 s+1 \quad \text { and } \quad d_{k S S}(\bar{G})=\frac{\delta(\bar{G})}{k}=2 t+1 .
$$

If $k=2 i$, then we arrive at the contradiction

$$
d_{k S S}(G)+d_{k S S}(\bar{G})=\frac{\delta(G)}{k}+\frac{\delta(\bar{G})}{k}=2(s+t+1)=\frac{4 p+2}{2 i} .
$$

This contradiction completes the proof of Theorem 2.10.
The following examples will demonstrate that $d_{k S S}(G)+d_{k S S}(\bar{G})=(n-$ 1) $/ k$ in Theorem 2.10 is possible when G is regular, k and $\delta(G)$ are even and n is odd such that $n-1 \equiv 0(\bmod 4)$.

Let $k \geq 2$ be an even integer and $n \geq 5$ such that $n-1=2 k$. Now let H be a k-regular graph of order n. Then \bar{H} is also k-regular. Corollary 2.6 implies that $d_{k S S}(H) \leq 1$ and thus $d_{k S S}(H)=1$. It follows that

$$
d_{k S S}(H)+d_{k S S}(\bar{H})=2=\frac{n-1}{k} .
$$

Corollary 2.11. Let G be a graph of order n with $\delta(G) \geq k$ and $\delta(\bar{G}) \geq k$. If $\delta(G)<3 k$ and $\delta(\bar{G})<3 k$ or $n<4 k+1$, then

$$
d_{k S S}(G)+d_{k S S}(\bar{G})=2 .
$$

Proof. If $\delta(G)<3 k$ and $\delta(\bar{G})<3 k$, then Corollary 2.8 implies the desired result immediately. If $n<4 k+1$, then it follows from (2.3) that

$$
d_{k S S}(G)+d_{k S S}(\bar{G}) \leq \frac{n-1}{k}<\frac{4 k}{k}=4,
$$

and thus Theorem 2.7 leads to $d_{k S S}(G)+d_{k S S}(\bar{G})=2$.

3. Signed star k-Domatic number of Regular graphs

In this section we determine values of the signed star k-domatic number for some classes of regular graphs.

Theorem 3.1. Let G be an r-regular and 1 -factorable graph and let $1 \leq$ $k \leq r$ be an integer. Then

$$
d_{k S S}(G)= \begin{cases}\left\lfloor\frac{r}{k}\right\rfloor & \text { when } r \equiv k(\bmod 2) \text { and }\left\lfloor\frac{r}{k}\right\rfloor \text { is odd }, \\ \left\lfloor\frac{r}{k}\right\rfloor-1 & \text { when } r \equiv k(\bmod 2) \text { and }\left\lfloor\frac{r}{k}\right\rfloor \text { is even }, \\ \left\lfloor\frac{r}{k+1}\right\rfloor & \text { when } r \equiv k+1(\bmod 2) \text { and }\left\lfloor\frac{r}{k+1}\right\rfloor \text { is odd }, \\ \left\lfloor\frac{r}{k+1}\right\rfloor-1 & \text { when } r \equiv k+1(\bmod 2) \text { and }\left\lfloor\frac{r}{k+1}\right\rfloor \text { is even } .\end{cases}
$$

Proof. By Observation 1.2 and Theorem 2.1 we may assume $k \leq r-2$. Let $\left\{M_{0}, M_{1}, \ldots, M_{r-1}\right\}$ be a 1-factorization of G. We distinguish two cases.
Case 1: Assume that $r \equiv k(\bmod 2)$. Suppose that $r=k q+t$, where q is a positive integer and $0 \leq t \leq k-1$. By Corollary 2.6 and Theorem 2.7, $d_{k S S}(G) \leq q$ if q is odd and $d_{k S S}(G) \leq q-1$ if q is even.

Subcase 1.1: Assume that q is odd. Then t is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q}$ as follows.

$$
f_{1}(e)=\left\{\begin{array}{cl}
1 & \text { if } e \in M_{i} \text { where } 0 \leq i \leq \frac{k(q-1)}{2}+k-1 \\
-1 & \text { if } e \in M_{i} \text { and } \frac{k(q-1)}{2}+k \leq i \leq k q-1
\end{array}\right.
$$

and for $2 \leq j \leq q$ and $0 \leq i \leq k q-1$,

$$
f_{j}\left(M_{i}\right)=f_{j-1}\left(M_{i+2 k}\right),
$$

where the sum is taken modulo $k q$. In addition, if $t>0$,

$$
f_{j}\left(M_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and } k q \leq i \leq r-1 .
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q$ and $\left\{f_{1}, f_{2}, \ldots, f_{q}\right\}$ is a signed star k-dominating family of G. Hence $d_{k S S}(G) \geq q$. Therefore $d_{k S S}(G)=q$, as desired.
Subcase 1.2: Assume that q is even. Then $t+k$ is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q-1}$ as follows.

