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SIGNED STAR k-DOMATIC NUMBER OF A GRAPH

SEYED MAHMOUD SHEIKHOLESLAMI AND LUTZ VOLKMANN

ABSTRACT. Let G be a simple graph without isolated vertices with ver-
tex set V(G) and edge set E(G) and let k& be a positive integer. A
function f : E(G) — {—1,1} is said to be a signed star k-dominating
function on G if 35 5., f(e) = k for every vertex v of G, where
Ew) ={w € E(G) | u € N(v)}. A set {f1, f2,..., fa} of signed star
k-dominating functions on G with the property that Z?zl fi(e) <1 for
each e € E(G), is called a signed star k-dominating family (of functions)
on G. The maximum number of functions in a signed star k-dominating
family on G is the signed star k-domatic number of G, denoted by
dkss(G).

In this paper we study the properties of the signed star k-domatic
number digs(G). In particular, we determine the signed star k-domatic
number of some classes of graphs. Some of our results extend these one
given by Atapour et al. [1] for the signed star domatic number.

1. INTRODUCTION

Let G be a graph with vertex set V(G) and edge set F(G). We use
[8] for terminology and notation which are not defined here and consider
simple graphs without isolated vertices only. For every nonempty subset
E’ of E(G), the subgraph G[E'] induced by E’ is the graph whose vertex
set consists of those vertices of G incident with at least one edge of E’ and
whose edge set is E'.

Two edges e and es of GG are called adjacent if they are distinct and have a
common vertex. The open neighborhood Ng(e) of an edge e € E(G) is the set
of all edges adjacent to e. Its closed neighborhood is Ngle] = Ng(e) U {e}.
For a function f : E(G) — {—1,1} and a subset S of E(G) we define
f(S) = > .cs f(e). The edge-neighborhood Eg(v) of a vertex v € V(G) is
the set of all edges incident with the vertex v. For each vertex v € V(G),

we also define f(v) = X ccp ) f(€)-
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Let k be a positive integer. A function f : E(G) — {—1,1} is called
a signed star k-dominating function (SSKDF) on G, if f(v) > k for ev-
ery vertex v of G. The signed star k-domination number of a graph G
is Yrss(G) = min{)_ . f(e) | fis a SSkDF on G}. The signed star k-
dominating function f on G with f(E(G)) = 1xss(G) is called a vis55(G)-
function. As assuming §(G) > k is clearly necessary, we will always assume
that when we discuss v,s55(G) all graphs involved satisfy 6(G) > k. The
signed star k-domination number, introduced by Xu and Li in [11], has
been studied by several authors (see for instance [2, 7]). The signed star
1-domination number is the usual signed star domination number which has
been introduced by Xu in [9] and has been studied by several authors (see
for instance [5, 6, 10]).

A set {f1, fa,..., fa} of signed star k-dominating functions on G with the
property that Zle file) <1 for each e € E(G), is called a signed star k-
dominating family (of functions) on G. The maximum number of functions
in a signed star k-dominating family on G is the signed star k-domatic
number of G, denoted by dirss(G). The signed star k-domatic number is
well-defined and diss(G) > 1 for all graphs G with 6(G) > k, since the set
consisting of any one SSkD function forms a SSkD family on G. A dpsg-
family of a graph G is a SSkD family containing dygg(D) SSkD functions.
The signed star 1-domatic number digs(G) is the usual signed star domatic
number dgs(G) which was introduced by Atapour et al. in [1].

Our purpose in this paper is to initiate the study of signed star k-domatic
number in graphs. We first study basic properties and bounds for the signed
star k-domatic number of a graph, some of which are analogous to those of
the signed star domatic number dgg(G) in [1]. In addition, we determine
the signed star k-domatic number of some classes of graphs.

Observation 1.1. Let G be a graph of order n > 3 and size m. If k €
{n—2,n—1} and 6(k) > k, then yxss(G) = m and hence diss(G) = 1.

Observation 1.2. Let G be a graph of size m with §(G) > k. Then
Yiss(G) = m if and only if each edge e € E(G) has an endpoint u such
that deg(u) = k or deg(u) = k + 1.

