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COLOURING STABILITY TWO UNIT DISK GRAPHS

HENNING BRUHN

Abstract. We prove that every stability two unit disk graph has chro-
matic number at most 3/2 times its clique number.

1. Introduction

A unit disk graph (or udg for short) is defined on a point set in the plane,
where two points are considered as adjacent vertices if their distance is at
most one. As a very basic model for wireless devices, unit disk graphs have
attracted quite a lot of interest and there exists an extensive literature on the
subject. One of the earliest applications is due to Hale [9] who considered
them in the context of the frequency assignment problem. There, the task
is to assign different frequencies to the wireless devices in order for them to
communicate with a base station without interference. An edge between two
points signifies the devices being close enough to interfere with each other,
so that an assigned frequency corresponds to a stable set in the graph. The
frequency assignment problem then becomes a graph colouring problem, and
naturally, it is desired to assign as few frequencies as possible.

In this article, I will treat the colouring of a unit disk graph from a
structural point of view. The chromatic number of unit disk graphs can be
bounded above in terms of the clique number. The best known bound is
due to Peeters:

Theorem 1.1 (Peeters [15]). A unit disk graph G can be coloured with at
most 3ω(G)− 2 colours.

How good is this bound? Malesińska, Piskorz and Weißenfels [11] gave
the following construction, which has the highest ratio of χ and ω among
all known unit disk graphs. Consider the class of graphs Ck

n on vertex set
{0, . . . , n−1} where i and j are adjacent if |i−j| ≤ k−1 (where we calculate
mod n). Observe that we may realize any Ck

n as a unit disk graph by placing
the vertices at equidistant points on a circle of appropriate radius.
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Moreover, we see that Ck
3k−1 has stability α = 2 and clique number ω = k,

from which we deduce for the chromatic number that

χ(Ck
3k−1) ≥

3k − 1

2
=

3

2
ω − 1

2
.

Clearly, between an upper bound of essentially 3ω and the 3ω/2 of the
Malesińska et al. example there is a sizable gap. In this article, we will close
this gap for unit disk graphs of stability at most two:

Theorem 1.2. A unit disk graph G with α(G) ≤ 2 can be coloured with at
most 3ω(G)/2 colours.

The theorem shows that, at the very least, the example of Malesińska
et al. cannot be easily improved. Moreover, I contend that it gives some
evidence for believing that the true bound is closer to 3ω/2 than to Peeters’
bound of 3ω − 2.

There is some more evidence for this belief. There are two classes of udgs,
for which it is known that their chromatic number is bounded by 3ω/2. The
first of these is the class of triangle-free udgs: A triangle-free udg is planar,
see Breu [2], and thus by Grötzsch’ theorem, is 3-colourable [8]. The second
class consists of augmentations of induced subgraphs of the triangular lattice
in the plane. McDiarmid and Reed [14] show that these can be coloured
with at most (4ω + 1)/3 colours. Another piece of evidence is provided
by McDiarmid [13], who investigates fairly general models of random unit
disk graphs. In that context, it turns out that with high probability, the
chromatic number is very close to the clique number. Finally, considering
fractional instead of ordinary colourings, Gerke and McDiarmid [6] prove
that the fractional chromatic number is bounded by 2.2ω(G) for any unit
disk graph G.

Optimisation problems in udgs, and in particular, colouring udgs al-
gorithmically have attracted some attention. We just mention Marathe et
al [12] who give a 3-approximation colouring algorithm and the result by
Clark, Colbourn and Johnson [4] that 3-colourability remains NP-complete
for udgs. We refer to Balasundaram and Butenko [1] for a survey on several
optimisation problems in udgs.

The paper is organised as follows. After briefly stating some of the basic
definitions that we are going to use we will proceed with the proof of our
main result, Theorem 1.2, in Section 3. The key lemma on which the proof
of Theorem 1.2 rests will be deferred to Section 5. In Section 4 we will
discuss which geometric insights will be exploited.

2. Definitions

For general graph-theoretic notation and concepts we refer to Diestel [5].
Let G be a graph. A clique of G is a subgraph in which any two vertices
are adjacent. A stable set of G is a subgraph or vertex set so that no two
vertices are adjacent. The size of the largest clique is denoted by ω(G),
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while the size of the largest stable set is α(G), the stability of G. Every
colouring will be proper, that is, an assignment of colours so that no two
adjacent vertices receive the same colour. We denote the chromatic number,
the minimum number of colours to colour G, by χ(G), and define χ(G), the
clique partition number, to be the chromatic number of the completement
of G. A vertex v is complete to some vertex set X if every vertex in X
is adjacent to v. A vertex set U is complete to X is every vertex in U is
complete to X.