$$
f_{1}\left(M_{i}\right)=\left\{\begin{aligned}
1 & \text { if } 0 \leq i \leq \frac{k(q-2)}{2}+k-1 \\
-1 & \text { if } \frac{k(q-2)}{2}+k \leq i \leq k(q-1)-1
\end{aligned}\right.
$$

and for $2 \leq j \leq q-1$ and $0 \leq i \leq k(q-1)-1$,

$$
f_{j}\left(M_{i}\right)=f_{j-1}\left(M_{i+2 k}\right),
$$

where the sum is taken modulo $k(q-1)$. In addition,

$$
f_{j}\left(M_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and } k(q-1) \leq i \leq r-1 .
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q-1$ and $\left\{f_{1}, f_{2}, \ldots, f_{q-1}\right\}$ is a signed star k-dominating family on G. Hence $d_{k S S}(G) \geq q-1$ and so $d_{k S S}(G)=q-1$.

Case 2: Assume that $r \equiv k+1(\bmod 2)$. Suppose that $r=(k+1) q+t$, where q is a positive integer and $0 \leq t \leq k$. By Corollary 2.6 and Theorem 2.7, $d_{k S S}(G) \leq q$ if q is odd and $d_{k S S}(G) \leq q-1$ if q is even.

Subcase 2.1: Assume that q is odd. Then t is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q}$ as follows.

$$
f_{1}\left(M_{i}\right)= \begin{cases}1 & \text { if } 0 \leq i \leq \frac{(k+1)(q-1)}{2}+k \\ -1 & \text { if } \frac{(k+1)(q-1)}{2}+k+1 \leq i \leq(k+1) q-1\end{cases}
$$

and for $2 \leq j \leq q$ and $0 \leq i \leq(k+1) q-1$,

$$
f_{j}\left(M_{i}\right)=f_{j-1}\left(M_{i+2(k+1)}\right)
$$

where the sum is taken modulo $(k+1) q$. In addition, if $t>0$,

$$
f_{j}\left(M_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and }(k+1) q \leq i \leq r-1
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q$ and $\left\{f_{1}, f_{2}, \ldots, f_{q}\right\}$ is a signed star k-dominating family of G. Hence $d_{k S S}(G) \geq q$. Therefore $d_{k S S}(G)=q$, as desired.

Subcase 2.2: Assume that q is even. Then $t+k+1$ is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q-1}$ as follows.
$f_{1}\left(M_{i}\right)=\left\{\begin{aligned} 1 & \text { if } 0 \leq i \leq \frac{(k+1)(q-2)}{2}+k \\ -1 & \text { if } \frac{(k+1)(q-2)}{2}+k+1 \leq i \leq(k+1)(q-1)-1,\end{aligned}\right.$
and for $2 \leq j \leq q-1$ and $0 \leq i \leq(k+1)(q-1)-1$,

$$
f_{j}\left(M_{i}\right)=f_{j-1}\left(M_{i+2(k+1)}\right)
$$

where the sum is taken modulo $(k+1)(q-1)$. In addition,

$$
f_{j}\left(M_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and }(k+1)(q-1) \leq i \leq n-1
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q-1$ and $\left\{f_{1}, f_{2}, \ldots, f_{q-1}\right\}$ is a signed star k-dominating family of G. Hence $d_{k S S}(G) \geq q-1$ and so $d_{k S S}(G)=q-1$, as desired.

Applying Theorem 3.1 and the well-known classical Theorem of König [4] that a k-regular bipartite graph is 1-factorable, we obtain the next result.

Corollary 3.2. If G is an r-regular bipartite graph and $1 \leq k \leq r$ is an integer, then
$d_{k S S}(G)= \begin{cases}\left\lfloor\frac{r}{k}\right\rfloor & \text { when } r \equiv k(\bmod 2) \text { and }\left\lfloor\frac{r}{k}\right\rfloor \text { is odd }, \\ \left\lfloor\frac{r}{k}\right\rfloor-1 & \text { when } r \equiv k(\bmod 2) \text { and }\left\lfloor\frac{r}{k}\right\rfloor \text { is even }, \\ \left\lfloor\frac{r}{k+1}\right\rfloor & \text { when } r \equiv k+1(\bmod 2) \text { and }\left\lfloor\frac{r}{k+1}\right\rfloor \text { is odd, }, \\ \left\lfloor\frac{r}{k+1}\right\rfloor-1 & \text { when } r \equiv k+1(\bmod 2) \text { and }\left\lfloor\frac{r}{k+1}\right\rfloor \text { is even } .\end{cases}$
Theorem 3.3. Let G be a graph of order n and factorable into r Hamiltonian cycles and let $1 \leq k \leq 2 r$ be an integer. Then

