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A VARIANT OF THE BIPARTITE RELATION THEOREM

AND ITS APPLICATION TO CLIQUE GRAPHS

KAZUHIRO KAWAMURA

Abstract. We consider a homological variant of the Bipartite Relation
Theorem [1] in the context of the flag complex of the square of a bipartite
graph [9]. We apply the results to study the homology and homotopy
groups of the flag complexes of clique graphs.

1. Introduction and Preliminaries

All graphs are assumed to be simple and finite. For a graph G, K(G)
denotes the clique graph of G: the vertices are the maximal complete sub-
graphs (called cliques) with the edges being the pairs of intersecting cliques.
The flag complex of a graph G is denoted by ∆(G). Larrión, Pizaña and
Villarroel-Flores [9] proved that the fundamental group of ∆(G) is isomor-
phic to the one of ∆(K(G)) for each graph G. This is a consequence of their
general theorem [9, Theorem 3.1] on a simplicial complex associated with
a bipartite graph. For a connected bipartite graph B = (X,Y ) with the
partite sets X and Y , they introduced a graph, called the square B2 of B
with its induced subgraphs B2[X] and B2[Y ], and prove the isomorphisms
of the fundamental groups:

π1
(
∆(B2[X])

) ∼= π1
(
∆(B2)

) ∼= π1
(
∆(B2[Y ])

)
.

The complexes ∆(B2[X]) and ∆(B2[Y ]) contain Dowker-Mather complexes
DMX and DMY which are known to be homotopy equivalent (the Bipartite
Relation Theorem [1], [5] and [10]).

In what follows, ∆(B2[X]) and ∆(B2[Y ]) are denoted by BX and BY for
simplicity. Under this notation, the above situation is summarized in the
following diagram.

BX
iX−−−−→ ∆(B2)

iY←−−−− BY

jX

x jY

x
DMX DMY
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where the inclusions iX and iY induce isomorphisms on fundamental groups
and DMX ' DMY .

The present paper takes a close look at the above diagram. We introduce
a subcomplex DMX,Y of ∆(B2) which collapses onto DMX and DMY respec-
tively which “closes” the above diagram (see Figure 1), where the inclusions
kX and kY are homotopy equivalences.

BX
iX−−−−→ ∆(B2)

iY←−−−− BY

jX

x j

x jY

x
DMX

kX−−−−→ DMX,Y
kY←−−−− DMY

Figure 1.

We prove that iX and iY are homological n-equivalences (see Section 3 for
the definition) if and only if so are jX and jY , if and only if so is j (Theorem
3.3).

As in [9], we apply the above result to the flag complexes ∆(G) and
∆(K(G)) to obtain information on their higher homology and homotopy
groups. When a graph G has the “(n + 1)-bounded clique-Helly property”
(see Section 4), the homology and homotopy groups of ∆(G) and ∆(K(G))
are isomorphic up to dimension (n− 1).

In the rest of this section, we make notational convention and state some
preliminary results. For a graph G, the vertex set and the edge set are
denoted by V (G) and E(G) respectively. For a vertex v of G, NG(v) denotes
the set of all neighbors of v in G. For a subset A of V (G), let

CNG(A) =
⋂
a∈A

NG(a),

the set of the common neighbors of A. For S ⊂ V (G), the subgraph induced
by S is denoted by G[S].

For a simplicial complex K, K(i) denotes the i-skeleton of K, the set of
all simplices of dimension less than or equal to i. For simplicity, a geometric
realization of a simplicial complex K is also denoted by the same symbol K,
which will cause no confusion in the present paper.

For a graph G, a simplicial complex ∆(G), called the flag complex of G,
is defined as follows: the set of vertices of ∆(G) is the vertex set V (G). A
subset σ of V (G) spans a simplex of ∆(G) if and only if σ induces a complete
subgraph of G.

Let B = B(X,Y ) be a connected bipartite graph with the partite sets
X and Y . The square B2 = B2(X,Y ) of B is a graph with the vertex set
X q Y having the edge set

E(B2) = E(B) ∪ {x1x2 | x1, x2 ∈ X,NB(x1) ∩NB(x2) 6= ∅}
∪ {y1y2 | y1, y2 ∈ Y,NB(y1) ∩NB(y2) 6= ∅}.
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Convention: A simplex of the flag complex ∆(B2) with the vertices U ∪ V
with U ⊂ X and V ⊂ Y is denoted by U ⊕ V .

Notice that ∅⊕ V ∈ ∆(B2) if and only if for each y1, y2 ∈ V ,

NB(y1) ∩NB(y2) 6= ∅.