Proof. If each edge e € E(G) has an endpoint u such that deg(u) = k or
deg(u) = k + 1, then trivially y455(G) = m.

Conversely, assume that 1x55(G) = m. Suppose to the contrary that
there exists an edge e = uwv € E(G) such that min{deg(u), deg(v)} > k + 2.
Define f : E(G) — {—1,1} by f(e) = —1 and f(¢/) =1 for € € E(Q) \ {e}.
Obviously, f is a signed star k-dominating function of G with weight less
than m, a contradiction. This completes the proof. O

2. BASIC PROPERTIES OF THE SIGNED STAR k-DOMATIC NUMBER

In this section we study basic properties of dgss(G).
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Theorem 2.1. Let G be a graph of size m with §(G) > k, signed star k-
domination number Yrss(G) and signed star k-domatic number dipss(G).
Then

Mss(G) - drss(G) < m.

Moreover, if we have vyrs55(G) - drss(G) = m, then for each dygg-family

{f1, fa,.-., fa} of G, each function f; is a Yss-function and Zf’:l file) =1
for all e € E(G).

Proof. It {f1, fa,..., fa} is a signed star k-dominating family on G such that
d = diss(G), then the definitions imply

d d
d-vess(G) = Z’YkSS(G) < Z Z fi(e)
=1

i=1 ecB(Q)

d
= Zfi(e)g Z l=m

e€E(G) i= e€E(G)

as desired.

If yk55(G) - dkss(G) = m, then the two inequalities occurring in the proof
become equalities. Hence for the digs-family {fi, fo,..., fa} of G and for
each 1, ZeeE(G) fi(e) = vkss(G), thus each function f; is a yigg-function,

and 0| fi(e) =1 for all e € E(G). O
Corollary 2.2. If G is a graph of size m and 6(G) > k, then

Ykss(G) + dkss(G) <m +1.
Proof. By Theorem 2.1,

(2.1) ’ykss(G) + dk;SS(G) < dkSS(G) -

+—
drss(G)

Using the fact that the function g(z) = x+m/x is decreasing for 1 < z < /m
and increasing for v/m < z < m, this inequality leads to the desired bound
immediately. ([

Corollary 2.3. Let G be a graph of sizem and 6(G) > k. If 2 < y,55(G) <
m — 1, then
Yess(G) + diss(G) < m.

Proof. Theorem 2.1 implies that
m

rss(G)

If we define z = v,55(G) and g(x) = x + m/z for x > 0, then because
2 < ss(G) < m — 1, we have to determine the maximum of the function

(2.2) Vess(G) + diss(G) < ss(G) +
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g in the interval [ : 2 <z < m — 1. It is easy to see that
max{g(z)} = max{g(2),g(m — 1)}

:max{Z—i—m —1+m}

2 1 -1
m
=m—-1+ 1 <m-+1,
and we obtain v,s5(G) + drpss(G) < m. This completes the proof. O

Corollary 2.4. Let k > 1 be an integer, and let G be a graph of size m and
6(G) = k. If min{ykss(G), dess(G)} = 2, then

m
Yess(G) + diss(G) < 5 +2.

Proof. Since min{viss(G),drss(G)} > 2, it follows by Theorem 2.1 that
2 < dpss(G) < m/2. By (2.1) and the fact that the maximum of g(z) =
x 4+ m/x on the interval 2 < x < m/2 is g(2) = g(m/2), we see that

m m
G)+d G) <d G+ —F+ < —+2.
Yiss(G) + diss(G) < drss(G) rss(G) = 2

O

Observation 1.1 demonstrates that Corollary 2.4 is no longer true in the
case that min{yrss(G), drss(G)} = 1.

Theorem 2.5. Let G be a graph with 6(G) > k and let v € V(G). Then

B0 if den(v) = k (mod 2)
drss(G) =9 40 (v)
ki : if deg(v) =k+1 (mod 2) .

Moreover, if the equality holds, then for each function f; of a SSkD family
{f1, f2y---, fa} and for every e € E(v),

k if deg(v) =k (mod
S file) { f g()zk( 2),

E+1 if deg(v) 1 (mod 2) ,
e€E(v)

and Zle file) = 1.

