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SOME RIGID MOIETIES OF HOMOGENEOUS GRAPHS

DOǦAN BILGE AND ERIC JALIGOT

Abstract. Any countable Kn-free graph T embeds as a moiety into
the universal homogeneous Kn-free graph Kn in such a way that every
automorphism of T extends to a unique automorphism of Kn. Further-
more, there are 2ω such embeddings which are pairwise not conjugate
under Aut(Kn).

1. Introduction

There is an interesting class of structures for a given relational language,
the so called Fräıssé limits. They are countable homogeneous objects, or
ultrahomogeneous as Hodges calls them [3, Section 7.1]. Homogeneous in this
sense means that any isomorphism between finitely generated substructures
extends to an automorphism of the universal structure. Fräıssé limits are
not restricted to relational languages but our focus here is on homogeneous
graphs. By a graph, we mean a set of vertices V and a relation on V × V
which is irreflexive and symmetric.

Given a countable set X, by a moiety we mean a subset Y ⊂ X which is
countable and co-countable. If X carries a structure in a relational language,
a rigid moiety of X is a moiety Y ⊂ X where each automorphism of Y
(with the induced structure) extends uniquely to an automorphism of X.
A question several people studied was whether rigid moieties exist for a
given countable homogeneous structure. Henson showed in [2, Theorem
3.1] that the answer was positive for the random graph and, moreover, any
countable graph can be embedded as a rigid moiety into the random graph.
Macpherson and Woodrow gave another proof of this statement in [6, Lemma
2.1 and the following paragraph]. In the case of directed graphs, Jaligot
showed in [4] that the answer was positive for the random tournament and,
as in Henson’s case, any countable tournament can be embedded as a rigid
moiety into the random tournament.

Lachlan and Woodrow classified all homogeneous countable graphs in
[5], and Cherlin has given another proof for the classification in [1]. The
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classification shows that all countably infinite homogeneous graphs, or their
complements, have one of the following forms:

(1) Disjoint union (finite or countable) of copies ofKn, whereKn denotes
the complete graph on n vertices (here n can be infinite),

(2) The universal Kn-free graph Kn, for n finite and n ≥ 3,
(3) The random graph, also called the Rado graph.

For Kn-free graphs, Henson also claimed in [2, Theorem 3.3] that any
countably infinite Kn-free graph can be embedded as a rigid moiety in the
corresponding universal Kn-free graph Kn. But there was a small error in
the proof, and actually he only proved it for graphs which satisfied an extra
property. For graphs which did not satisfy that property, Henson extended
them to supergraphs, which did satisfy the property, and proved the the-
orem for the supergraph. The problem was that even though the original
graph was embedded rigidly into the supergraph, and the supergraph was
embedded rigidly into the universal object Kn, it does not follow that the
original graph is embedded rigidly into Kn. In this paper we give a nontriv-
ial modification of Henson’s proof to make it work for all countable Kn-free
graphs, and we fully prove the following statement.

Theorem 1.1. Let T be any countably infinite Kn-free graph. Then T
embeds into the universal Kn-free graph Kn as a rigid moiety.

2. Proofs

Throughout the paper, if T is a graph, and A is a subset of vertices of T ,
T |A is going to denote the induced subgraph of T on A.

Lemma 2.1. The class Kn of finite Kn-free graphs has a Fräıssé limit for
each n ≥ 3, denoted Kn, and it is characterized by the property that for
any finite disjoint subsets A and B such that A is Kn−1-free, there exists a
vertex v ∈ Kn such that v is adjacent to every vertex in A and not adjacent
to any vertex in B. See, e.g., [3, Exercise 7.4-7].

Lemma 2.2. There is a countably infinite graph N , that has a trivial auto-
morphism group and is Kn-free for all n ≥ 3.

There are many examples of graphs as in Lemma 2.2, and one is the graph
consisting of the set N of natural numbers as vertices, and where edges are
exactly of the form (k, k+ 1) up to symmetry. The fact that it has a trivial
automorphism group should be clear because 0 is the only vertex which is
connected to only one vertex.

Here starts our proof of Theorem 1.1. Let T be a countably infinite
Kn-free graph and let T ′ = T t N , where we add the specific graph N
just described above as a new connected component to T . We are going
to construct a supergraph of T ′. Let 1 ≤ n1 < n2 < · · · be any strictly
increasing sequence of positive integers. Construct an increasing chain of
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graphs T ′ = T0 ⊂ T1 ⊂ T2 · · · as follows. For k ≥ 1, obtain Tk by adding
a new vertex v(A, k) to Tk−1 for each finite subset A ⊂ Tk−1 satisfying the
following three conditions:

(1) Tk−1|A is Kn−1-free,
(2) A ∩ T0 has exactly nk elements,
(3) A ∩ T has at least one element.