$$
d_{k S S}(G)= \begin{cases}\left\lfloor\frac{2 r}{k}\right\rfloor & \text { when } k \text { is even and }\left\lfloor\frac{2 r}{k}\right\rfloor \text { is odd }, \\ \left\lfloor\frac{2 r}{k}\right\rfloor-1 & \text { when } k \text { and }\left\lfloor\frac{2 r}{k}\right\rfloor \text { are even, } \\ \left\lfloor\frac{2 r}{k+1}\right\rfloor & \text { when } k \text { and }\left\lfloor\frac{2 r}{k+1}\right\rfloor \text { are odd }, \\ \left\lfloor\frac{2 r}{k+1}\right\rfloor-1 & \text { when } k \text { is odd and }\left\lfloor\frac{2 r}{k+1}\right\rfloor \text { is even. }\end{cases}
$$

Proof. Let G be a Hamiltonian factorable graph, and let $\left\{C_{0}, C_{1}, \ldots, C_{r-1}\right\}$ be a Hamiltonian factorization of G. We distinguish two cases.
Case 1: Assume that k is even. Suppose that $2 r=k q+t$, where q is a positive integer and $0 \leq t \leq k-1$. By Corollary 2.6 and Theorem 2.7, $d_{k S S}(G) \leq q$ if q is odd and $d_{k S S}(G) \leq q-1$ if q is even.

Subcase 1.1: Assume that q is odd. Then t is even and $r=(k / 2) q+(t / 2)$. Define the functions $f_{1}, f_{2}, \ldots, f_{q}$ as follows.

$$
f_{1}\left(C_{i}\right)=\left\{\begin{aligned}
1 & \text { if } 0 \leq i \leq \frac{k(q-1)}{4}+\frac{k}{2}-2 \\
-1 & \text { if } \frac{k(q-1)}{4}+\frac{k}{2}-1 \leq i \leq \frac{k}{2} q-1
\end{aligned}\right.
$$

and for $2 \leq j \leq q$ and $0 \leq i \leq \frac{k}{2} q-1$,

$$
f_{j}\left(C_{i}\right)=f_{j-1}\left(C_{i+k}\right),
$$

where the sum is taken modulo $(k / 2) q$. In addition, if $t>0$,

$$
f_{j}\left(C_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and } \frac{k}{2} q \leq i \leq r-1
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q$ and $\left\{f_{1}, f_{2}, \ldots, f_{q}\right\}$ is a signed star k-dominating family of G. Hence $d_{k S S}(G) \geq q$. Therefore $d_{k S S}(G)=q$, as desired.

Subcase 1.2: Assume that q is even. Then $(k / 2)+(t / 2)$ is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q-1}$ as follows.

$$
f_{1}\left(C_{i}\right)=\left\{\begin{array}{cl}
1 & \text { if } 0 \leq i \leq \frac{k(q-2)}{4}+\frac{k}{2}-2, \\
-1 & \text { if } \frac{k(q-2)}{4}+\frac{k}{2}-1 \leq i \leq \frac{k}{2}(q-1)-1,
\end{array}\right.
$$

and for $2 \leq j \leq q-1$ and $0 \leq i \leq(k / 2)(q-1)-1$,

$$
f_{j}\left(M_{i}\right)=f_{j-1}\left(M_{i+k}\right),
$$

where the sum is taken modulo $(k / 2)(q-1)$. In addition,

$$
f_{j}\left(C_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and } \frac{k}{2}(q-1) \leq i \leq r-1 .
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q-1$ and $\left\{f_{1}, f_{2}, \ldots, f_{q-1}\right\}$ is a signed star k-dominating family on G. Hence $d_{k S S}(G) \geq q-1$ and so $d_{k S S}(G)=q-1$.
Case 2: Assume that k is odd. Suppose that $2 r=(k+1) q+t$, where q is a positive integer and $0 \leq t \leq k$. By Corollary 2.6 and Theorem 2.7, $d_{k S S}(G) \leq q$ if q is odd and $d_{k S S}(G) \leq q-1$ if q is even.

