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ON A THEOREM OF G. D. CHAKERIAN

MARGARITA SPIROVA

Abstract. Among all bodies of constant width in the Euclidean plane,
the Reuleaux triangle of the same width has minimal area. But Reuleaux
triangles are also minimal in another sense: if a convex body can be
covered by a translate of a Reuleaux triangle, then it can be covered by a
translate of any convex body of the same constant width. The first result
is known as the Blaschke-Lebesgue theorem, and it was extended to an
arbitrary normed plane by Ohmann and, independently, Chakerian. In
the present paper we extend the second minimal property, known as
Chakerian’s theorem, to all normed planes. Some corollaries from this
generalization are also given.

1. Introduction

Due to Blaschke [5] and Lebesgue [15] any plane convex body (i.e., a
compact, convex set with nonempty interior) of constant width λ > 0 has
area not less than the area of a Reuleaux triangle of width λ; see also [8,
p. 128] and [13]. Note that a compact, convex set K is a set of constant width
if the distance between any pair of parallel supporting lines of K is the same.
The intersection of three congruent circular discs, such that the boundary of
each of them passes through the centers of the other two, is called Reuleaux
triangle and well known as a classical example of a non-circular body of
constant width. But Reuleaux triangles in the Euclidean plane are also
“minimal” in another sense. Namely, if RT is Reuleaux triangle of width
λ and any congruent copy P ′ of a compact, convex set P can be covered
by a translate of RT , then P can also be covered by a translate of an
arbitrary convex body of constant width λ. Here a congruent copy P ′ of
a set P means that there exists a translation, or a rotation, or a product
of translations and rotations mapping P onto P ′. This property, known as
Chakerian’s theorem, was proved in [7]. Another proof was given later by
Bezdek and Connelly; see [3]. The first result of Blaschke and Lebesgue was
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extended by Ohmann [21] and, independently, by Chakerian [6] to arbitrary
normed planes; see also the survey [18, §2.8]. In this paper we present an
extension of the second result to arbitrary normed planes, and we also give
some corollaries of this generalization.

By a (normed or) Minkowski plane (X, ‖ · ‖) we mean a two-dimensional
real linear space X with norm ‖ · ‖. As usual, the unit disc D and the unit
circle C of (X, ‖ · ‖) are defined by

D := {x ∈ X : ‖x‖ ≤ 1} and C := {x ∈ X : ‖x‖} = 1,

where D is a two-dimensional convex body centered at the origin. If the unit
circle is a strictly convex curve (i.e., it does not contain a non-degenerate
line segment), the plane is called strictly convex, and if C is a smooth curve,
the plane is said to be smooth. A homothetic copy p + λ D, λ ∈ R+, of
the unit disc is called the (Minkowskian) disc with center p and radius λ
and denoted by D(p, λ). Analogously, the (Minkowskian) circle C(p, λ) is
defined by C(p, λ) := p+λ C. If the points p1, p2 lie on the circle C(x, λ) and
are not opposite in C(x, λ), then the short arc of C(x, λ) with endpoints p1

and p2, denoted by arc(p1, p2;x), is that arc which belongs to the closed half-
plane with bounding line through p1, p2 which does not contain the center x.
If p1 and p2 are opposite in C(x, λ), then by arc(p1, p2;x) we simply mean
one of the two semi-circles of C(x, λ) determined by p1 and p2.

The abbreviation convK is used for the convex hull of a set K, and bd K
for the boundary of K. We denote the segment between x, y ∈ X by [x, y],
the line through x and y by 〈x, y〉, and the ray with origin x and passing
through y by [x, y〉. For the closed half-plane bounded by the line 〈p1, p2〉
and containing the point q 6∈ 〈p1, p2〉 we write HP(p1, p2; q).