Then each new vertex v(A, k) in Tk will be adjacent to the vertices in A and
to no others.

Let T be the union of the chain Tk. Notice that Tk − Tk−1 is infinite for
each k ≥ 1.

Lemma 2.3. T is countable and Kn-free.

Proof. Since at each step we are adding countably many new vertices, the
union T is countable. Notice that T0 = T t N is Kn-free. We now show
that Tk is Kn-free for each k. By induction on k, assume that Tk−1 is Kn-
free. Each new vertex v(A, k) we add is adjacent only to A inside Tk−1,
where Tk−1|A is Kn−1-free, and adjoining a new vertex to all vertices of a
Kn−1-free graph cannot create a complete graph on n vertices. Since there
are no edges in Tk − Tk−1, we get that Tk is Kn-free. �

Definition 2.4. Let G be a graph. A subset I of vertices of G is said to
be an independent set if the induced subgraph on I does not have any edge
relations. G itself is called independent if it does not have any edge relations.

Lemma 2.5. T ′ = T t N satisfies the following condition: if F is any
finite subset of vertices of T ′, then there exists an infinite independent set of
vertices A ⊂ N −F such that no vertex in F is adjacent in T ′ to any vertex
in A.

Proof. Recall that N has the isomorphism type of the graph described after
Lemma 2.2, and is a connected component of T ′. Since F is finite, there are
infinitely many vertices in N − F . Removing the finitely many vertices of
N −F connected to some element in F , we get an infinite set of elements of
N −F not adjacent to any vertex in F . Now choose A to be an independent
set among these vertices, for example all odd numbered or all even numbered
remaining vertices. �

Lemma 2.6. Let A,B be two finite disjoint subsets of vertices of T such
that T |A is Kn−1-free. Then there exists a vertex v ∈ T such that v is
adjacent to every vertex in A and to none of the vertices in B.

Proof. Choose k large enough so that AtB ⊂ Tk−1 and A∩T0 has at most
nk − 1 elements. Let C ⊂ T0 consist of A∩ T0 together with every vertex in
T0 which is connected to some member of A−T0. Since A is finite, and each
vertex in T −T0 is connected to only finitely many members of T0, it follows
that C is finite. Then by Lemma 2.5 there exists an infinite independent set
A′ in the subgraph N such that A′ ∩C = ∅ and no vertex in C is connected
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in T0 to any vertex in A′. Now, T |(A∪A′) is Kn−1-free. Since A′ is infinite,
we can choose a set D ⊂ (A ∪ A′) ∩ T0 such that D ∩ B = ∅, A ∩ T0 ⊆ D
and D has exactly nk − 1 elements. Now there are two cases:
Case 1 : A ∩ T 6= ∅.

In this case D has at least one element in T . Also add one more vertex
to D to make its size exactly nk (one may choose a new element in the
set A′ as above). Letting E = A ∪ D, it follows that T |E is Kn−1-free
and E ∩ T0 = D has nk elements with at least one element in T . Thus
there exists v(E, k) in Tk which is adjacent to every member of E, and
in particular to every member of A, and to no member of B.

Case 2 : A ∩ T = ∅.
Since T is infinite under our standing assumptions for Theorem 1.1,
T − (B ∪ C) is nonempty. Let x be any vertex in T − (B ∪ C). Look at
the set D′ = Dt{x}, which is a disjoint union because D ⊂ (A∪A′) ⊆ N .
Now D′ has exactly nk vertices with one vertex in T , D′ ∩ B = ∅ and
A∩T0 ⊆ D ⊂ D′. Let E = A∪D′. We need to check that E is Kn−1-free.
But as in Case 1 we see that E − {x} = A ∪D is Kn−1-free, and x is
chosen in such a way that it is not adjacent to any vertex in E − {x}
because T and N are two distinct connected components of T0, so E is
Kn−1-free. Since E ∩T0 = D′ has exactly nk elements, with the element
x in T , the rest of the proof follows exactly as in Case 1 by considering
the vertex v(E, k) of Tk.

�

So, T is a countable Kn-free graph such that for any finite disjoint subsets
A,B ⊂ T such that A is Kn−1-free, there exists a vertex v ∈ T such that v
is adjacent to each vertex in A and to none of the vertices in B. Hence T is
isomorphic to Kn.

Lemma 2.7. Every automorphism of T extends uniquely to an automor-
phism of T .