Subcase 2.1: Assume that q is odd. Then t is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q}$ as follows.
$f_{1}\left(C_{i}\right)=\left\{\begin{array}{cl}1 & \text { if } 0 \leq i \leq \frac{(k+1)(q-1)}{4}+\frac{k+1}{2}-2, \\ -1 & \text { if } \frac{(k+1)(q-1)}{4}+\frac{k+1}{2}-1 \leq i \leq \frac{(k+1)}{2} q-1,\end{array}\right.$
and for $2 \leq j \leq q$ and $0 \leq i \leq(k+1) q / 2-1$,

$$
f_{j}\left(C_{i}\right)=f_{j-1}\left(C_{i+(k+1)}\right),
$$

where the sum is taken modulo $(k+1) q / 2$. In addition, if $t>0$,

$$
f_{j}\left(C_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and } \frac{(k+1)}{2} q \leq i \leq r-1 .
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q$ and $\left\{f_{1}, f_{2}, \ldots, f_{q}\right\}$ is a signed star k-dominating family of G. Hence $d_{k S S}(G) \geq q$. Therefore $d_{k S S}(G)=q$, as desired.
Subcase 2.2: Assume that q is even. Then $t / 2+(k+1) / 2$ is even. Define the functions $f_{1}, f_{2}, \ldots, f_{q-1}$ as follows.

$$
f_{1}\left(C_{i}\right)=\left\{\begin{aligned}
1 & \text { if } 0 \leq i \leq \frac{(k+1)(q-2)}{4}+\frac{k+1}{2}-2 \\
-1 & \text { if } \frac{(k+1)(q-2)}{4}+\frac{k+1}{2}-1 \leq i \leq \frac{(k+1)}{2}(q-1)-1
\end{aligned}\right.
$$

and for $2 \leq j \leq q-1$ and $0 \leq i \leq(k+1)(q-1) / 2-1$,

$$
f_{j}\left(C_{i}\right)=f_{j-1}\left(C_{i+(k+1)}\right),
$$

where the sum is taken modulo $(k+1)(q-1) / 2$. In addition,

$$
f_{j}\left(C_{i}\right)=(-1)^{i+j} \text { for } 1 \leq j \leq q \text { and } \frac{(k+1)}{2}(q-1) \leq i \leq r-1
$$

It is easy to see that f_{j} is a signed star k-dominating function of G for each $1 \leq j \leq q-1$ and $\left\{f_{1}, f_{2}, \ldots, f_{q-1}\right\}$ is a signed star k-dominating family of G. Hence $d_{k S S}(G) \geq q-1$ and so $d_{k S S}(G)=q-1$, as desired.

According to Theorems 3.1, 3.3 and the following two well-known results, we can determine the signed star k-domatic number of complete graphs.
Theorem. The complete graph $K_{2 r}$ is 1-factorable.
Theorem. For every positive integer r, the graph $K_{2 r+1}$ is Hamiltonian factorable.

References

1. M. Atapour, S. M. Sheikholeslami, A. N. Ghameshlou, and L. Volkmann, Signed star domatic number of a graph, Discrete Appl. Math. 158 (2010), 213-218.
2. A. N. Ghameshlou, A. Khodkar, R. Saei, and S. M. Sheikholeslami, Signed (b, k)-edge covers in graphs, Intelligent Information Management 2 (2010), 143-148.
3. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
4. D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916), 453-465.
5. R. Saei and S. M. Sheikholeslami, Signed star k-subdomination numbers in graphs, Discrete Appl. Math. 156 (2008), 3066-3070.
6. C. P. Wang, The signed star domination numbers of the Cartesian product, Discrete Appl. Math. 155 (2007), 1497-1505.
7. C.P. Wang, The signed b-matchings and b-edge covers of strong product graphs, Contrib. Discrete Math. 5 (2010), 1-10.
8. D. B. West, Introduction to graph theory, Prentice-Hall, Inc., 2000.
9. B. Xu, On edge domination numbers of graphs, Discrete Math. 294 (2005), 311-316.
10. , Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006), 1541-1546.
11. B. Xu and C. H. Li, Signed star k-domination numbers of graphs, Pure Appl. Math. (Xi'an) 25 (2009), 638-641, in Chinese.

Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I. R. Iran
E-mail address: s.m.sheikholeslami@azaruniv.edu
Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany
E-mail address: volkm@math2.rwth-aachen.de

[^0]: Received by the editors September 2, 2010, and in revised form May 25, 2011. 2000 Mathematics Subject Classification. 05C69.
 Key words and phrases. Signed star k-domatic number; Signed star domatic number; Signed star k-dominating function; Signed star dominating function; Signed star k-domination number; Signed star domination number; Regular graphs.