Figure 1: Reuleaux triangles in normed planes.
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Let K ⊂ X be a compact, convex set and let the points p1 and p2 belong
to the boundary of K. The segment [p1, p2] is called an affine diameter
of K if there exist two different parallel supporting lines H1 and H2 of K
such that p1 ∈ H1 and p2 ∈ H2. If all affine diameters of K have the same
Minkowskian length, then K is said to be of constant Minkowskian width. A
Reuleaux triangle in a normed plane is defined as the intersection of three
discsD(pi, λ), i = 1, 2, 3, where pi ∈ C(pj , λ)∩C(pk, λ) for {i, j, k} = {1, 2, 3};
see Figure 1. The so-defined Reuleaux triangle is a body of constant width
λ (see [6], [16] and [21]), and we denote it by RT {p1, p2, p3;λ}. It should
be noticed that there exist also other ways to define a Reuleaux triangle for
normed planes; see, e.g., [18, §2.4].

The Minkowskian diameter diam K of a set K is defined by

diam K := sup {‖x− y‖ : x, y ∈ K} .
If K is a compact, convex set and p1, p2 ∈ bd K are such that ‖p1 − p2‖ =
diam K, then the segment [p1p2] is called a diametrical chord of K. Any
diametrical chord of K is also an affine diameter, but not vice versa; see [2,
Theorem 2, IV].

2. Preliminaries from Minkowski geometry

In this section we give some results from the geometry of normed planes
which are necessary for our considerations. The first statement is known as
the Monotonicity Lemma; see, e.g., [10] and [19, Proposition 31].

Proposition 2.1 (Monotonicity Lemma). Let p, q, r be different points in a
normed plane (X, ‖·‖) belonging to a circle C(x, λ) such that the center x does
not belong to the open half-plane bounded by the line 〈p, q〉 and containing
r. Then

‖p− q‖ ≥ ‖p− r‖.

Proposition 2.2 ([19, Lemma 13]). In a normed plane (X, ‖ · ‖), any two
circles C(p1, λ) and C(p2, λ) with ‖p1 − p2‖ ≤ 2λ have non-empty intersec-
tion.

Remark 2.3: It is easy to check that not all points of the intersection de-
scribed by Proposition 2.2 lie in the same open half-plane bounded by the
line 〈p1, p2〉.

Proposition 2.4 ([19, Lemma 5]). Let p, q, r be three collinear points in a
normed plane (X, ‖ · ‖) such that r lies strictly between p and q. Then, for
any point x ∈ X,

‖x− r‖ ≤ max{‖x− p‖, ‖x− q‖}.

Lemma 2.5. Let RT (p1, p2, p3;λ) be a Reuleaux triangle in a normed plane.
If x ∈ RT (p1, p2, p3;λ), then

RT (p1, p2, p3;λ) ⊂ D(x, λ).
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Proof. Let y ∈ RT (p1, p2, p3;λ). Since diam RT (p1, p2, p3;λ) = λ, we have

‖x− y‖ ≤ λ⇐⇒ y ∈ D(x, λ).

�

Lemma 2.6. In a normed plane (X, ‖ · ‖), let there be given three discs
D(xi, λ), i = 1, 2, 3, such that xi, xj ∈ D(xk, λ) for {i, j, k} = {1, 2, 3}. Then⋂3
i=1D(xi, λ) contains a Reuleaux triangle of width λ.

Proof. Let ‖x1−x2‖ = max{‖x1−x2‖, ‖x2−x3‖, ‖x3−x1‖} and x′2 ∈ [x1, x2〉
such that ‖x1−x′2‖ = λ. The intersection of the circles C(x1, λ) and C(x′2, λ)
is not empty, and not all points of this intersection lie in the same half-plane
with respect to the line 〈x1, x

′
2〉; see Proposition 2.2 and Remark 2.3. Let

x′3 ∈ C(x1, λ) ∩ C(x′2, λ) ∩HP(x1, x
′
2;x3);

see Figure 2. If we prove that x3 ∈ RT (x1, x
′
2, x
′
3;λ), then the statement of

the lemma follows from Lemma 2.5. If ‖x1 − x2‖ = µ, then

x3 ∈ D(x1, µ) ∩ D(x2, µ) ∩HP(x1, x2;x′3).