Proof. First, to prove the existence of extensions, given an automorphism
φ of T , extend φ to an automorphism of T0 by setting φ(v) = v for v ∈ N .
Then proceed by induction on k as follows: given that φ is extended to
an automorphism of Tk−1, extend it further to an automorphism of Tk by
setting φ(v(A, k)) = v(φ(A), k). This takes care of the existence of the
extension.

Now, for the uniqueness, let φ ∈ Aut(T ) such that φ(T ) = T . Then it
follows that φ(N) = N since the only vertices in T which are not adjacent
to any vertex in T are the vertices of N . So we have φ(T ′) = φ(T t N) =
φ(T ) t φ(N) = T t N = T ′. And also notice that φ is the identity on N
since N only has the trivial automorphism. So φ is uniquely determined for
vertices in T0.

Notice that any φ ∈ Aut(T ) which setwise stabilizes T0 = T ′ has to
setwise stabilize each Tk − Tk−1 for k ≥ 1. This is true because vertices in
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Tk − Tk−1 are adjacent to exactly nk many vertices in T0 and nk 6= nk′ for
k 6= k′. Thus, each Tk is setwise stabilized by φ as well.

We will proceed by induction. Let v ∈ T − T0. Then v ∈ Tk − Tk−1 for
some k. By induction assume that φ is uniquely determined for vertices in
Tk−1. But v = v(A, k) for some A ⊂ Tk−1 such that

(1) Tk−1|A is Kn−1-free,
(2) A ∩ T0 has exactly nk elements,
(3) A ∩ T has at least one element,

and v is adjacent to all vertices of A and to no other vertex in Tk−1.
By induction φ(A) is uniquely determined, and because φ is an automor-

phism which setwise stabilizes both T and T0, we have

(1) Tk−1|φ(A) is Kn−1-free,
(2) φ(A) ∩ T0 has exactly nk elements,
(3) φ(A) ∩ T has at least one element.

Hence there is a unique vertex v(φ(A), k) ∈ Tk which is adjacent to φ(A)
and to no other vertices in Tk−1. So φ(v) = v(φ(A), k). �

So this concludes the proof of Theorem 1.1. But notice that we actually
proved a little more. There are exactly 2ω such rigid embeddings of T which
are not conjugate in Aut(Kn).

Theorem 2.8. Given a countably infinite Kn-free graph T , there are 2ω

many rigid embeddings of T into Kn which are pairwise non-conjugate under
Aut(Kn).

Proof. Notice from the above proof that for each strictly increasing sequence
1 ≤ n1 < n2 < · · · of positive integers we get a rigid embedding of the form

X tX0 tXn1 t · · · tXnk
t · · ·

where X = T,X0 = T0 − T, . . . ,Xnk
= Tk − Tk−1. Furthermore, X0 is the

set of elements connected to no vertices in T , and Xnk
is the set of elements

connected to exactly nk many vertices in X tX0.
Now for two distinct strictly increasing sequences of natural numbers,

we get two rigid embeddings of T into Kn which are not conjugate by an
automorphism of Kn. Since there are 2ω many such sequences, we conclude
that there are 2ω non-conjugate rigid embeddings of T into Kn. �

Remark 2.9. In our proof of Theorem 2.8, we varied the sequence of inte-
gers 1 ≤ n1 < n2 < · · · , but we could also have varied the isomorphism type
of the graph X0, there isomorphic to the specific graph N as described after
Lemma 2.2, as long as it is a countably infinite Kn-free graph with a trivial
automorphism group and satisfying the statement of Lemma 2.5.

Of course, Theorems 1.1 and 2.8 remain valid if one works in the class of
graphs whose complements are Kn-free. So they cover all cases of homoge-
neous graphs listed in item 2 of the classification given in the introduction.
We also remark that the existence of 2ω pairwise non-conjugate embeddings



SOME RIGID MOIETIES OF HOMOGENEOUS GRAPHS 71

as a rigid moiety, as in Theorem 2.8, holds similarly in the case of the ran-
dom graph: the proof given in [2, Theorem 3.1] directly yields the same
remark as in the proof of Theorem 2.8.

To conclude, we also remark that the maximal number of non-conjugate
embeddings as a rigid moiety can also be obtained in the case of the random
tournament. Actually, a slight modification of the argument in [4], along
the lines of [2, Theorem 3.1], yields the same result as in Theorem 2.8 in
the case of tournaments: for any countably infinite tournament T , there are
2ω embeddings of T as a rigid moiety of the random tournament which are
pairwise non-conjugate in the automorphism group of the random tourna-
ment.
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