Proof. Let {f1, f2,..., fa} be a SSkD family of G such that d = dxs5(G). If
deg(v) = k (mod 2), then

d d
d:zlgglzﬁ - ZZL <y a= el

i=1 ecE( eeE eEE(v
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Similarly, if deg(v ) =k + 1 (mod 2), then

Z Z G

eEE(v

deg(v)
i< 1= .
o X Y= ¥t
eGE' (v) =1 eEE(v)
If diss(G) = deg(v)/k when deg(v) = k (mod 2) or dss(G) = deg(v)/(k +
1) when deg(v) = k + 1 (mod 2), then the two inequalities occurring in
the proof of each corresponding case become equalities, which gives the

properties given in the statement. O
Corollary 2.6. Let G be a graph and 1 < k < §(G). Then
6(kG) if 6(G) =k (mod 2) ,
diss(G) < 5(G)

Theorem 2.7. The signed star k-domatic number is an odd integer.

Proof. Let G be an arbitrary graph, and assume that d = djg5(G) is even.
Let {fi1, f2,..., fa} be the corresponding signed star k-dominating family
on G. If e € E(G) is an arbitrary edge, then 2?21 fi(e) < 1. On the left-
hand side of this inequality, a sum of an even number of odd summands
occurs. Therefore it is an even number, and we obtain Zgzl fi(e) <0 for
each e € E(G). This forces

d
kd = Zk<ZZfz = > D file <0,

=1 ecE(v) e€E(v) i=1
which is a contradiction. O

An immediate consequence of Theorems 2.5, 2.7 and Corollary 2.6 is the
following result.

Corollary 2.8. Let G be a graph with 6(G) > k. If 6(G) < 3k or if G has
a vertex v of degree deg(v) = 3k + 1, then dipss(G) = 1.

Proof. 1f §(G) < 3k, then Corollary 2.6 implies that

(G) 3k
d <2< =
k:SS(G) = L < L
Applying Theorem 2.7, we deduce that dipss(G) < 1 and thus dxss(G) = 1.
If G has a vertex v of degree deg(v) = 3k + 1, then deg(v) =k + 1 (mod 2)

and thus it follows from Theorem 2.5 that

deg(v) 3k+1
d < = .

Again Theorem 2.7 leads to the desired result dxss(G) = 1. O

= 3.
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Corollary 2.9. Let G be a graph of sizem. Then yrss(G)+drss(G) = m+1
if and only if each edge e € E(G) has an endpoint u such that deg(u) = k
or deg(u) =k + 1.

Proof. If each edge e € E(G) has an endpoint u such that deg(u) = k or
deg(u) = k + 1, then 1455(G) = m by Observation 1.2. Hence dis5(G) =1
and the result follows.

Conversely, let vxs5(G) + drss(G) = m + 1. The result is obviously true
for m = 1,2,3. Assume m > 4. By Corollary 2.4, we may assume that
min{’yksg(G), dkSS(G)} = 1. If vx55(G) = 1, then dkSS(G) = m, which is a
contradiction to Corollary 2.6. If digs(G) = 1, then v,s5(G) = m and the
result follows by Observation 1.2. O

As an application of Corollary 2.6 and Theorem 2.7, we will prove the
following Nordhaus-Gaddum type result.

Theorem 2.10. For every graph G of order n with 6(G) > k and §(G) > k,
n—1

(2.3) diss(G) + diss(G) <

If drss(G) + drss(G) = (n — 1) /k, then G is regular, k and 6(G) are even
and n is odd such that n —1=0 (mod 4).

Proof. Since §(G) + §(G) < n — 1, Corollary 2.6 leads to

.G (G n—1
drss(G) + diss(G) < @) + (©) < :
k k k
If G is not regular, then §(G) 4+ 6(G) < n — 2 and hence we obtain the
better bound diss(G) + dkss(G) < (n —2)/k. Thus assume now that G is

d(G)-regular.

