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SIGNED STAR k-DOMATIC NUMBER OF A GRAPH

SEYED MAHMOUD SHEIKHOLESLAMI AND LUTZ VOLKMANN

Abstract. Let G be a simple graph without isolated vertices with ver-
tex set V (G) and edge set E(G) and let k be a positive integer. A
function f : E(G) → {−1, 1} is said to be a signed star k-dominating
function on G if

∑
e∈E(v) f(e) ≥ k for every vertex v of G, where

E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star

k-dominating functions on G with the property that
∑d

i=1 fi(e) ≤ 1 for
each e ∈ E(G), is called a signed star k-dominating family (of functions)
on G. The maximum number of functions in a signed star k-dominating
family on G is the signed star k-domatic number of G, denoted by
dkSS(G).

In this paper we study the properties of the signed star k-domatic
number dkSS(G). In particular, we determine the signed star k-domatic
number of some classes of graphs. Some of our results extend these one
given by Atapour et al. [1] for the signed star domatic number.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We use
[8] for terminology and notation which are not defined here and consider
simple graphs without isolated vertices only. For every nonempty subset
E′ of E(G), the subgraph G[E′] induced by E′ is the graph whose vertex
set consists of those vertices of G incident with at least one edge of E′ and
whose edge set is E′.

Two edges e1 and e2 of G are called adjacent if they are distinct and have a
common vertex. The open neighborhood NG(e) of an edge e ∈ E(G) is the set
of all edges adjacent to e. Its closed neighborhood is NG[e] = NG(e) ∪ {e}.
For a function f : E(G) → {−1, 1} and a subset S of E(G) we define
f(S) =

∑
e∈S f(e). The edge-neighborhood EG(v) of a vertex v ∈ V (G) is

the set of all edges incident with the vertex v. For each vertex v ∈ V (G),
we also define f(v) =

∑
e∈EG(v) f(e).
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Let k be a positive integer. A function f : E(G) → {−1, 1} is called
a signed star k-dominating function (SSkDF) on G, if f(v) ≥ k for ev-
ery vertex v of G. The signed star k-domination number of a graph G
is γkSS(G) = min{

∑
e∈E f(e) | f is a SSkDF on G}. The signed star k-

dominating function f on G with f(E(G)) = γkSS(G) is called a γkSS(G)-
function. As assuming δ(G) ≥ k is clearly necessary, we will always assume
that when we discuss γkSS(G) all graphs involved satisfy δ(G) ≥ k. The
signed star k-domination number, introduced by Xu and Li in [11], has
been studied by several authors (see for instance [2, 7]). The signed star
1-domination number is the usual signed star domination number which has
been introduced by Xu in [9] and has been studied by several authors (see
for instance [5, 6, 10]).

A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the

property that
∑d

i=1 fi(e) ≤ 1 for each e ∈ E(G), is called a signed star k-
dominating family (of functions) on G. The maximum number of functions
in a signed star k-dominating family on G is the signed star k-domatic
number of G, denoted by dkSS(G). The signed star k-domatic number is
well-defined and dkSS(G) ≥ 1 for all graphs G with δ(G) ≥ k, since the set
consisting of any one SSkD function forms a SSkD family on G. A dkSS-
family of a graph G is a SSkD family containing dkSS(D) SSkD functions.
The signed star 1-domatic number d1SS(G) is the usual signed star domatic
number dSS(G) which was introduced by Atapour et al. in [1].

Our purpose in this paper is to initiate the study of signed star k-domatic
number in graphs. We first study basic properties and bounds for the signed
star k-domatic number of a graph, some of which are analogous to those of
the signed star domatic number dSS(G) in [1]. In addition, we determine
the signed star k-domatic number of some classes of graphs.

Observation 1.1. Let G be a graph of order n ≥ 3 and size m. If k ∈
{n− 2, n− 1} and δ(k) ≥ k, then γkSS(G) = m and hence dkSS(G) = 1.

Observation 1.2. Let G be a graph of size m with δ(G) ≥ k. Then
γkSS(G) = m if and only if each edge e ∈ E(G) has an endpoint u such
that deg(u) = k or deg(u) = k + 1.

Proof. If each edge e ∈ E(G) has an endpoint u such that deg(u) = k or
deg(u) = k + 1, then trivially γkSS(G) = m.