The same remark applies to a simplex of the form U⊕∅. Under this notation,
the subcomplexes BX and BY are written as BX = {U⊕∅ | U⊕∅ ∈ ∆(B2)}
and BY = {∅⊕ V | ∅⊕ V ∈ ∆(B2)}.

Now we define a subcomplex DMX,Y of ∆(B2) as follows:

DMX,Y = {U ⊕ V ∈ ∆(B2) | U 6= ∅ 6= V }
∪ {U ⊕∅ ∈ ∆(B2) | CNB(U) 6= ∅}
∪ {∅⊕ V ∈ ∆(B2) | CNB(V ) 6= ∅}.

The inclusion of DMX,Y into ∆(B2) is denoted by j : DMX,Y → ∆(B2).
The Dowker-Mather complexes DMX and DMY are subcomplexes of

DMX,Y defined by

DMX = {U ⊕∅ ∈ DMX,Y | CNB(U) 6= ∅} and

DMY = {∅⊕ V ∈ DMX,Y | CNB(V ) 6= ∅}.
Let kX : DMX → DMX,Y and kY : DMY → DMX,Y be the inclusions.

These form the commutative diagram in Figure 1.
All homology groups under consideration are singular (or simplicial) ho-

mology groups with integer coefficients.

2. Some auxiliary results

Let us first make an observation which follows immediately from the def-
initions.

Observation 2.1. Let B = B(X,Y ) be a connected bipartite graph with the
partite sets X and Y . We have the following equalities.

(1) ∆(B2) = BX ∪DMX,Y ∪BY .
(2) BX ∩DMX,Y = DMX and BY ∩DMX,Y = DMY .

(3) B
(1)
X = DM

(1)
X and B

(1)
Y = DM

(1)
Y .

The proof of [9, Theorem 3.1] shows the following.

Theorem 2.2. Let B be a connected bipartite graph with the partite sets X
and Y . There exist retractions

rX : ∆(B2)(2) → BX and rY : ∆(B2)(2) → BY

which induce isomorphisms on fundamental groups.

Thus we see that (iX)] : π1(BX) → π1(∆(B2)) and (iY )] : π1(BY ) →
π1(∆(B2)) are isomorphisms, the isomorphisms mentioned at the beginning
of Section 1.
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As is mentioned in the previous section, DMX and DMY are homotopy
equivalent. For a proof, see for example, [1, Theorem 10.9]. In what fol-
lows, we give another argument by constructing collapses of DMX,Y onto
DMX and DMY respectively. Our proof relies on Discrete Morse Theory
[6] and imitates an argument due to Csorba [2, Theorem 8], in which the
roles of DMX,Y , DMX , and DMY are played by the box complex and the
neighborhood complex of a graph.

Definition 2.3. Let K be a simplicial complex and let P = F(K) be the
face poset of K.

(1) The symbol � means the covering relation on P . That is, for sim-
plices σ and τ of K, τ � σ means that σ is a face of τ such that
dim τ = dimσ + 1.

(2) A partial matching on P is a pair (Σ, µ) where µ : Σ → P \ Σ is
an injection such that µ(σ) � σ for each σ ∈ Σ. The simplices of
P \ (Σ ∪ µ(Σ)) are said to be critical.

(3) A partial matching (Σ, µ) is said to be acyclic if there exists no se-
quence of distinct elements σ1, . . . , σt of Σ such that

µ(σ1) � σ2, µ(σ2) � σ3, . . . , µ(σt) � σ1.

For the proof of the following theorem, see, for example, [7, Proposition
6.4] or [8, Theorem 11.3].

Theorem 2.4. Let K be a simplicial complex and let (Σ, µ) be an acyclic
matching on the face poset P = F(K). If the set L of all critical simplices
of the matching forms a subcomplex of K, then K collapses onto L.

Now we are ready to prove the following result.

Theorem 2.5. Let B be a connected bipartite graph with the partite sets
X and Y . The simplicial complex DMX,Y collapses onto DMX and DMY

respectively. Thus the inclusions

kX : DMX → DMX,Y and kX : DMX → DMX,Y

are homotopy equivalences.

Proof. We follow the proof of [2, Theorem 8] to show that DMX,Y collapses
onto DMX . At the outset, we fix a linear order < on X. For a simplex
σ = U ⊕ V of DMX,Y with V 6= ∅, let xσ = minCNB(V ), where the
minimum is taken with respect to the above order <. Also let

Σ = {σ = U ⊕ V | V 6= ∅, xσ /∈ U} ⊂ DMX,Y

and, for σ = U ⊕ V ∈ Σ, define a simplex µ(σ) of DMX,Y by

µ(σ) =
(
U ∪ {xσ}

)
⊕ V = σ ∪

(
{xσ} ⊕∅

)
.

