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ADJUSTING A CONJECTURE OF ERDŐS

WALTER CARNIELLI AND PIETRO K. CAROLINO

Abstract. We investigate a conjecture of Paul Erdős, the last unsolved
problem among those proposed in his landmark paper [2]. The conjec-
ture states that there exists an absolute constant C > 0 such that, if
v1, . . . , vn are unit vectors in a Hilbert space, then at least C 2n

n
of all

ε ∈ {−1, 1}n are such that |
Pn

i=1 εivi |≤ 1.
We disprove the conjecture. For Hilbert spaces of dimension d >

2, the counterexample is quite strong, and implies that a substantial
weakening of the conjecture is necessary. However, for d = 2, only a
minor modification is necessary, and it seems to us that it remains a
hard problem, worthy of Erdős.

We prove some weaker related results that shed some light on the
hardness of the problem.

1. Introduction

In a 1945 paper [2], Paul Erdős improves on an inequality that Littlewood
and Offord had formulated in order to deal with the problem of counting real
roots of random real polynomials. Stripped of the details of their particular
application, the inequality of Littlewood-Offord seeks to answer the following
question. Given n complex numbers z1, . . . , zn, each of norm greater than
1, consider the 2n possible sums

∑n
i=1 εizi, where each ε1 is either −1 or 1

(we refer to these as ±-sums). What is the largest number of them that can
lie on a closed disk of radius 1?

The bound they obtained was of the form O(2n log n/
√
n), and it was

enough for their purposes. However, the problem is combinatorially inter-
esting in its own right, and Erdős generalized it from complex numbers
to vectors in an arbitrary inner product space. His first result was an
exact bound of the form

(
n
bn/2c

)
for the dimension d = 1 case, which he

solved by applying Sperner’s theorem on families of subsets of {1, . . . , n},
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none of which is contained in any other. He used this result to establish
an O(2n/

√
n) bound in dimension two, and conjectured that this—in fact,(

n
bn/2c

)
—is best possible in all dimensions. This conjecture initiated a series

of papers by Katona, Kleitman and others; Katona settled the d = 2 case
in [3] by an ingenious generalization of Sperner’s theorem, and Kleitman
solved the general case in [4] by an inductive argument. Somewhat later,
Bollobás (cf. [1]) also found a proof for general d. Both of the general proofs
work for arbitrary normed spaces, not only inner product spaces.

The question of how many ±-sums of n vectors can lie in sets of small
diameter became known as the Littlewood-Offord problem. The converse
question—given that many±-sums lie in a set of small diameter, what can be
said about the original n vectors—became known as the inverse Littlewood-
Offord problem. Techniques devised to deal with both problems still find
major applications in combinatorics and random matrix theory (see [5]).

However, Erdős’s paper ends with a conjecture that seems to have received
little attention, which we will call the reverse Littlewood-Offord problem
(since the other *verse names are taken). The question is as follows. Does
there exist an absolute constant C > 0 such that, if v1, . . . , vn are unit
vectors in an inner product space, then at least C 2n

n of all ε ∈ {−1, 1}n
are such that |

∑n
i=1 εivi |≤ 1? In asymptotic notation: is the number of

±-sums lying in the unit ball, centered at the origin, Ω(2n/n)?
We call attention to the fact that ±-sums are counted “with multiplicity,”

that is, we are interested in how many coefficient assignments ε ∈ {−1, 1}n
make the ±-sums small. We do not count how many distinct vectors of small
norm actually arise as ±-sums, since it is easy to give examples where that
number is just 1 or 2 (e.g. take v1 = · · · = vn). Thus, throughout the paper,
expressions such as “the number of ±-sums that lie in X” will always refer
to the number of elements ε ∈ {−1, 1}n such that

∑n
i=1 εivi lies in X.

2. Counterexamples

Our family of counterexamples is remarkably simple in construction. The
idea underlying all of them is the following trivial result.

Lemma 1. If n is odd and ε1, . . . , εn ∈ {−1, 1}, then ε1 + · · · + εn is odd,
and therefore | ε1 + · · ·+ εn |≥ 1.

For concreteness, let us work in Rd with euclidean norm; the arguments
are the same for any real Hilbert space of dimension d. Let ê1, . . . , êd be
vectors in any orthonormal basis, for instance the canonical basis. Let
m1, . . . ,md be odd numbers, and choose a set of n = m1 + · · ·+md unit vec-
tors v1, . . . , vn consisting of m1 copies of ê1,m2 copies of ê2, . . . ,md copies
of êd. The next lemma shows that all ±-sums of the vi are “far” from the
origin.