Consider the point x′′3 on [x1, x
′
3〉 such that ‖x1 − x′′3‖ = µ. Then x′′3 ∈

C(x1, µ) ∩ C(x2, µ), by Thales’ Theorem; see again Figure 2. Therefore

x3 ∈ conv{x1, x2, x
′′
3} ∪ conv arc{x2, x

′′
3;x1} ∪ conv arc{x′′3, x1;x2}.

If x3 ∈ conv{x1, x2, x
′′
3}, then x3 ∈ RT (x1, x

′
2, x
′
3;λ). Let now

x3 ∈ conv arc{x2, x
′′
3;x1} ∪ conv arc{x′′3, x1;x2}.

We will prove that

(2.1) conv arc{x2, x
′′
3;x1} ∪ conv arc{x′′3, x1;x2} ⊂ D(x1, λ) ∩ D(x′2, λ).

We omit the case λ = µ, which is obvious. Consider the homothety ϕ
mapping the circle C(x1, µ) onto the circle C(x1, λ). Clearly, if x is an ar-
bitrary point of arc{x2, x

′′
3;x1}, then x′ = ϕ(x) is a point belonging to

arc{x′2, x′3;x1}. Moreover, x is strictly between x1 and x′, i.e., x ∈ D(x1, λ).
On the other hand, Propositions 2.1 and 2.4 imply

‖x′2 − x‖ ≤ max{‖x′2 − x1‖, ‖x′2 − x′‖} = λ,

which means that x ∈ D(x′2, λ). Thus we have proved that

conv arc{x2, x
′′
3;x1} ⊂ D(x1, λ) ∩ D(x′2, λ).

In order to prove that arc{x′′3, x1;x2} also belongs to D(x1, λ) ∩ D(x′2, λ),
we consider the homothety ψ mapping C(x2, µ) onto C(x′2, λ). It is easy to
check that the center of ψ is the point

(2.2) s =
λ

λ− µ
x2 −

µ

λ− µ
x′2.

Since λ
λ−µ > 1, the point s lies on the opposite ray of [x2, x

′
2〉. By (2.2) we

get
‖s− x2‖ =

µ

λ− µ
‖x2 − x′2‖ = µ,
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Figure 2: Proof of Lemma 2.6.

i.e., s ≡ x1. If y ∈ arc{x′′3, x1;x2} and ψ(y) = y′, then y′ ∈ C(x′2, λ) and y lies
strictly between x1 and y′, yielding y ∈ D(x1, λ). Besides this, Proposition
2.4 implies

‖x′2 − y‖ ≤ max{‖x′2 − x1‖, ‖x′2 − y′‖} = λ.

Thus the inclusion (2.1) is proved and x3 ∈ D(x1, λ)∩D(x′2, λ). So it remains
to show that if

x3 ∈ conv arc{x2, x
′′
3;x1} ∪ conv arc{x′′3, x1;x2},

then x3 ∈ D(x′3, λ). If x3 ∈ conv arc{x2, x
′′
3;x1} and [x1, x3〉 ∩ C(x1, λ) =

{x?3}, then x3 is strictly between x1 and x?3. Thus, by Proposition 2.4 and
the Monotonicity Lemma we have

‖x′3 − x3‖ ≤ max{‖x′3 − x1‖, ‖x′3 − x?3‖} = λ.

In the same way, we can prove that

‖x′3 − x3‖ ≤ λ,
in the case x3 ∈ conv arc{x′′3, x1;x2}. �

The next statement, due to Kelly [11] and Eggleston [9], gives a charac-
terization of bodies of constant Minkowskian width.