This gives an injection µ : Σ→ DMX,Y such that

µ(Σ) = {σ = U ⊕ V | V 6= ∅, xσ ∈ U}
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and
DMX,Y \ (Σ ∪ µ(Σ)) = {U ⊕∅ | CNB(U) 6= ∅} = DMX .

In order to prove that (Σ, µ) is an acyclic partial matching, it suffices to
verify the following claim.

Claim. Let σ = U ⊕ V and τ = U ′ ⊕ V ′ be distinct elements of Σ with
µ(σ) � τ . Then we have V % V ′.

Proof. By the assumption, we have xσ /∈ U , U ∪ {xσ} ⊃ U ′ and
V ⊃ V ′. Suppose that V = V ′. Then xσ = xτ /∈ U ′ and this
implies U ⊃ U ′. Hence µ(σ) ⊃ σ ⊃ τ and the covering relation
µ(σ) � τ implies σ = τ . This contradicts the hypothesis σ 6= τ
and completes the proof. �

This completes the proof of theorem. �

Passing to the homology groups, we obtain, from the diagram Figure 1,
the diagram shown in Figure 2, where (kX)∗ and (kY )∗ are isomorphisms
for each q ≥ 0 and (iX)∗ and (iY )∗ are isomorphisms for q ≥ 1 by Theorem
2.2 and the Hurewicz Theorem [13].

Hq(BX)
(iX)∗−−−−→ Hq(∆(B2))

(iY )∗←−−−− Hq(BY )

(jX)∗

x j∗

x (jY )∗

x
Hq(DMX)

(kX)∗−−−−→ Hq(DMX,Y )
(kY )∗←−−−− Hq(DMY )

Figure 2.

In the next section, we consider the situation in which (iX)∗ and (iY )∗ are
isomorphisms up to a certain dimension n (≥ 2) and study the connection
to the homomorphisms j∗, (jX)∗ and (jY )∗.

3. On n-equivalences of inclusions

Definition 3.1. Let f : S → T be a continuous map of connected topological
spaces.

(1) The map f is called an n-equivalence if the induced homomorphism
f] : πq(S) → πq(T ) is an isomorphism for each q < n and an epi-
morphism for q = n.

(2) The map f is called a homological n-equivalence if the induced ho-
momorphism f∗ : Hq(S)→ Hq(T ) is an isomorphism for each q < n
and an epimorphism for q = n.

The Whitehead Theorem [13] implies that every n-equivalence is a ho-
mological n-equivalence. When f : S ↪→ T is an inclusion map, f is an
n-equivalence (resp. a homological n-equivalence) if and only if the relative
homotopy group πq(T, S) (resp. the relative homology group Hq(T, S)) is
trivial for each q ≤ n.
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Proposition 3.2. We have the following isomorphisms for each q ≥ 1:

Hq(∆(B2), BX) ∼= Hq(BY ,DMY ) and Hq(∆(B2), BY ) ∼= Hq(BX ,DMX).

Proof. By Observation 2.1 and the Excision Isomorphism Theorem [13], we
have

Hq(∆(B2), BX) = Hq(BX ∪DMX,Y ∪BY , BX)

∼= Hq(DMX,Y ∪BY , (DMX,Y ∪BY ) ∩BX)

= Hq(DMX,Y ∪BY ,DMX).(3.1)

By Theorem 2.5, there exist retractions ρX : DMX,Y → DMX and ρY :
DMX,Y → DMY which are both homotopy equivalences. Let rY : DMX,Y ∪
BY → BY be the map defined by rY |DMX,Y = ρY and rY |BY = idBY

.
Notice that rY and its restriction rY |DMX = ρY ◦ kX : DMX → DMY are
both homotopy equivalences (recall Theorem 2.5).

Under the above notation, we consider the following diagram:

· · · −−−−→ Hq(DMX) −−−−→ Hq(DMX,Y ∪BY ) −−−−→ · · ·

(rY |DMX)∗

y (rY )∗

y (∗)

· · · −−−−→ Hq(DMY ) −−−−→ Hq(BY ) −−−−→ · · ·

· · · −−−−→ Hq(DMX,Y ∪BY ,DMX)
∂−−−−→ · · ·

(∗) (rY )∗

y (∗∗)

· · · −−−−→ Hq(BY ,DMY )
∂−−−−→ · · ·

· · · ∂−−−−→ Hq−1(DMX) −−−−→ Hq−1(DMX,Y ∪BY ) −−−−→ · · ·

(∗∗) (rY |DMX)∗

y (rY )∗

y
· · · ∂−−−−→ Hq−1(DMY ) −−−−→ Hq−1(BY ) −−−−→ · · ·

where the horizontal sequences are the homology long exact sequences of
the pairs (DMX,Y ∪ BY ,DMX) and (BY ,DMY ) whose connecting homo-
morphisms are denoted by ∂.