A unit disk is a closed disk of radius 1 in the plane. Unit disk graphs
can be represented in two ways: In the intersection model the vertices are
unit disks in the plane and two of them are adjacent if and only if the disks
intersect; and in the distance model, the vertex set is a point set in the
plane, and any two vertices are adjacent if and only if their distance is at
most 1.We will work exclusively with the distance model.

Moreover, we always see a unit disk graph as a concrete geometric object,
that is, the vertex set is indeed a subset of points in R2. So, every vertex is
a point in the plane. As a consequence we do not allow two vertices to be
represented by the same point. It is not hard to check, however, that this
is no restriction for our purposes: Our main theorem remains valid if this
requirement is dropped.

For two points x, y ∈ R2, we denote the Euclidean distance in the plane
by dist(x, y). If X is a point set in R2 then we let conv(X) be the convex
hull of the points in X. As a shorthand we set conv(G) := conv(V (G)). We
say that a line L separates a point p from a point set X if p lies in one of
the closed half-planes defined by L, while X is contained in the other. For
any set X and any x we use X + x to denote X ∪ {x}

3. Proof of main theorem

The proof Theorem 1.2 rests on the Gallai-Edmonds decomposition as
well as a key lemma, which will be proved in the course of the following two
sections.

Lemma 3.1. Let G be a unit disk graph with α(G) ≤ 2. Then V (G) can be
partitioned into three cliques, two of which have different cardinalities.

Let me remark that the lemma is motivated by the structure of the
Malesińska et al example. Moreover, as a by-product, we obtain that a
stability two unit disk graph has clique partition number χ ≤ 3.

For the well-known Gallai-Edmonds decomposition, which we state below,
we refer to Lovasz and Plummer [10]. We briefly recall the basic notions of
matching theory. A matching of a graph G is a set of edges so that no two
of its edges share an endvertex. The matching is perfect if every vertex is
incident with a matching edge; and it is near-perfect if this is the case for
every vertex except one. The graph G is factor-critical if G−v has a perfect
matching for every vertex v.
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Theorem 3.2 (Gallai-Edmonds decomposition). For any graph G denote by
Z the set of those vertices v for which there exists a maximum-size matching
missing v. Let X := (

⋃
z∈Z N(z)) \ Z, and R := G− (Z ∪X). Let M be a

maximum-size matching. Then:

• Every component of G[Z] is factor-critical and M restricts to a near-
perfect matching on every one of them.
• M restricted to R is a perfect matching of R.
• Every vertex x of X is incident with an edge ex ∈ M whose other

endvertex lies in a component of G[Z]. No two such edges ex and ey
are incident with the same component.

The Gallai-Edmonds decomposition combined with Lemma 3.1 allow us
to prove the main theorem:

Proof of Theorem 1.2. LetH be the complement ofG. LetM be a maximum-
size matching of H, let Z,R,X be as in the Gallai-Edmonds decomposition
of H, and denote by O the set of components of Z. Then MR := M ∩E(R)
is a perfect matching, MK := M ∩E(K) is a near-perfect matching for every
K ∈ O, and and every x ∈ X is incident with an edge in M whose other
endvertex lies in some K ∈ O. Let us denote the set of matching edges
incident with vertices in X by MX , and let OX be the set K ∈ O incident
with an edge in MX . Finally, set O′ := O \ OX . Thus

M = MR ∪MX ∪
⋃

K∈O
MK , O = OX ∪ O′ and |MX | = |OX |.

By Lemma 3.1, R can be partitioned into three stable sets AR, BR, CR,
which we may choose so that |AR| ≥ max(|BR|, |CR|). Moreover, by the
same lemma, everyK ∈ O can be partitioned into three stable setsAK , BK , CK

so that the three sets do not have the same size. Choosing them with
|AK | ≥ |BK | ≥ |CK | implies

(3.1) |CK |+ 1 ≤ |AK |.
Observe that A := AR ∪

⋃
K∈O AK is a stable set of H. Now, we see that

2|MR| = |V (R)| = |AR|+ |BR|+ |CR| ≤ 3|AR|,
while for every K ∈ O we obtain with (3.1)

2|MK | = |V (K)| − 1 = |AK |+ |BK |+ |CK | − 1 ≤ 3|AK | − 2.

From this it follows that

2|M | = 2|MR|+ 2|MX |+ 2
∑
K∈O

|MK |

≤ 3|AR|+ 2|MX |+
∑
K∈O

(3|AK | − 2)

= 3|A|+ 2|MX | − 2|O|
= 3|A| − 2|O′|.
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The matching M together with the set of unmatched vertices, one for each
K ∈ O′, yields a clique partition of H of size |M |+ |O′|. Hence

2χ(H) ≤ 2(|M |+ |O′|) ≤ 3|A| − 2|O′|+ 2|O′| ≤ 3α(H).