Case 1: Assume that k is odd. If §(G) is even, then it follows from Corollary
2.6 that

diss(G) + drss(G) <

5(G) | 3(@) _ 8(G) , n—6(G) -1

“k+1 E k+1 k
5(G) n-6G) -1 n-1
< A + 2 = o

If 6(G) is odd, then n is even and thus §(G) = n — 6(G) — 1 is even. Using
Corollary 2.6, we find that

5(G) 5@ 8@ n—dG) -1

drss(G) + diss(G) < e B P
5(G) n-8G) -1 n-1
<75 T k =Tk

Combining these two bounds, we conclude that diss(G) + drss(G) < (n —
1)/k when k is odd.

Case 2: Assume that k is even. If 6(G) is odd, then Corollary 2.6 implies
drss(G) +drss(G) < (n—1)/k as above. If §(G) is even and n is even, then
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§(G) =n—§(G) —11is odd, and we obtain the bound dig5(G) + dirss(G) <
(n —1)/k as above.

Finally, assume that 6(G) is even and n is odd such that n — 1 = 4p + 2. If

drss(G) + diss(G) = (n — 1) /k, then we observe that

(e

(@)
-
According to Theorem 2.7, these two values are odd integers, say

)

drss(G) = 6<I€G) and dszS(a) =

Q)

o

oG _
dkss(G) = (k‘> =2s+1 and diss(G) = & =2t+1.
If £ = 2i, then we arrive at the contradiction
— oG (e 4dp +
dkss(G) + diss(G) = Q—I—Q =2(s+t+1)= P — .
k k 21
This contradiction completes the proof of Theorem 2.10. [l

The following examples will demonstrate that diss(G) + dgss(G) = (n —
1)/k in Theorem 2.10 is possible when G is regular, k£ and 6(G) are even
and n is odd such that n —1 =0 (mod 4).

Let k£ > 2 be an even integer and n > 5 such that n — 1 = 2k. Now let
H be a k-regular graph of order n. Then H is also k-regular. Corollary 2.6
implies that drpss(H) < 1 and thus diss(H) = 1. It follows that

n—1

k
Corollary 2.11. Let G be a graph of order n with §(G) > k and §(G) > k.

If 6(G) < 3k and 6(G) < 3k orn < 4k + 1, then

drss(H) + drss(H) =2 =

drss(G) + drss(G) = 2.

Proof. 1f 6(G) < 3k and §(G) < 3k, then Corollary 2.8 implies the desired
result immediately. If n < 4k 4 1, then it follows from (2.3) that

n—1 < % B
k ko
and thus Theorem 2.7 leads to diss(G) + drss(G) = 2. O

diss(G) + diss(G) < 4,

3. SIGNED STAR k-DOMATIC NUMBER OF REGULAR GRAPHS

In this section we determine values of the signed star k-domatic number
for some classes of regular graphs.
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Theorem 3.1. Let G be an r-reqular and I1-factorable graph and let 1 <
k <r be an integer. Then

%J when r =k (mod 2) and L%J is odd ,
%J -1 when r =k (mod 2) and L%J is even
dyss(G) = i :L 1J when r =k +1 (mod 2) and L{:—THJ s odd ,
\ _k:—lJ_l whenr=k+1 (m0d2)andL€;ﬂ_1J 1S even .

Proof. By Observation 1.2 and Theorem 2.1 we may assume k < r — 2. Let
{My, My, ..., M,_1} be a 1-factorization of G. We distinguish two cases.

Case 1: Assume that » = k (mod 2). Suppose that » = kq + t, where ¢ is
a positive integer and 0 < ¢t < k — 1. By Corollary 2.6 and Theorem 2.7,
drss(G) < q if g is odd and diss(G) < ¢ — 1 if ¢ is even.

Subcase 1.1: Assume that ¢ is odd. Then ¢ is even. Define the functions
f1, fa, ..., fq as follows.

k(g —1)
2

1 ifee M; where 0 <i <

k(g —1)
2

Yh-1,
file) =

—1 ifee M; and +Ek<i1<kqg—1,

and for 2<j<qgand 0 <i<kqg-—1,
Fi(M;) = fj—1(Miyar) ,
where the sum is taken modulo kq. In addition, if ¢ > 0,
fi(M) = (=) for 1< j<gqgand kg<i<r—1.