Conversely, assume that γkSS(G) = m. Suppose to the contrary that
there exists an edge e = uv ∈ E(G) such that min{deg(u),deg(v)} ≥ k + 2.
Define f : E(G)→ {−1, 1} by f(e) = −1 and f(e′) = 1 for e′ ∈ E(G) \ {e}.
Obviously, f is a signed star k-dominating function of G with weight less
than m, a contradiction. This completes the proof. �

2. Basic properties of the signed star k-domatic number

In this section we study basic properties of dkSS(G).
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Theorem 2.1. Let G be a graph of size m with δ(G) ≥ k, signed star k-
domination number γkSS(G) and signed star k-domatic number dkSS(G).
Then

γkSS(G) · dkSS(G) ≤ m.

Moreover, if we have γkSS(G) · dkSS(G) = m, then for each dkSS-family

{f1, f2, . . . , fd} of G, each function fi is a γkSS-function and
∑d

i=1 fi(e) = 1
for all e ∈ E(G).

Proof. If {f1, f2, . . . , fd} is a signed star k-dominating family on G such that
d = dkSS(G), then the definitions imply

d · γkSS(G) =
d∑

i=1

γkSS(G) ≤
d∑

i=1

∑
e∈E(G)

fi(e)

=
∑

e∈E(G)

d∑
i=1

fi(e) ≤
∑

e∈E(G)

1 = m

as desired.
If γkSS(G) ·dkSS(G) = m, then the two inequalities occurring in the proof

become equalities. Hence for the dkSS-family {f1, f2, . . . , fd} of G and for
each i,

∑
e∈E(G) fi(e) = γkSS(G), thus each function fi is a γkSS-function,

and
∑d

i=1 fi(e) = 1 for all e ∈ E(G). �

Corollary 2.2. If G is a graph of size m and δ(G) ≥ k, then

γkSS(G) + dkSS(G) ≤ m+ 1 .

Proof. By Theorem 2.1,

(2.1) γkSS(G) + dkSS(G) ≤ dkSS(G) +
m

dkSS(G)
.

Using the fact that the function g(x) = x+m/x is decreasing for 1 ≤ x ≤
√
m

and increasing for
√
m ≤ x ≤ m, this inequality leads to the desired bound

immediately. �

Corollary 2.3. Let G be a graph of size m and δ(G) ≥ k. If 2 ≤ γkSS(G) ≤
m− 1, then

γkSS(G) + dkSS(G) ≤ m.

Proof. Theorem 2.1 implies that

(2.2) γkSS(G) + dkSS(G) ≤ γkSS(G) +
m

γkSS(G)
.

If we define x = γkSS(G) and g(x) = x + m/x for x > 0, then because
2 ≤ γkSS(G) ≤ m − 1, we have to determine the maximum of the function
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g in the interval I : 2 ≤ x ≤ m− 1. It is easy to see that

max
x∈I
{g(x)} = max{g(2), g(m− 1)}

= max

{
2 +

m

2
,m− 1 +

m

m− 1

}
= m− 1 +

m

m− 1
< m+ 1,

and we obtain γkSS(G) + dkSS(G) ≤ m. This completes the proof. �

Corollary 2.4. Let k ≥ 1 be an integer, and let G be a graph of size m and
δ(G) ≥ k. If min{γkSS(G), dkSS(G)} ≥ 2, then

γkSS(G) + dkSS(G) ≤ m

2
+ 2 .

Proof. Since min{γkSS(G), dkSS(G)} ≥ 2, it follows by Theorem 2.1 that
2 ≤ dkSS(G) ≤ m/2. By (2.1) and the fact that the maximum of g(x) =
x+m/x on the interval 2 ≤ x ≤ m/2 is g(2) = g(m/2), we see that

γkSS(G) + dkSS(G) ≤ dkSS(G) +
m

dkSS(G)
≤ m

2
+ 2 .

�

Observation 1.1 demonstrates that Corollary 2.4 is no longer true in the
case that min{γkSS(G), dkSS(G)} = 1.

Theorem 2.5. Let G be a graph with δ(G) ≥ k and let v ∈ V (G). Then

dkSS(G) ≤


deg(v)

k
if deg(v) ≡ k (mod 2) ,

deg(v)

k + 1
if deg(v) ≡ k + 1 (mod 2) .