We deduce χ(G) ≤ 3ω(G)/2, which finishes the proof. �

4. Basic geometric facts

Before beginning with the proof of the key lemma, let me collect in this
section the basic geometric facts that we will need.

The geometry of udgs is not linear. For example, the subset of points
of distance at most 1 to a given set of vertices, which is the intersection
of several unit disks, can be very complex indeed. Sometimes this inherent
non-linearity can be avoided. That is, instead of exploiting a concrete reali-
sation of the unit disk graph, it is sometimes possible to deduce the desired
conclusion only by appealing to abstract properties shared by all udgs. If
this is possible it might even result in cleaner arguments. The MaxClique
algorithm by Raghavan and Spinrad[16], for instance, is such an example.

Abstract properties of udgs include the fact that a udg may not contain
any induced K1,6 or that

(4.1)
the common neighbourhood of any two non-adjacent vertices
induces a co-bipartite graph.

This is an observation first made by Clark, Colbourn and Johnson [4]. Al-
though (4.1) is a fairly powerful property, even in conjunction with stability
α = 2, it is not enough to guarantee a chromatic number of χ ≤ 3ω/2.
To see this, consider the following graph CSk, which is a subgraph of a
graph appearing in Chudnovsky and Seymour [3]. Let CSk be defined on
four disjoint cliques each of which is comprised of k vertices: {a1, . . . , ak},
{b1, . . . , bk}, {c1, . . . , ck} and {d1, . . . , dk}. Additionally, for i, j = 1, . . . , k
with i 6= j we define the following adjacencies: Let ai be adjacent with bj
and dj and with ci; let bi be adjacent with cj and aj and with di; let ci be
adjacent with dj and bj and with ai; and let di be adjacent with aj and cj
and with bi. All other pairs of vertices are non-adjacent.

Clearly, the stability of CSk is equal to 2, and if k ≥ 3 then ω(CSk) = k+1
and χ(CSk) = 2k. It is not entirely obvious but also not overly difficult to
check that CSk satisfies (4.1).

To sum up, directly exploiting the geometry of a udg might be hard
due to the inherent non-linearity, while the other approach of using only
abstract properties appears to fail. So, what can be done? We will work
with a concrete geometric realisation, that is, the vertices will have concrete
positions in the plane, but we will in some sense linearise the adjacencies.
To show that two given vertices are adjacent we will never try to calculate
their distance directly but rather use the following two principles, Lemma
4.1 and Lemma 4.2, that are of a more combinatorial flavour.
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Let us say that for distinct vertices u, v, x, y in a unit disk graph, the two
edges uv and xy are crossing if conv(u, v) intersects conv(x, y).

Lemma 4.1 (Breu [2]). Let u, v, x, y be four distinct vertices in a unit disk
graph G. If uv and xy are crossing edges then G[u, v, x, y] contains a trian-
gle.

Lemma 4.2. Let a vertex v of a unit disk graph be adjacent to two vertices
u and w. Then v is adjacent to x for every vertex x ∈ conv(u, v, w).

Proof. The vertex v is adjacent to every vertex in the unit disk centered at
v. This disk clearly contains conv(u, v, w). �

Having stated that we will work only with these two principles rather than
with concrete distances, let me turn around and immediately violate that
rule. This becomes necessary as we will need to distinguish two classes of
unit disk graphs: Those that have two vertices that are far apart and those
that fit into a small disk. This will be done in the next two lemmas—from
then on, however, we will adhere to the rule.

Lemma 4.3. Let G be a unit disk graph. Then either G has two vertices of
distance greater than

√
3 or there is a unit disk that contains all of G.

Proof. We assume that all pairs of vertices of G have distance at most
√

3.
It is straightforward to see that there is a point x whose maximal distance
to V (G) is minimal. More formally, there is an x ∈ R2 so that setting
d := max{dist(x, v) : v ∈ V (G)} we obtain dist(y, v) ≥ d for all points
y ∈ R2 and all vertices v.

Let W be the set of vertices v with dist(x, v) = d. We will see that d ≤ 1,
which means that all of G is contained in the unit disk with centre x. For
this, we claim that

(4.2) x ∈ conv(W ).