Theorem 2.7. Let K be a convex body in a Minkowski plane. Then K is of
constant Minkowskian width λ if and only if K coincides with the intersection
of all Minkowskian discs of radius λ, whose centers are in K.
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Remark 2.8: The property that a convex body K coincides with the intersec-
tion of all discs (or balls in a space of dimension ≥ 3) of radius diam K and
centered at K is known as the circular (spherical) intersection property. In
the Euclidean space En, the property of constant width and the spherical in-
tersection property are equivalent; see [9]. But in an n-dimentional normed
space they are only equivalent in the case n = 2, i.e., for n ≥ 3, Theorem 2.7
is no longer true; see [18, §2.6]. For every n-dimensional Minkowski space
we have the spherical intersection property of a convex body K is equivalent
to the fact that K is complete (i.e., it does not have a proper subset of the
same diameter); see again [9] and [18, Theorem 6].

Proposition 2.9 ([19, Proposition 21]). In a normed plane, let there be
given a circle C(x, λ) and C(x′, λ′) be its homothetic copy with respect to a
positive homothety ϕ. Then C(x, λ) ∩ C(x′, λ′) is a union of two segments
[p1, p

′
1] and [p2, p

′
2], each of which may be a point or empty. Let both these

segments be non-empty, qi ∈ [pi, p′i] and ri = ϕ−1(qi), r′i = ϕ(qi), for i = 1, 2.
If γ1 (γ2) is that arc of C(x, λ) with endpoints q1 and q2 which lies on the
same side (opposite side) of 〈q1, q2〉 as r1 and γ′1 (γ′2) is determined in the
same way for C(x′, λ′), then

γ2 ⊆ conv γ′1 and γ′2 ⊆ conv γ1.

Remark 2.10: Proposition 2.9 holds also if C(x′, λ′) is a translate of C(x, λ);
see [19, Proposition 22].

Lemma 2.11. In a normed plane (X, ‖·‖), let there be given a disc D(x, λ0)
and two points p, q belonging to D(x, λ0). Then every short arc of a circle
with radius λ > λ0 and endpoints p and q also belongs to D(x, λ0).

Proof. By Proposition 2.1 we have that

‖p− q‖ ≤ 2λ0.

Thus Proposition 2.2 implies that for any λ > λ0 there exists a circle C(y, λ)
with y 6= x passing through p and q. Moveover, not all points of C(y, λ)
belong to D(x, λ0). Indeed, if the opposite ray of [y, x〉 intersects C(y, λ) in
y0, then

‖x− y0‖ = ‖x− y‖+ λ > λ0.

Thus, by Jordan’s curve theorem we have that

C(x, λ0) ∩ C(y, λ) 6= ∅.
According to Proposition 2.9 this intersection consists of two segments, each
of them possibly degenerate or empty. If C(x, λ0) ∩ C(y, λ) consists of only
one segment S (see Figure 3(a)), then p and q cannot be interior with respect
to C(x, λ0) and they have to belong to S. Therefore the arc of C(y, λ) with
endpoints p and q belongs to D(x, λ0). Let now C(x, λ0) ∩ C(y, λ) consist
of two non-empty segments S1 and S2, possibly degenerate. If p, q ∈ S1 or
p, q ∈ S2, then the proof is done. Consider the case p ∈ S1 and q ∈ S2

(see Figure 3(b)). Let ϕ be the homothety mapping C(x, λ0) onto C(y, λ)
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(a) The intersection consists of only
one segment.

(b) The intersection consists of two
segments S1 and S2, possibly degen-
erate, and p ∈ S1 and q ∈ S2.

Figure 3

and ϕ({p, q}) = {p′, q′}. Assume that y lies in the half-plane with respect
to 〈p, q〉 which does not contain p′ and q′. Then the Monotonicity Lemma
implies

‖p− q‖ ≥ ‖p− q′‖ ≥ ‖p′ − q′‖,
contradicting the fact that λ0 < λ. Therefore the short arc of C(y, λ) with
endpoints p and q is that which does not contain p′ and q′, and according
to Proposition 2.9 it belongs to D(x, λ).