Moreover, if the equality holds, then for each function fi of a SSkD family
{f1, f2, . . . , fd} and for every e ∈ E(v),∑

e∈E(v)

fi(e) =

{
k if deg(v) ≡ k (mod 2) ,

k + 1 if deg(v) ≡ k + 1 (mod 2) ,

and
∑d

i=1 fi(e) = 1.

Proof. Let {f1, f2, . . . , fd} be a SSkD family of G such that d = dkSS(G). If
deg(v) ≡ k (mod 2), then

d =

d∑
i=1

1 ≤
d∑

i=1

1

k

∑
e∈E(v)

fi(e) =
1

k

∑
e∈E(v)

d∑
i=1

fi(e) ≤
1

k

∑
e∈E(v)

1 =
deg(v)

k
.
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Similarly, if deg(v) ≡ k + 1 (mod 2), then

d =
d∑

i=1

1 ≤
d∑

i=1

1

k + 1

∑
e∈E(v)

fi(e)

=
1

k + 1

∑
e∈E(v)

d∑
i=1

fi(e) ≤
1

k + 1

∑
e∈E(v)

1 =
deg(v)

k + 1
.

If dkSS(G) = deg(v)/k when deg(v) ≡ k (mod 2) or dkSS(G) = deg(v)/(k+
1) when deg(v) ≡ k + 1 (mod 2), then the two inequalities occurring in
the proof of each corresponding case become equalities, which gives the
properties given in the statement. �

Corollary 2.6. Let G be a graph and 1 ≤ k ≤ δ(G). Then

dkSS(G) ≤


δ(G)

k
if δ(G) ≡ k (mod 2) ,

δ(G)

k + 1
if δ(G) ≡ k + 1 (mod 2) .

Theorem 2.7. The signed star k-domatic number is an odd integer.

Proof. Let G be an arbitrary graph, and assume that d = dkSS(G) is even.
Let {f1, f2, . . . , fd} be the corresponding signed star k-dominating family

on G. If e ∈ E(G) is an arbitrary edge, then
∑d

i=1 fi(e) ≤ 1. On the left-
hand side of this inequality, a sum of an even number of odd summands

occurs. Therefore it is an even number, and we obtain
∑d

i=1 fi(e) ≤ 0 for
each e ∈ E(G). This forces

kd =
d∑

i=1

k ≤
d∑

i=1

∑
e∈E(v)

fi(e) =
∑

e∈E(v)

d∑
i=1

fi(e) ≤ 0 ,

which is a contradiction. �

An immediate consequence of Theorems 2.5, 2.7 and Corollary 2.6 is the
following result.

Corollary 2.8. Let G be a graph with δ(G) ≥ k. If δ(G) < 3k or if G has
a vertex v of degree deg(v) = 3k + 1, then dkSS(G) = 1.

Proof. If δ(G) < 3k, then Corollary 2.6 implies that

dkSS(G) ≤ δ(G)

k
<

3k

k
= 3.

Applying Theorem 2.7, we deduce that dkSS(G) ≤ 1 and thus dkSS(G) = 1.
If G has a vertex v of degree deg(v) = 3k + 1, then deg(v) ≡ k + 1 (mod 2)
and thus it follows from Theorem 2.5 that

dkSS(G) ≤ deg(v)

k + 1
=

3k + 1

k + 1
< 3.

Again Theorem 2.7 leads to the desired result dkSS(G) = 1. �
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Corollary 2.9. Let G be a graph of sizem. Then γkSS(G)+dkSS(G) = m+1
if and only if each edge e ∈ E(G) has an endpoint u such that deg(u) = k
or deg(u) = k + 1.

Proof. If each edge e ∈ E(G) has an endpoint u such that deg(u) = k or
deg(u) = k + 1, then γkSS(G) = m by Observation 1.2. Hence dkSS(G) = 1
and the result follows.

Conversely, let γkSS(G) + dkSS(G) = m+ 1. The result is obviously true
for m = 1, 2, 3. Assume m ≥ 4. By Corollary 2.4, we may assume that
min{γkSS(G), dkSS(G)} = 1. If γkSS(G) = 1, then dkSS(G) = m, which is a
contradiction to Corollary 2.6. If dkSS(G) = 1, then γkSS(G) = m and the
result follows by Observation 1.2. �

As an application of Corollary 2.6 and Theorem 2.7, we will prove the
following Nordhaus-Gaddum type result.