Suppose x /∈ conv(W ). Then there are two vertices w,w′ in W , so that
the line L through w and w′ does not contain x and separates x from W ,
and so that x /∈ L. Choose ε > 0 small enough so that dist(v, x) + ε < d
for all v ∈ V (G) \W . On the line through x that is orthogonal to L, let
x′ be the point between x and conv(W ) of distance ε to x. To see that
max{dist(x′, v) : v ∈ V (G)} < d consider any u ∈W , which then lies on the
segment between w and w′ on a circle of radius d and centre x. The angle
at x′ in the triangle with vertices u, x′, x is at least π/2, which means that
dist(u, x′) < dist(u, x). On the other hand, for any v ∈ V (G) \W we also
have dist(x′, v) < d by choice of ε. Therefore, x′ contradicts the minimal
choice of x.

Now, if x is the convex combination of two vertices w1 and w2 in W then
2d = dist(w1, w2) ≤

√
3, which implies d < 1. If this is not the case, then, by

Carathéodory’s theorem, x lies in the convex hull of three vertices w1, w2, w3

of W . There are i, j with 1 ≤ i < j ≤ 3 so that the angle θ at x in the



66 HENNING BRUHN

triangle with vertices x,wi, wj is at least 2π/3 but no more than π by (4.2).
Then we get √

3

2
= sin

(π
3

)
≤ sin

(α
2

)
=

dist(wi, wj)

2d
.

Thus, d ≤ 1 as dist(wi, wj) ≤
√

3. �

The case when a unit disk graph has two vertices u, v of distance at least√
3 is particularly easy. We will see that in this case we can get the key

lemma with only a small effort.

Lemma 4.4. Let G be a unit disk graph. If u and v are two vertices of
distance at least

√
3 then N(u) ∩N(v) is a clique.

Proof. Consider any two vertices u and v for which N(u)∩N(v) contains two
non-adjacent vertices. The two points of greatest distance in the intersection
of the unit disk centered at u and the unit disk centered at v are the two
points where the boundaries of the two unit disks meet. Let this distance
be s; and observe that s > 1 as otherwise N(u) ∩ N(v) would be a clique.
Now, we obtain

dist(u, v) =
√

4− s2 <
√

3.

�

Finally, let us get rid of the special case when the unit disk graph is
contained in a line. While this case is easy—the graph then becomes a linear
interval graph—it still leads to some unnecessary complications. From an
observation of Gräf, Stumpf and Weißenfels [7] it follows that a unit disk
graph can always be rescaled so that there is an ε > 0 so that moving any
vertex by at most ε from its original position does not change the (abstract)
graph. So, by perturbing the graph slightly we may always assume that

(4.3) no three vertices are collinear.

5. The key lemma

In this section we will prove a slightly stronger version of the key lemma:

Lemma 5.1. Let G be a unit disk graph with α(G) ≤ 2. Then V (G) is the
union of three cliques, two of which contain a common vertex.

Lemma 5.1 implies Lemma 3.1: Let A,B,C be three cliques whose union
is V (G), and that are disjoint except for a vertex v that is contained in A and
B but not in C. We assume furthermore that |A| ≥ |B|. Then A,B \ {v}, C
is a clique partition of V (G) in which not all of the cliques have the same
size.

Let us start by considering a special case. We say that a unit disk graph G
is hollow if the interior of conv(G) does not contain any vertex of G. Thus,
assuming the graph has at least three vertices it follows from (4.3) that all
vertices of G appear on the boundary of the polygon conv(G). We fix one
of the circular orders, say the clockwise order, in which the vertices appear
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on the boundary. We will use the usual interval notation for the vertices
of a hollow unit disk graph. So, for two distinct vertices u, v we denote by
[u, v] the set of all vertices that appear in clockwise order on the boundary
starting with u up to v. If u = v, we set [u, v] = {u}. We further define
(u, v] := [u, v] \ {u}, [u, v) := [u, v] \ {v} and (u, v) := [u, v] \ {u, v}. We say
that u and v are consecutive if u 6= v and either (u, v) = ∅ or (v, u) = ∅.

Hollow unit disk graphs have an advantage over general unit disk graphs.
To decide whether two edges uv and xy cross reduces to determining the
order of the endvertices on the boundary: The edges cross if and only if the
endvertices are interleaved, that is, if and only if both (u, v) and (v, u) meet
{x, y}.

Lemma 5.2. Let G be a hollow unit disk graph. Assume G to have three
distinct non-edges {x1, y1}, {x2, y2} and {x3, y3} so that x1, y1, x2, y2, x3, y3
appear in this order on the boundary of conv(G). Then α(G) ≥ 3.