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j < qand {fi, f2,..., fq} is a signed star k-dominating family
of G. Hence diss(G) > q. Therefore diss(G) = g, as desired.

Subcase 1.2: Assume that ¢ is even. Then t + k is even. Define the
functions f1, fo,..., fq—1 as follows.

1 if0<i<

-2
k(q2)+k_1’

J1(M;) =

k(g —2
1if02)+k§i§Mq—U—1,

and for2<j<g—land0<i<k(¢g—1)—1,
[i(M) = fima(Miyor) ,

where the sum is taken modulo k(¢ — 1). In addition,

fi(M) = (=1)" for1<j<qgand k(g—1)<i<r—1.
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It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j <qg—1and{fi,f2,..., fq—1} is a signed star k-dominating
family on G. Hence diss(G) > ¢ — 1 and so diss(G) = q — 1.

Case 2: Assume that » = k + 1 (mod 2). Suppose that r = (k + 1)g + ¢,
where ¢ is a positive integer and 0 < ¢ < k. By Corollary 2.6 and Theorem
2.7, drss(G) < ¢ if q is odd and diss(G) < ¢ — 1 if ¢ is even.

Subcase 2.1: Assume that ¢ is odd. Then t is even. Define the functions
f1, fa, .., fq as follows.

(k+1)(g—1)

1 if 0 <1<
H0<1 < 5

(k+1)(¢—1)
2
and for 2<j<gand 0<i< (k+1)g—1,
[i(M;) = fim1(Miga11)) 5
where the sum is taken modulo (k + 1)g. In addition, if ¢ > 0,

k,
f1(M;) =

—1 if +hk+1<i<(k+1)g—1,

fi(My) = (=1)" for 1< j<gqand (k+1)g<i<r—1.

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j < gqand {fi, f2,..., fq} is a signed star k-dominating family
of G. Hence diss(G) > q. Therefore diss(G) = q, as desired.

Subcase 2.2: Assume that ¢ is even. Then ¢ + k + 1 is even. Define the

functions f1, fa,..., fg—1 as follows.
1)(g—2
| ifo<i< BFD@=2) 0
fi(M;) =
k+1)(g—2
1 if(Jr)Q(C‘Z)+k+1§i§(k+1)(q—1)—l,

andfor2<j<g—land0<i<(k+1)(¢g—1)—1,
fi(Mi) = fi—1(Migoptr))
where the sum is taken modulo (k+ 1)(¢ — 1). In addition,
fi(M;) = (=1)" for 1 <j<gand (k+1)(g—1)<i<n-—1.

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j <qg—1and {fi, f2,..., fg—1} is a signed star k-dominating
family of G. Hence diss(G) > ¢ — 1 and so dpss(G) = g — 1, as desired.

O

Applying Theorem 3.1 and the well-known classical Theorem of Konig [4]
that a k-regular bipartite graph is 1-factorable, we obtain the next result.
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Corollary 3.2. If G is an r-reqular bipartite graph and 1 < k < r is an
integer, then

( _%J when r =k (mod 2) and L%J is odd ,
r T
%J -1 when r =k (mod 2) and L%J s even ,
drss(G) = r ol
_k—{—lJ when r =k+1 (mod 2)and{k+lJ is odd ,
r r
-1 = 1 2 — | .
_k+1J when r =k+1 (mod 2) and {k—i—lJ s even

Theorem 3.3. Let G be a graph of order n and factorable into r Hamilton-
ian cycles and let 1 < k < 2r be an integer. Then

2]:J when k is even and FIZJ s odd ,
QTJ -1 when k and {%J are even ,
k k
drss(G) = 9 20
I IJ when k and LMJ are odd ,
2r

—1 when k is odd and l s even .
|E+1 k+1

Proof. Let G be a Hamiltonian factorable graph, and let {Cyp, C1,...,Cr_1}
be a Hamiltonian factorization of G. We distinguish two cases.