Theorem 2.10. For every graph G of order n with δ(G) ≥ k and δ(G) ≥ k,

(2.3) dkSS(G) + dkSS(G) ≤ n− 1

k
.

If dkSS(G) + dkSS(G) = (n − 1)/k, then G is regular, k and δ(G) are even
and n is odd such that n− 1 ≡ 0 (mod 4).

Proof. Since δ(G) + δ(G) ≤ n− 1, Corollary 2.6 leads to

dkSS(G) + dkSS(G) ≤ δ(G)

k
+
δ(G)

k
≤ n− 1

k
.

If G is not regular, then δ(G) + δ(G) ≤ n − 2 and hence we obtain the
better bound dkSS(G) + dkSS(G) ≤ (n− 2)/k. Thus assume now that G is
δ(G)-regular.

Case 1: Assume that k is odd. If δ(G) is even, then it follows from Corollary
2.6 that

dkSS(G) + dkSS(G) ≤ δ(G)

k + 1
+
δ(G)

k
=
δ(G)

k + 1
+
n− δ(G)− 1

k

<
δ(G)

k
+
n− δ(G)− 1

k
=
n− 1

k
.

If δ(G) is odd, then n is even and thus δ(G) = n− δ(G)− 1 is even. Using
Corollary 2.6, we find that

dkSS(G) + dkSS(G) ≤ δ(G)

k
+
δ(G)

k + 1
=
δ(G)

k
+
n− δ(G)− 1

k + 1

<
δ(G)

k
+
n− δ(G)− 1

k
=
n− 1

k
.

Combining these two bounds, we conclude that dkSS(G) + dkSS(G) < (n−
1)/k when k is odd.

Case 2: Assume that k is even. If δ(G) is odd, then Corollary 2.6 implies
dkSS(G)+dkSS(G) < (n−1)/k as above. If δ(G) is even and n is even, then
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δ(G) = n− δ(G)− 1 is odd, and we obtain the bound dkSS(G) + dkSS(G) <
(n− 1)/k as above.

Finally, assume that δ(G) is even and n is odd such that n− 1 = 4p+ 2. If
dkSS(G) + dkSS(G) = (n− 1)/k, then we observe that

dkSS(G) =
δ(G)

k
and dkSS(G) =

δ(G)

k
.

According to Theorem 2.7, these two values are odd integers, say

dkSS(G) =
δ(G)

k
= 2s+ 1 and dkSS(G) =

δ(G)

k
= 2t+ 1 .

If k = 2i, then we arrive at the contradiction

dkSS(G) + dkSS(G) =
δ(G)

k
+
δ(G)

k
= 2(s+ t+ 1) =

4p+ 2

2i
.

This contradiction completes the proof of Theorem 2.10. �

The following examples will demonstrate that dkSS(G) + dkSS(G) = (n−
1)/k in Theorem 2.10 is possible when G is regular, k and δ(G) are even
and n is odd such that n− 1 ≡ 0 (mod 4).

Let k ≥ 2 be an even integer and n ≥ 5 such that n − 1 = 2k. Now let
H be a k-regular graph of order n. Then H is also k-regular. Corollary 2.6
implies that dkSS(H) ≤ 1 and thus dkSS(H) = 1. It follows that

dkSS(H) + dkSS(H) = 2 =
n− 1

k
.

Corollary 2.11. Let G be a graph of order n with δ(G) ≥ k and δ(G) ≥ k.
If δ(G) < 3k and δ(G) < 3k or n < 4k + 1, then

dkSS(G) + dkSS(G) = 2 .