Proof. If x1 and x2 fail to be adjacent, set s = x2. If x1 and x2 are adjacent
then y1y2 /∈ E(G); otherwise x1x2 and y1y2 would be crossing but G does not
contain any triangle on these four vertices, which is impossible by Lemma
4.1. Setting s = y1, we obtain in both cases that s ∈ (x1, y2) and that x1s
and sy2 are non-edges. By symmetry, we find a t ∈ (s, y3) so that t is not
a neighbour of s nor of y3. We consider the four vertices x1, s, t, y3. Unless
α(G) ≥ 3, we have that x1 is adjacent to t and y3 adjacent to s. Then x1t
and y3s are two crossing edges whose endvertices do not induce any triangle,
which contradicts Lemma 4.1. �

We now prove the key lemma for hollow unit disk graphs.

Lemma 5.3. Let G be a hollow unit disk graph with α(G) ≤ 2. Then
for every vertex v, there are vertices v+ and v− so that [v−, v], [v, v+] and
V (G) \ [v−, v+] are cliques.

Proof. First, we may clearly exclude the case when G is complete. Let y+

be the last vertex in clockwise direction from v so that [v, y+) forms a clique,
that is, we choose y+ so that [v, y+) is a clique and maximal among all such
cliques. By choice of y+, there exists a x+ ∈ [v, y+) that is non-adjacent to
y+. Similarly, we denote by y− the last vertex in counterclockwise direction
so that (y−, v] is a clique, and we let x− be a non-neighbour of y− in (y−, v].
Define v+ to be the clockwise predecessor of y+, that is, we choose v+ to be
the vertex for which [v, v+] = [v, y+).

If y− ∈ [v, v+] then set v− = y+. This ensures that [v−, v] is a subset of
the clique (y−, v]. As V (G) \ [v−, v+] is empty in this case, we are done.
So, we will assume that y− /∈ [v, v+] = [v, y+). Let v− be the vertex for
which [v−, v] = (y−, v]. Suppose that V (G) \ [v−, v+] = [y+, y−] is not a
clique. Thus, there exists non-adjacent r, s ∈ [y+, y−], where s /∈ [y+, r].
Then x+, y+, r, s, y−, x− yield three pairs of non-adjacent vertices that are
as in Lemma 5.2, which is impossible. �
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Next, we will see how the general case can be deduced from the hollow
case. For this, we first note two simple consequences of Lemma 4.2:

Lemma 5.4. Let K be a clique in a unit disk graph. Then

(i) K + u is a clique for every vertex u ∈ conv(K);
(ii) every vertex v that is complete to K is adjacent to every vertex in

conv(K).

Proof. (i) The assertion is trivially true if K comprises at most two vertices,
so we assume it to have more. Consider any vertex k ∈ K. By (4.3), there
is a triangle krs with r, s ∈ K that contains u in its convex hull. Now the
assertion follows from Lemma 4.2.

(ii) This follows directly from (i) with K replaced by K ′ = K + u. �

We quickly exclude one more easy case in the proof of Lemma 5.1.

Lemma 5.5. Let G be a unit disk graph with α(G) ≤ 2, and let u and v be
two non-adjacent vertices. Assume that all vertices of G lie on one side of
the line through u and v, that is, the line through u and v does not separate
any two points of conv(G). Then V (G) is the union of three cliques, two of
which contain a common vertex.

Proof. As α(G) ≤ 2, every vertex of G except for u, v is a neighbour of u or
a neighbour of v. Moreover, both N(u) \N(v) and N(v) \N(u) are cliques.
So, if N(u) ∩ N(v) is a clique as well then V (G) is the union of the three
cliques (N(u) \N(v)) + u, (N(u) ∩N(v)) + u and N(v) ∩N(u).

In order to show that N(u) ∩ N(v) is a clique, consider two common
neighbours x, y of u and v. If x ∈ conv(u, y, v) or if y ∈ conv(u, x, v) then
x and y are adjacent by Lemma 4.2. So, suppose that neither is the case.
In a similar way, it follows from uv /∈ E(G) that neither u nor v can be
contained in the interior of the convex hull of the other three. Thus, all four
vertices lie on the boundary of conv(u, v, x, y). Because conv(G) lies on one
side of the line through u and v, we deduce that one of the two pairs of
edges, uy, vx and ux, vy cross. That x and y are adjacent now follows from
Lemma 4.1. �

In our proof of the key lemma there is only one obstacle left, which we will
overcome with the help of the next lemma. The lemma is based on the insight
that, provided the graph is contained in a unit disk, the vertices on the
boundary of conv(G) largely determine the behaviour of the interior vertices.
Slightly more precisely, we know from Lemma 5.3 that the outer vertices can
be partitioned into three cliques, and we will see that each interior vertex
can easily be assigned to one of these cliques—with the exception of two
small zones of vertices. Handling these two zones will be the main difficulty.