In order to complete the proof, it remains to consider the case that at
least one of p and q, say p, is interior with respect to C(x, λ0); see Figure 4.
Let S1 = [p1, p2] and S2 = [q1, q2], such that p2, p1, p, q, q1, q2 are successive
on C(y, λ). Note that it is possible that p2 ≡ p1, or q ≡ q1, or q1 ≡ q2, or
q ≡ q1 ≡ q2. The inclusion arc(p, q; y) ⊂ D(x, λ0) can be proved as in the
above case. �

Figure 4: The point p is interior with respect to C(x, λ0).
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Lemma 2.12. In a strictly convex normed plane (X, ‖ ·‖), let there be given
a disc D(x, λ0) and two points p, q belonging to D(x, λ0). Then every short
arc of a circle with radius λ ≥ λ0 and endpoints p and q also belongs to
D(x, λ0).

Proof. In view of Lemma 2.11 we need to prove the statement only for
λ = λ0. We omit the trivial case that p and q are opposite in C(x, λ0).
Let C(y, λ0) be a circle through p and q. Note that, except for C(x, λ0),
there exists exactly one circle of radius λ0 passing through p and q; see [23,
p. 104]. Since in a strictly convex normed plane two circles intersect in at
most two points ([19, Proposition 14]), we have that C(x, λ0) and C(y, λ0)
intersect in exactly two points p1 and q1. Consider the points

p2 = p1 + (y − x) and q2 = q1 + (y − x)

on C(y, λ0); see Figure 5. Since y is the intersection point of the diagonals

Figure 5: The intersection of two circles in a strictly convex normed plane.

of the parallelogram with vertices p1, p2, q2, q1, the short arc of C(y, λ0) with
endpoints p1 and q1 does not contain the points p2 and q2. Thus, by Remark
2.10 we get that this short arc belongs to D(x, λ0). �

Remark 2.13: Figure 6 shows that Lemma 2.12 is not true in a normed plane
which is not strictly convex.

Remark 2.14: In n-dimensional Euclidean space En, Lemma 2.12 also holds
for λ = λ0. Moreover, if K is a complete body of diameter λ0 in En, then it
contains every short circular arc of radius λ0 joining two of its points ([24,
p. 373, Theorem 7.6.4]). By our Remark 2.8 and Lemmas 2.11 and 2.12, we
obtain that any complete body of diameter λ0 in a normed plane contains
every short circular arc of radius λ > λ0. If, in addition, the plane is strictly
convex then K contains every short circular arc of radius λ ≥ λ0.
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Figure 6: A counterexample of Lemma 2.12 in a non-strictly convex normed
plane.

3. The main result and some corollaries

In order to prove the main result, we also need the following generalization
of Helly’s theorem; see, e.g., [12] and [7, Theorem 1].

Lemma 3.1 (A generalization of Helly’s theorem). Let P be a fixed compact,
convex set in the plane and F be a family of compact, convex sets having
the property that each three or less members of F have a translate of P in
common. Then all the members of F have a translate of P in common.

If ψ is an isometry in a normed plane (X, ‖ · ‖) preserving the orientation
of X and K is a point set in X, then ψ(K) is called a congruent copy of
K. It should be noticed that the only maps of X that are isometries with
respect to all norms are translations, reflections with respect to a point, and
the identity map; see [1] and [17]. But there exist normed planes (e.g., the
Euclidean plane), where the group of isometries is richer.

Theorem 3.2. In a Minkowski plane, let there be given a compact, convex
set P such that every congruent copy of P can be covered by a translate of
any Reuleaux triangle of Minkowskian width λ. Then each congruent copy of
P can be covered by a translate of any convex body of constant Minkowskian
width λ.