Proof. If δ(G) < 3k and δ(G) < 3k, then Corollary 2.8 implies the desired
result immediately. If n < 4k + 1, then it follows from (2.3) that

dkSS(G) + dkSS(G) ≤ n− 1

k
<

4k

k
= 4 ,

and thus Theorem 2.7 leads to dkSS(G) + dkSS(G) = 2. �

3. Signed star k-domatic number of regular graphs

In this section we determine values of the signed star k-domatic number
for some classes of regular graphs.
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Theorem 3.1. Let G be an r-regular and 1-factorable graph and let 1 ≤
k ≤ r be an integer. Then

dkSS(G) =



⌊ r
k

⌋
when r ≡ k (mod 2) and

⌊ r
k

⌋
is odd ,⌊ r

k

⌋
− 1 when r ≡ k (mod 2) and

⌊ r
k

⌋
is even ,⌊

r

k + 1

⌋
when r ≡ k + 1 (mod 2) and

⌊
r

k + 1

⌋
is odd ,⌊

r

k + 1

⌋
− 1 when r ≡ k + 1 (mod 2) and

⌊
r

k + 1

⌋
is even .

Proof. By Observation 1.2 and Theorem 2.1 we may assume k ≤ r− 2. Let
{M0,M1, . . . ,Mr−1} be a 1-factorization of G. We distinguish two cases.

Case 1: Assume that r ≡ k (mod 2). Suppose that r = kq + t, where q is
a positive integer and 0 ≤ t ≤ k − 1. By Corollary 2.6 and Theorem 2.7,
dkSS(G) ≤ q if q is odd and dkSS(G) ≤ q − 1 if q is even.

Subcase 1.1: Assume that q is odd. Then t is even. Define the functions
f1, f2, . . . , fq as follows.

f1(e) =


1 if e ∈Mi where 0 ≤ i ≤ k(q − 1)

2
+ k − 1 ,

− 1 if e ∈Mi and
k(q − 1)

2
+ k ≤ i ≤ kq − 1 ,

and for 2 ≤ j ≤ q and 0 ≤ i ≤ kq − 1,

fj(Mi) = fj−1(Mi+2k) ,

where the sum is taken modulo kq. In addition, if t > 0,

fj(Mi) = (−1)i+j for 1 ≤ j ≤ q and kq ≤ i ≤ r − 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q and {f1, f2, . . . , fq} is a signed star k-dominating family
of G. Hence dkSS(G) ≥ q. Therefore dkSS(G) = q, as desired.

Subcase 1.2: Assume that q is even. Then t + k is even. Define the
functions f1, f2, . . . , fq−1 as follows.

f1(Mi) =


1 if 0 ≤ i ≤ k(q − 2)

2
+ k − 1 ,

− 1 if
k(q − 2)

2
+ k ≤ i ≤ k(q − 1)− 1 ,

and for 2 ≤ j ≤ q − 1 and 0 ≤ i ≤ k(q − 1)− 1,

fj(Mi) = fj−1(Mi+2k) ,

where the sum is taken modulo k(q − 1). In addition,

fj(Mi) = (−1)i+j for 1 ≤ j ≤ q and k(q − 1) ≤ i ≤ r − 1 .
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It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q − 1 and {f1, f2, . . . , fq−1} is a signed star k-dominating
family on G. Hence dkSS(G) ≥ q − 1 and so dkSS(G) = q − 1.

Case 2: Assume that r ≡ k + 1 (mod 2). Suppose that r = (k + 1)q + t,
where q is a positive integer and 0 ≤ t ≤ k. By Corollary 2.6 and Theorem
2.7, dkSS(G) ≤ q if q is odd and dkSS(G) ≤ q − 1 if q is even.

Subcase 2.1: Assume that q is odd. Then t is even. Define the functions
f1, f2, . . . , fq as follows.

f1(Mi) =


1 if 0 ≤ i ≤ (k + 1)(q − 1)

2
+ k ,

− 1 if
(k + 1)(q − 1)

2
+ k + 1 ≤ i ≤ (k + 1)q − 1 ,

and for 2 ≤ j ≤ q and 0 ≤ i ≤ (k + 1)q − 1,

fj(Mi) = fj−1(Mi+2(k+1)) ,

where the sum is taken modulo (k + 1)q. In addition, if t > 0,

fj(Mi) = (−1)i+j for 1 ≤ j ≤ q and (k + 1)q ≤ i ≤ r − 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q and {f1, f2, . . . , fq} is a signed star k-dominating family
of G. Hence dkSS(G) ≥ q. Therefore dkSS(G) = q, as desired.