Lemma 5.6. Let G be a unit disk graph with α(G) ≤ 2. If G is contained
in a unit disk then V (G) is the union of three cliques, two of which have a
common vertex.
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Proof. We will show that there is a vertex b on the boundary of conv(G),
and three cliques B+, B−, R that cover V (G) so that b ∈ B+ ∩B−.

By assumption, all of G is contained in a unit disk, which means that
there is a point p ∈ R2 of distance at most 1 to every vertex in G. Now,
adding p as a vertex to G is entirely harmless: G + p still has stability at
most two and, assuming we find cliques as desired in G + p with b 6= p, we
obtain such cliques for G by simply deleting p from the cliques. Thus, we
may assume that

(5.1) G has a vertex p that is adjacent to every other vertex.

As the lemma trivially holds if G has at most two vertices, we assume
from now on that there are at least three vertices in G. Denote by F the set
of vertices of G on the boundary of conv(G). Then the graph induced by F
is a hollow unit disk graph, and we will continue to use the interval notation
for this induced subgraph of G, and only for this graph. This means that a
set [u, v] is always understood with respect to the hollow unit disk graph on
F , and that in particular, [u, v] ⊆ F .

In light of Lemma 5.5 we may assume that

(5.2) two consecutive vertices on the boundary of conv(G) are adjacent.

Pick any vertex b ∈ F other than p. By Lemma 5.3 we may choose
b+, b− ∈ F so that [b, b+], [b−, b] and F \[b−, b+] are cliques that meet at most
in b, and such that F \ [b−, b+] is minimal subject to this condition. Observe
that b+ = b− is impossible: This would entail b = b+ = b− but both of [b, b+]
and [b−, b] contain two vertices by (5.2). Thus, F \ [b−, b+] = (b+, b−). If
(b+, b−) 6= ∅ let r+, r− be so that [r+, r−] = (b+, b−). If, on the other hand,
(b+, b−) = ∅ then we put r+ = b− and r− = b+.

We now have that

(5.3)
every pair of consecutive vertices in F lies in one of the fol-
lowing cliques; [b, b+], [b+, r+], (b+, b−), [r−, b−] and [b−, b].

If (b+, b−) 6= ∅ then trivially every pair of consecutive vertices lies in one of
the five sets. In the case of (b+, b−) = ∅ we have [r−, b−] = [b+, b−].

It remains only to verify that [b+, r+] and [r−, b−] are cliques as claimed.
Indeed, b+ and r+, as well as b− and r−, are consecutive vertices on the
boundary. Thus, by (5.2), [b+, r+] is simply the edge b+r+, and [r−, b−]
coincides with the edge b−r−. This proves (5.3).

We define

B+ = conv([b, b+] + p) ∩ V (G),

T+ = conv(b+, r+, p) ∩ V (G),

B− = conv([b−, b] + p) ∩ V (G),

T− = conv(r−, b−, p) ∩ V (G),

and R = conv([r+, r−] + p) ∩ V (G).

See Figure 1 for an illustration. Observe that every vertex is contained in
one of the five sets. Moreover, as p is adjacent to every other vertex, we
deduce from (5.3) and Lemma 5.4 that B+, B−, T+, T− and R are cliques.
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T+
p

T−

B+B−

R

b

b+

r+

b−

r−

T+
B

T+
R

T+
∗

to B−

to B+

p

T+

to R

r+

b+

Figure 1. The five cliques (left); how to divide up T+ (right)

Assume for the moment that (b+, b−) = ∅. Then [b+, r+] = [b+, b−] =
[r−, b−], which means that T+ = T−. Thus, we see that V (G) is the union
of the three cliques B+, B− and T+, two of which contain b. As we are done
in this case, we will assume from now on that

(5.4) (b+, b−) = [r+, r−] 6= ∅ and neither of [b, r+] and [r−, b] is a clique.

The second part of the assertion follows from the first: If, for instance, [b, r+]
was a clique then F \ [b−, r+] would be strictly smaller than F \ [b−, b+],
and [b, r+] and [b−, b] would still be cliques meeting only in b; this however
contradicts the choice of b+ and b−.

The rest of the proof will be spent on dividing up T+∪T− among the other
cliques, so that we obtain three cliques that cover all of G. More precisely, we
will partition T+ and T− into sets T+

B , T
+
R , T

+
∗ and T−B , T

−
R , T

−
∗ , respectively,

so that B+ ∪ T+
B ∪ T−∗ , B− ∪ T−B ∪ T+

∗ and R ∪ T+
R ∪ T

−
R are cliques; see

Figure 1. As b is contained in the first two of these three, this will complete
the proof of the lemma. In order to do so, we define

• T+
B := {t ∈ T+ : t is complete to B+};

• T+
R := {t ∈ T+ \ T+

B : t is complete to R};
• T+
∗ := T+ \ (T+

B ∪ T
+
R ).