Proof. Let K be an arbitrary convex body of constant Minkowskian width
λ and x1, x2, x3 be three arbitrary points of K. Then

⋂3
i=1D(xi, λ) contains

a Reuleaux triangle RT of width λ, see Lemma 2.6. By the assumption of
the theorem there exists a translate P ′ of any congruent copy of P such that
P ′ ⊆ RT . Therefore, by Lemma 3.1, all discs of radius λ centered at K have
a translate of P in common. Since K is of constant Minkowskian width, i.e.,
K =

⋂
x∈KD(x, λ) by Theorem 2.7, we conclude that K contains a translate

of any congruent copy of P, and the proof is done. �

The next statement can be obtained as an elementary corollary of Theo-
rem 3.2.
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Corollary 3.3. In a Minkowski plane, let there be given a finite point set
P such that every congruent copy of P can be covered by a translate of any
Reuleaux triangle of Minkowskian width λ. Then any congruent copy of the
convex hull of P can be covered by a translate of any convex body of constant
Minkowskian width λ.

Under the same assumptions as in Corollary 3.3 we are even able to state
that something more than conv P can be covered by a translate of K. In
order to determine this “something more,” we need some preliminaries.

In a normed plane (X, ‖·‖), let there be given two different points p and q.
For each λ ≥ ‖p−q‖2 there exist at least two circles of radius λ passing through
p and q; see Proposition 2.2 and Remark 2.3. The union of all short arcs of
the circles through p and q with radii at least λ is called the λ-spindle of p
and q, and it is denoted by spλ[p, q]. The union of all short arcs of the circles
through p and q with radii strictly larger than λ is called the open λ-spindle
of p and q. We will use the notation spλ(p, q). A set P ⊂ X is λ-spindle
convex if for any p, q ∈ P we have spλ[p, q] ⊆ P. We define the λ-spindle
convex hull of P, denoted by sp convλ[P], as the intersection of all λ-spindle
convex sets which contain P. If for any p, q ∈ P the set P also contains the
open λ-spindle of p and q, we say that P is open λ-spindle convex. The open
λ-spindle convex hull sp convλ(P) of a set P is defined as the intersection of
all open λ-spindle convex sets containing P. The notion of spindle convexity
in a normed plane, being in addition strictly convex and smooth, appeared
in [20], called there “Überkonvexität.” Our definition refers to all normed
planes, but it is not our aim here to study spindle convexity in an arbitrary
normed plane. We give only one property (see Proposition 3.4) related to
this notion in order to prove that under the assumptions of Corollary 3.3
not only the convex hull of P can be covered by a translate of K, but also its
λ-spindle convex hull. Note also that the convex hull of any set of diameter
2λ is contained in the λ-spindle convex hull of this set. The notion of spindle
convexity in Euclidean space is also investigated in [4], [14], and [22].

Proposition 3.4. Every disc of radius λ in a normed plane is open λ-
spindle convex. If the plane is strictly convex, then it is λ-spindle convex.

Proof. This proposition follows immediately from Lemmas 2.11 and 2.12.
�

The conditions in the next corollary are the same as in Corollary 3.3, but
the conclusion is stronger.

Corollary 3.5. In a Minkowski plane, let there be given a finite point set
P such that every congruent copy of P can be covered by a translate of any
Reuleaux triangle of Minkowskian width λ. Then any congruent copy of the
open λ-spindle convex hull of P can be covered by a translate of any convex
body K of constant Minkowskian width λ. If the plane is strictly convex,
then any congruent copy of the λ-spindle convex hull of P can be covered by
a translate of K.
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Proof. We begin by assuming that P can be covered by the Realeaux triangle
RT (p1, p2, p3;λ), i.e.,

P ⊆
3⋂
i=1

D(pi, λ).

Since every disc of radius λ is open λ-spindle convex (and λ-spindle convex
if the plane is strictly convex), we have

sp convλ(P) ⊆ D(pi, λ)
(

sp convλ[P] ⊆ D(pi, λ)
)

for each i = 1, 2, 3. Thus the desired statement follows from Theorem 3.2.
�
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