Subcase 2.2: Assume that q is even. Then t + k + 1 is even. Define the
functions f1, f2, . . . , fq−1 as follows.

f1(Mi) =


1 if 0 ≤ i ≤ (k + 1)(q − 2)

2
+ k ,

− 1 if
(k + 1)(q − 2)

2
+ k + 1 ≤ i ≤ (k + 1)(q − 1)− 1 ,

and for 2 ≤ j ≤ q − 1 and 0 ≤ i ≤ (k + 1)(q − 1)− 1,

fj(Mi) = fj−1(Mi+2(k+1)) ,

where the sum is taken modulo (k + 1)(q − 1). In addition,

fj(Mi) = (−1)i+j for 1 ≤ j ≤ q and (k + 1)(q − 1) ≤ i ≤ n− 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q − 1 and {f1, f2, . . . , fq−1} is a signed star k-dominating
family of G. Hence dkSS(G) ≥ q− 1 and so dkSS(G) = q− 1, as desired.

�

Applying Theorem 3.1 and the well-known classical Theorem of König [4]
that a k-regular bipartite graph is 1-factorable, we obtain the next result.
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Corollary 3.2. If G is an r-regular bipartite graph and 1 ≤ k ≤ r is an
integer, then

dkSS(G) =



⌊ r
k

⌋
when r ≡ k (mod 2) and

⌊ r
k

⌋
is odd ,⌊ r

k

⌋
− 1 when r ≡ k (mod 2) and

⌊ r
k

⌋
is even ,⌊

r

k + 1

⌋
when r ≡ k + 1 (mod 2) and

⌊
r

k + 1

⌋
is odd ,⌊

r

k + 1

⌋
− 1 when r ≡ k + 1 (mod 2) and

⌊
r

k + 1

⌋
is even .

Theorem 3.3. Let G be a graph of order n and factorable into r Hamilton-
ian cycles and let 1 ≤ k ≤ 2r be an integer. Then

dkSS(G) =



⌊
2r

k

⌋
when k is even and

⌊
2r

k

⌋
is odd ,⌊

2r

k

⌋
− 1 when k and

⌊
2r

k

⌋
are even ,⌊

2r

k + 1

⌋
when k and

⌊
2r

k + 1

⌋
are odd ,⌊

2r

k + 1

⌋
− 1 when k is odd and

⌊
2r

k + 1

⌋
is even .

Proof. Let G be a Hamiltonian factorable graph, and let {C0, C1, . . . , Cr−1}
be a Hamiltonian factorization of G. We distinguish two cases.

Case 1: Assume that k is even. Suppose that 2r = kq + t, where q is a
positive integer and 0 ≤ t ≤ k − 1. By Corollary 2.6 and Theorem 2.7,
dkSS(G) ≤ q if q is odd and dkSS(G) ≤ q − 1 if q is even.

Subcase 1.1: Assume that q is odd. Then t is even and r = (k/2)q+(t/2).
Define the functions f1, f2, . . . , fq as follows.

f1(Ci) =


1 if 0 ≤ i ≤ k(q − 1)

4
+
k

2
− 2 ,

− 1 if
k(q − 1)

4
+
k

2
− 1 ≤ i ≤ k

2
q − 1 ,

and for 2 ≤ j ≤ q and 0 ≤ i ≤ k
2q − 1,

fj(Ci) = fj−1(Ci+k) ,

where the sum is taken modulo (k/2)q. In addition, if t > 0,

fj(Ci) = (−1)i+j for 1 ≤ j ≤ q and
k

2
q ≤ i ≤ r − 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q and {f1, f2, . . . , fq} is a signed star k-dominating family
of G. Hence dkSS(G) ≥ q. Therefore dkSS(G) = q, as desired.



30 SEYED MAHMOUD SHEIKHOLESLAMI AND LUTZ VOLKMANN

Subcase 1.2: Assume that q is even. Then (k/2) + (t/2) is even. Define
the functions f1, f2, . . . , fq−1 as follows.

f1(Ci) =


1 if 0 ≤ i ≤ k(q − 2)

4
+
k

2
− 2 ,

− 1 if
k(q − 2)

4
+
k

2
− 1 ≤ i ≤ k

2
(q − 1)− 1 ,

and for 2 ≤ j ≤ q − 1 and 0 ≤ i ≤ (k/2)(q − 1)− 1,

fj(Mi) = fj−1(Mi+k) ,

where the sum is taken modulo (k/2)(q − 1). In addition,

fj(Ci) = (−1)i+j for 1 ≤ j ≤ q and
k

2
(q − 1) ≤ i ≤ r − 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q − 1 and {f1, f2, . . . , fq−1} is a signed star k-dominating
family on G. Hence dkSS(G) ≥ q − 1 and so dkSS(G) = q − 1.