The sets T−B , T−R and T−∗ are defined symmetrically.
We claim that

(5.5) R ∪ T+
R ∪ T

−
R is a clique.

Suppose that is not the case. We note that R, T+ and T− are cliques and
that T+

R and T−R are defined in such a way that each is complete to R.

Thus, R ∪ T+
R ∪ T

−
R may only fail to be a clique if there exists a pair t+, t−

of non-adjacent vertices with t+ ∈ T+
R and t− ∈ T−R . By definition of T+

R ,

the vertex t+ is not complete to B+; otherwise t+ would be in T+
B . Since

B+ ⊆ conv([b, b+] + p), Lemma 5.4 implies that t+ has a non-neighbour s+

in [b, b+]. Symmetrically, we find an s− ∈ [b−, b] that is non-adjacent to t−.
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We will focus on t+, t− and the following vertices that appear in this
clockwise order on the boundary of conv(G): b−, s−, s+, b+. Observe that
t+ is adjacent to s− and t− is adjacent to s+; otherwise we would obtain a
contradiction to α(G) ≤ 2. Moreover, t+ and b+ are adjacent since both are
elements of the clique T+. In the same way, we have t−b− ∈ E(G).

Suppose that t+b− ∈ E(G). Then t+ is adjacent to p, to b− and to r− ∈ R
(the last adjacency is because of the definition of T+

R that ensures that t+

is adjacent to every vertex in R). With Lemma 5.4 we conclude now that
t+ is complete to T−, which is impossible as t− ∈ T−; thus, t+ and b− are
non-neighbours, similarly, t− and b+ are non-neighbours. Let us sum up the
non-adjacencies:

(5.6)
None of the pairs t−t+, t+s+, t−s−, t+b− and t−b+ is an edge of G.

See also Figure 2.
Next, let us note that s−, s+, b+, b− are pairwise distinct. Indeed, the

fact that t+ is adjacent to b+ and s− but not to s+ nor to b− implies that
s+ 6= s−, s+ 6= b+, s− 6= b− and b+ 6= b−. All other identities are excluded
by the fact that s−, s+, b+, b− appear in this order on F .

p

b

s+
s−

b−

b+

r−

r+

t−

t+

Figure 2. The crossing paths of (5.5); non-adjacencies in
broken lines. (Not all adjacencies shown.)

To conclude, we find two disjoint paths s+t−b− and s−t+b+ with endver-
tices in F that are interleaved: s+, b+, b−, s− appear in this clockwise order.
Thus an edge of the first path needs to cross an edge of the second path.
The possible pairs are s−t+ and s+t−; b+t+ and b−t−; s+t− and b+t+;
s−t+ and b−t−. Suppose that s−t+ and s+t− cross. Then, by Lemma (4.1),
three of the four vertices s+, s−, t+, t− form a triangle, which, however, is
impossible by (5.6). In a similar way, we see that none of the other pairs of
edges may cross, and we have therefore found the final contradiction that
proves (5.5).

We show next that

(5.7) T+
∗ is complete to B− ∪ T−, and T−∗ is complete to B+ ∪ T+.
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By symmetry it suffices to show that any t ∈ T+
∗ is complete to B− ∪ T−.

We first observe that

(5.8)
there are distinct non-neighbours x, y of t so that [x, y] is a
clique and t is complete to (y, x).

To see (5.8), denote by X the set of non-neighbours of t in F . Note that t has
by definition of T+

∗ a non-neighbour in B+ ⊆ conv([b, b+] + p) and another
one in R ⊆ conv([r+, r−]+p). Lemma 5.4 implies that t has therefore a non-
neighbour in [b, b+] and in [r+, r−], and consequently that |X| ≥ 2. Since
α(G) ≤ 2, the set X has to be a clique. We deduce from Lemma 5.4 that
t /∈ conv(X). Thus, there is a line, disjoint from X + t, that separates t
from X. Let Ht be the corresponding open half-plane containing t and let
HX be the other, which then contains all of X. Pick a point q in Ht ∩ F ,
and following the boundary of conv(G) in clockwise direction let x be the
first vertex in X and let y be the last. Then clearly X ⊆ [x, y]. Moreover,
t /∈ conv([x, y]) as [x, y] ⊆ HX .