Case 1: Assume that k is even. Suppose that 2r = kq + t, where ¢ is a
positive integer and 0 < t < k — 1. By Corollary 2.6 and Theorem 2.7,
drss(G) < q if ¢ is odd and digs(G) < g — 1 if ¢ is even.

Subcase 1.1: Assume that ¢ is odd. Then ¢ is even and r = (k/2)q+(t/2).

Define the functions f1, fa,..., f; as follows.
1 ifOSiSM—Fﬁ—Q,
4 2
f1(Ci) =
k(g—1) k

k
—1 if ——1<i< —qg-1
1 +2 _Z_2q ’

4
andfor2§j§qand0§i§§q—1,
fi(Ci) = fi-1(Ciyr) ,
where the sum is taken modulo (k/2)q. In addition, if ¢ > 0,
. k
fi(Ci) = (=1)""7 for 1 < j < g and §q§z’§r—1.

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j < gqand {f1, fo,..., fy} is a signed star k-dominating family
of G. Hence diss(G) > q. Therefore diss(G) = ¢, as desired.
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Subcase 1.2: Assume that ¢ is even. Then (k/2) + (¢/2) is even. Define

the functions f1, fo,..., f4—1 as follows.
1 ifogigw_,_ﬁ_g’
4 2
f1(Ci) = g-2) & f
_ ] Y 1<i<Z(g_1)—
1 if 1 +2 1_2_2(q 1)—1,

and for2<j<g—1land 0<i<(k/2)(¢—1)—1,

Fi(Mi) = fi—1(Miy)
where the sum is taken modulo (k/2)(¢ — 1). In addition,

o k
fi(Ci) = (=1)""7 for 1 < j < ¢ and §(q—1)§i§r—1.

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j <qg—1and {fi, fo,..., fq—1} is a signed star k-dominating
family on G. Hence dgs(G) > g — 1 and so dyss(G) = q — 1.

Case 2: Assume that k is odd. Suppose that 2r = (k + 1)q + t, where ¢
is a positive integer and 0 < t < k. By Corollary 2.6 and Theorem 2.7,
drss(G) < q if ¢ is odd and digs(G) < g — 1 if ¢ is even.

Subcase 2.1: Assume that ¢ is odd. Then t is even. Define the functions
fi, fa, ..., fq as follows.

(k+1)(Q—1)+k:+1_

1 ifo<i< 52,
filG) = (k+1)(g—1) k+1 (k+1)

and for 2<j<gand 0<i< (k+1)g/2—1,

fi(Ci) = fi-1(Cixkr1)) -
where the sum is taken modulo (k + 1)g/2. In addition, if ¢t > 0,

(k+1)
2

fi(Cy) = (=1)"" for 1 < j < q and g<i<r-—1.

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j < gqand {f1, fa2,..., fy} is a signed star k-dominating family
of G. Hence diss(G) > q. Therefore diss(G) = q, as desired.

Subcase 2.2: Assume that ¢ is even. Then t/24 (k+1)/2 is even. Define

the functions fi, f2,..., fy—1 as follows.
. ifOSiS(k+1)(Q—2)+k42rl_2’
filGi) = (k+1)(g—2) k+1 (k +1)
1 it =24 —1<i< (g—1)—1,

4
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and for2<j<g—land0<i<(k+1)(¢g—1)/2—-1,
[i(Ci) = fi-1(Ciye41)) >
where the sum is taken modulo (k + 1)(¢ — 1)/2. In addition,

£:(C) = (=1)" for 1 < j < q and (k;l)(q—l)gigr—L

It is easy to see that f; is a signed star k-dominating function of G for
each 1 < j <gq—1and{fi,f2,..., fq—1} is a signed star k-dominating
family of G. Hence diss5(G) > ¢ — 1 and so dpss(G) = g — 1, as desired.

O

According to Theorems 3.1, 3.3 and the following two well-known results,

we can determine the signed star k-domatic number of complete graphs.

Theorem. The complete graph Ko, is 1-factorable.

Theorem. For every positive integer r, the graph Kory1 ts Hamiltonian

fa

ctorable.
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