By the remark preceding to the above diagram, we see that all four ho-
momorphisms (rY |DMX)∗ and (rY )∗, except for

(rY )∗ : Hq(DMX,Y ∪BY ,DMX)→ Hq(BY ,DMY ),
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are isomorphisms. By the Five Lemma [13] we see that the above homomor-
phism is an isomorphism as well. Combining this with (3.1), we obtain the
first isomorphism. The second isomorphism is proved in exactly the same
way. This completes the proof. �

Theorem 3.3. Let n ≥ 2 be an integer. The following three conditions are
equivalent.

(1) The inclusions iX : BX → ∆(B2) and iY : BY → ∆(B2) are both
homological n-equivalences.

(2) The inclusions jX : DMX → BX and jY : DMY → BY are both
homological n-equivalences.

(3) The inclusion j : DMX,Y → ∆(B2) is a homological n-equivalence.

Proof. The equivalence (1) ⇔ (2) follows immediately from Proposition 3.2
and the remark after Definition 3.1. From the equality (iX)∗ ◦ (jX)∗ =
j∗ ◦ (kX)∗ (see the Figure 2) and the fact that (kX)∗ is an isomorphism, the
implication (1) (⇔ (2)) ⇒ (3) follows easily.

It remains to prove (3) ⇒ (1) (⇔ (2)). Assume that j∗ : Hq(DMX,Y ) →
Hq(∆(B2)) is an isomorphism for each q < n and an epimorphism for q = n.
We show that (iX)∗ : Hq(DMX) → Hq(∆(B2)) is an isomorphism for each
q < n and an epimorphism for q = n.

Notice (iX)∗ ◦ (jX)∗ = j∗ ◦ (kX)∗ and (iY )∗ ◦ (jY )∗ = j∗ ◦ (kY )∗. Since
(kX)∗ and (kY )∗ are isomorphisms, we see

(1) (iX)∗ and (iY )∗ are epimorphisms for each q ≤ n, and
(2) (jX)∗ and (jY )∗ are monomorphisms for each q < n.

So it suffices to verify that (iX)∗ : Hq(DMX) → Hq(∆(B2)) and (iY )∗ :
Hq(DMY )→ Hq(∆(B2)) are isomorphisms for each q < n.

The proof is by induction on q. Theorem 2.2 guarantees the validity of the
first step q = 1. Let 2 ≤ q < n and assume that, for each r < q, (iX)∗ and
(iY )∗ are isomorphisms. Then we have Hr(∆(B2), BX) = Hr(∆(B2), BY ) =
0 for each r ≤ q (we use (i) for r = q). By Proposition 3.2, we obtain

Hr(BX ,DMX) = Hr(BY ,DMY ) = 0

for each r ≤ q. In particular, (jX)∗ and (jY )∗ are epimorphisms in dimen-
sion q. Combining this with (ii) above, we see that (jX)∗ and (jY )∗ are
isomorphisms in dimension q. The equalities (iX)∗ ◦ (jX)∗ = j∗ ◦ (kX)∗ and
(iY )∗ ◦ (jY )∗ = j∗ ◦ (kY )∗ imply that (iX)∗ and (iY )∗ are isomorphisms in
dimension q. This completes the inductive step and completes the proof of
the theorem. �

As in Observation 2.1(3), BX and DMX (resp. BY and DMY ) have the
same 1-skeletons. Hence the induced homomorphism (jX)] : π1(DMX) →
π1(BX) and (jY )] : π1(DMY ) → π1(BY ) are epimorphisms. So the simple
connectivity of DMX (resp. DMY )) implies that of BX (resp. BY ). This
observation leads to the following corollary.



98 KAZUHIRO KAWAMURA

Corollary 3.4. Let B = B(X,Y ) be a connected bipartite graph with the
partite sets X and Y . Assume that DMX(' DMY ) is simply connected.

(1) If j is an n-equivalence, then so are iX , iY , jX and jY .
(2) If jX and jY are n-equivalences, then so are j, iX and iY .

Proof. (1) By the assumption, j is a homological n-equivalence. Hence
by Theorem 3.3, we see that iX , iY , jX and jY are all homological n-
equivalences. Since the complexes DMX and DMY are simply connected, so
are BX and BY . Thus we obtain the desired conclusion via the Whitehead
Theorem [13].