Case 2: Assume that k is odd. Suppose that 2r = (k + 1)q + t, where q
is a positive integer and 0 ≤ t ≤ k. By Corollary 2.6 and Theorem 2.7,
dkSS(G) ≤ q if q is odd and dkSS(G) ≤ q − 1 if q is even.

Subcase 2.1: Assume that q is odd. Then t is even. Define the functions
f1, f2, . . . , fq as follows.

f1(Ci) =


1 if 0 ≤ i ≤ (k + 1)(q − 1)

4
+
k + 1

2
− 2 ,

− 1 if
(k + 1)(q − 1)

4
+
k + 1

2
− 1 ≤ i ≤ (k + 1)

2
q − 1 ,

and for 2 ≤ j ≤ q and 0 ≤ i ≤ (k + 1)q/2− 1,

fj(Ci) = fj−1(Ci+(k+1)) ,

where the sum is taken modulo (k + 1)q/2. In addition, if t > 0,

fj(Ci) = (−1)i+j for 1 ≤ j ≤ q and
(k + 1)

2
q ≤ i ≤ r − 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q and {f1, f2, . . . , fq} is a signed star k-dominating family
of G. Hence dkSS(G) ≥ q. Therefore dkSS(G) = q, as desired.

Subcase 2.2: Assume that q is even. Then t/2+ (k+1)/2 is even. Define
the functions f1, f2, . . . , fq−1 as follows.

f1(Ci) =


1 if 0 ≤ i ≤ (k + 1)(q − 2)

4
+
k + 1

2
− 2 ,

− 1 if
(k + 1)(q − 2)

4
+
k + 1

2
− 1 ≤ i ≤ (k + 1)

2
(q − 1)− 1 ,
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and for 2 ≤ j ≤ q − 1 and 0 ≤ i ≤ (k + 1)(q − 1)/2− 1,

fj(Ci) = fj−1(Ci+(k+1)) ,

where the sum is taken modulo (k + 1)(q − 1)/2. In addition,

fj(Ci) = (−1)i+j for 1 ≤ j ≤ q and
(k + 1)

2
(q − 1) ≤ i ≤ r − 1 .

It is easy to see that fj is a signed star k-dominating function of G for
each 1 ≤ j ≤ q − 1 and {f1, f2, . . . , fq−1} is a signed star k-dominating
family of G. Hence dkSS(G) ≥ q− 1 and so dkSS(G) = q− 1, as desired.

�

According to Theorems 3.1, 3.3 and the following two well-known results,
we can determine the signed star k-domatic number of complete graphs.

Theorem. The complete graph K2r is 1-factorable.

Theorem. For every positive integer r, the graph K2r+1 is Hamiltonian
factorable.
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4. D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengen-
lehre, Math. Ann. 77 (1916), 453–465.

5. R. Saei and S. M. Sheikholeslami, Signed star k-subdomination numbers in graphs,
Discrete Appl. Math. 156 (2008), 3066–3070.

6. C. P. Wang, The signed star domination numbers of the Cartesian product, Discrete
Appl. Math. 155 (2007), 1497–1505.

7. C.P. Wang, The signed b-matchings and b-edge covers of strong product graphs, Con-
trib. Discrete Math. 5 (2010), 1–10.

8. D. B. West, Introduction to graph theory, Prentice-Hall, Inc., 2000.
9. B. Xu, On edge domination numbers of graphs, Discrete Math. 294 (2005), 311–316.

10. , Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006),
1541–1546.

11. B. Xu and C. H. Li, Signed star k-domination numbers of graphs, Pure Appl. Math.
(Xi’an) 25 (2009), 638–641, in Chinese.

Department of Mathematics, Azarbaijan University of Tarbiat Moallem,
Tabriz, I. R. Iran

E-mail address: s.m.sheikholeslami@azaruniv.edu

Lehrstuhl II für Mathematik, RWTH-Aachen University,
52056 Aachen, Germany

E-mail address: volkm@math2.rwth-aachen.de