Now consider the unit disk graph on [x, y] + t, which is hollow: No z ∈
[x, y] ⊆ F lies in the interior of conv(G), so in particular, no such z lies in
the interior of conv([x, y]). Moreover, t /∈ conv([x, y]) by choice of x and
y. Since y is non-adjacent to t, which in turn is non-adjacent to x, we may
apply Lemma 5.2 to the hollow unit disk graph on [x, y] + t in order to
deduce that [x, y] is a clique. This finishes (5.8).

We distinguish four cases.
Case 1 : x ∈ [r+, b] and y ∈ [r+, b).

Since (b, b+] is disjoint from {x, y}, we have that (b, b+] ⊆ (x, y) or
(b, b+] ⊆ (y, x). Then [b, b+] ⊆ [x, y) or [b, b+] ⊆ (y, x) as y 6= b. By
definition of T+

∗ , t has a non-neighbour in B+ ⊆ conv([b, b+] + p), and
thus also in [b, b+] by Lemma 5.4. As t is complete to (y, x) by (5.8), it
follows that [b, b+] ⊆ [x, y). By (5.8), [x, y] is a clique. Its subset [b, r+]
is therefore a clique as well, which is impossible by (5.4).

Case 2 : {x, y} ⊆ [b−, b+].
The vertex t has by definition of T+

∗ a non-neighbour inR ⊆ conv([r+, r−]+
p), which by way of Lemma 5.4 implies that t has a non-neighbour in
[r+, r−] as well. On the other hand, t is complete to (y, x) by (5.8), which
excludes that [r+, r−] ⊆ (y, x). Now, it follows from {x, y} ⊆ [b−, b+]
that [r+, r−] ⊆ (x, y). Thus, [b+, b−] ⊆ [x, y] is a clique by (5.8), which
implies with Lemma 5.4 that T+ ∪ R ∪ T− ⊆ conv([b+, b−] + p) is a
clique. This, however, is impossible as t ∈ T+

∗ is supposed to have a
non-neighbour in R.

Case 3 : x ∈ [r+, r−] and y ∈ [b, b+].
In this case, we find that [b−, b] ⊆ (x, y], and thus that [r−, b] ⊆ [x, y] is
a clique, which contradicts (5.4).

Case 4 : x ∈ (b, b+] and y ∈ [r+, r−].
As [b−, b] ⊆ (y, x), it follows from (5.8) that t is complete to [b−, b] and
thus to B− ⊆ conv([b−, b] +p) by Lemma 5.4. Next, let us show that t is
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complete to T− as well. If r− = y then all of [r+, r−] is contained in the
clique [x, y] as well as b+. From Lemma 5.4 we deduce that R ∪ T+ ⊆
conv([b+, r−]+p) is a clique, which is impossible as t ∈ T+

∗ ⊆ T+ cannot,
by definition, be complete to R. Thus, r− ∈ (y, x), which means that
t is adjacent to r−. As t is also adjacent to b− ∈ B− it follows from
Lemma 5.4 that t is complete to T− ⊆ conv(b−, r−, p), as desired.

The Cases 1–4 cover all possible values for x and y. Indeed, assume first
that neither x nor y is equal to b. Then any pair of x, y not treated in
Case 1 either lies completely in (b, b+], or one of x, y lies in (b, b+] and the
other in [r+, b). The former configuration is covered by Case 2, which also
takes care of a part of the latter configuration. It remains to consider the
case when one of x, y lies in (b, b+] and the other in [r+, r−]. This is dealt
with in Cases 3 and 4. So, assume now that x = b. Then y ∈ [r+, b) falls
under Case 1, and y ∈ (b, r+) = (b, b+] under Case 2. Finally, if y = b then
x ∈ [b−, b+] is covered by Case 2, while x ∈ [r+, r−] is covered by Case 3.

We therefore have proved (5.7). Now the definitions of T+
B , T

+
R , T

+
∗ and

T−B , T
−
R , T

−
∗ together with (5.5) and (5.7) imply directly that B+∪T+

B ∪T−∗ ,

B− ∪ T−B ∪ T+
∗ and R ∪ T+

R ∪ T
−
R are cliques. �

We can finally prove our key lemma:

Proof of Lemma 5.1. We need to find three cliques whose union is V (G) so
that two of them share a vertex. Assume first that there are two vertices u, v
of distance ≥

√
3. Because of α(G) ≤ 2, we see that (N(u)\N(v))+u as well

as N(v) \N(u) induce cliques. These two together with (N(u)∩N(v)) + u,
which is a clique by Lemma 4.4, form three cliques as stated. If all pairs of
vertices have distance at most

√
3 then the assertion follows directly from

Lemmas 4.3 and 5.6. �
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