(2) If jX and jY are n-equivalences, then they are homological n-equivalen-
ces. By Theorem 3.3, j, iX and iY are all homological n-equivalences.
The simple connectivity of DMX and DMY implies that of BX , BY and
DMX,Y (' DMX ' DMY ), hence the Whitehead Theorem again finishes the
proof. �

4. An application to clique graphs

As in [9], we apply Theorem 3.3 and Corollary 3.4 to the clique graph
K(G) of a graph G. First let us recall the definition.

Definition 4.1. Let G be a graph.

(1) A clique of G is a maximal complete subgraph of G.
(2) Let K(G) be the clique graph defined as follows: the vertex set is the

set of all cliques of G; two cliques C1 and C2 are adjacent in K(G)
if and only if C1 and C2 have a vertex in common.

(3) Let BK(G) be the vertex-clique bipartite graph of G defined as fol-
lows: the partite sets are V (G) and V (K(G)) and the edge set is
defined by

E(BK(G)) = {vQ | v ∈ V (G), Q ∈ K(G), and v ∈ Q}.

As was mentioned in Section 1, Larrión, Pizaña and Villarroel-Flores
proved in [9] that π1(∆(G)) ∼= π1(∆(K(G))). Also they pointed out that,
when a graph G has the clique-Helly property, ∆(G) is homotopy equivalent
to ∆(K(G)). When G does not have the clique-Helly property, but has a
“Helly-like” property with respect to cliques, we may apply Theorem 3.3 and
Corollary 3.4 to obtain more information on higher homology and homotopy
groups.

Definition 4.2. Let n ≥ 3 be an integer. A graph G is said to have the
n-bounded clique-Helly Property if the collection C of cliques of G satisfies
the following condition: if any two distinct elements of C have non-empty
intersection, then each subcollection C′ of C with |C′| ≤ n has the total in-
tersection ⋂

C′∈C′
C ′ 6= ∅.
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When n = ∞, then the above coincides with the standard clique-Helly
property. The notion above was first introduced by R. S. Roberts and J. H.
Spencer [12] (see also [4]).

Theorem 4.3. Let n ≥ 2 be an integer and let G be a graph with the
(n+ 1)-bounded clique-Helly property. Then

(1) We have an isomorphism Hq(∆(G)) ∼= Hq(∆(K(G))) for each q ≤
n− 1

(2) If ∆(G) is simply connected, then πq(∆(G)) ∼= πq(∆(K(G))) for
each q ≤ n− 1

Proof. We apply Theorem 3.3 to the vertex-clique bipartite graph BK(G)
with the partite set X = V (G) and Y = V (K(G)). As is pointed out in [9,
p. 293], we obtain the equality

(4.1) DMX = BX .

We show that

(4.2) B
(n)
Y ⊂ DMY .

Take an n-simplex σ = {Q0, Q1, . . . , Qn} of BY . Then Qi ∩ Qj 6= ∅ for
distinct i and j. By the (n + 1)-bounded clique-Helly property of G, we
see that the total intersection ∩ni=0Qi contains a vertex v. This means that
v ∈ CNBK(G)(σ) 6= ∅ and hence σ ∈ DMY . This shows the above inclusion.

By (4.1) and (4.2), we see that the inclusion jX : DMX → BX and jY :
DMY → BY are n-equivalences and hence are homological n-equivalences.
Also notice that

BX = ∆(G) and BY = ∆(K(G)).

Theorem 3.3 tells us that iX and iY are homological n-equivalences and
in particular Hq(∆(G)) ∼= Hq(∆(BK(G)2)) ∼= Hq(∆(K(G))) for each q ≤
n − 1. This proves (1). When ∆(G) = BX = DMX is simply connected,
then Corollary 3.4 is applied to prove (2). This completes the proof of the
theorem. �

A complete edge cover F = {Gi | i ∈ I} of a graph G is a family of
complete subgraphs of G such that any vertex and any edge of G lie in some
Gi. For such a family, we may consider its intersection graph Ω(F). As
in [9, Section 5], we may define the bipartite graph B(F) with the partite
sets V (G) and V (Ω(G)) whose edge set E(B(F)) is defined by {vGi | v ∈
V (G), Gi ∈ F , and v ∈ Gi}. As was in [9], Theorem 3.3 and Corollary 3.4
are applied to obtain information on homology and homotopy groups of the
complexes ∆(G) and ∆(Ω(G)), when F has the bounded Helly property.
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