Lemma 2. If vi, . . . , vn are defined as above, then all their ±-sums have
norm at least

√
d.
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Proof. Consider the j-th coordinate of an arbitrary ±-sum s =
∑n

i=1 εivi.
Only the mj copies of the vector êj contribute, and each adds −1 or +1.
Since each mj is odd, Lemma 1 says that every coordinate of s has absolute
value at least 1. Therefore, the euclidean norm of s is at least

√
d. �

From Lemma 2 it follows that, in dimensions d > 1, it is possible to
find arbitrarily large families of vectors such that none of their ±-sums lie
in the unit ball centered at the origin. The counterexample motivates us
to reformulate the conjecture as follows: for any n unit vectors in a d-
dimensional Hilbert space, the number of their ±-sums that lie in a ball of
radius

√
d, centered at the origin, is Ω(2n/n). However, this conjecture fails

dramatically in dimensions d > 2, as the next proposition shows.

Proposition 3. For each dimension d ≥ 1, there are arbitrarily large n such
that it is possible to choose unit vectors v1, . . . , vn ∈ Rd with the property
that only O(2n/nd/2) of their ±-sums have norm

√
d, and none have smaller

norm.

Proof. The argument is simply a special case of the construction in Lemma 2,
and a quantitative estimate of it. Let m be an odd number, and let n = dm.
Choose vectors v1, . . . , vn from an orthonormal basis as before, but now the
same number m of each êj ; again, no ±-sum will have norm less than

√
d.

To estimate how many have norm exactly equal to
√
d we notice that any

±-sum s such that | s | =
√
d must have all its coordinates equal to either

−1 or 1. Looking at each coordinate separately, we reduce the problem to
estimating how many ±-sums of m copies of the number 1 yield either −1
or 1. An easy combinatorial argument shows that exactly

(
m
bm/2c

)
+
(

m
bm/2c

)
of these sums lie in {−1, 1}, and Stirling’s approximation of the binomial
coefficients establishes that this quantity is O(2m/

√
m). Multiplying this

bound for all d coordinates, we obtain that O(2dm/md/2) of the ±sums of
v1, . . . , vn have norm

√
d. Since 2dm/md/2 = dd/2 · 2n/nd/2 and we regard

the dimension as fixed, this gives the O(2n/nd/2) bound claimed. �

Hence, for d > 2, there are a lot less ±-sums of norm at most
√
d than

Ω(2n/n). In fact, a straightforward extension of the quantitative estimate
above shows that, for d > 2, there is no constant Rd independent of n (but
possibly depending on d) such that Ω(2n/n) ±-sums have norm at most Rd.
These considerations lead us to make the following adjusted conjecture.

Conjecture 4. For each integer d ≥ 1, there is a constant Cd > 0 such that,
if H is a real Hilbert space of dimension d and v1, . . . , vn are unit vectors in
H, then at least Cd 2n

nd/2 of their ±-sums have norm at most
√
d.

The only case where the estimate Ω(2n/n) is preserved is dimension d = 2,
i.e. the plane. This case already seems hard enough with the new norm
bound of

√
d. A small technical remark may be of interest: in dimension

two, the construction in Proposition 3 forces the number n of vectors in a
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counterexample to the norm bound of 1 to be even. We do not know whether
the 1-bound holds if n is required to be odd.

3. Positive Results

In this section we obtain some results on the distribution of ±-sums in
dimension two, weaker than both Erdős’s original conjecture and our own.
We do so mainly to illustrate where straightforward attempts fail, and why
some new ideas may be needed.

Definition 5. Let H be any real vector space, and w1, . . . , wN ∈ H. We
define the average of the wi to be the vector µ = (w1 + · · ·+wN )/N . If H
is also an inner product space, define their variance σ2 to be the (usual)
average of the numbers | wi − µ |2.

The main point of Definition 5 is that it allows us to formulate a version
of Chebyshev’s inequality in general inner product spaces.

Lemma 6. If w1, . . . , wN are vectors in an inner product space, with average
µ and variance σ2, then, for every k > 0, less than N/k2 of the wi are at a
distance greater than kσ from µ.

Proof. Suppose that w1, . . . , wM are at a distance greater than kσ from µ,
where M ≥ N/k2; this means that | wi − µ |2 > k2σ2 for N/k2 of the wi.
Therefore, the average of all | wi−µ |2 is greater than (N/k2)·(k2σ2)/N = σ2,
a contradiction. �

We will apply Lemma 6 to the set of all ±-sums of n unit vectors; this
will be made possible by the fact that the high symmetry of this set of sums
makes its average and variance very easy to calculate.

Lemma 7. Let v1, . . . , vn be unit vectors in an inner product space H, put
N = 2n, and let w1, . . . , wN be all ±-sums of the vi. Then the average of
the wi is 0, and their variance is n.

Proof. From the definition of ±-sums it is easy to see that, if w is a ±-sum
of some v1, . . . , vn, then so is −w. Thus the sum of all ±-sums is 0, and so
is their average.

Therefore the variance of w1, . . . , wN is simply the numerical average of
| w1 |2, . . . , | wN |2, which we calculate as follows:

N∑
i=1

〈wi, wi〉 =
∑

ε∈{−1,1}n

〈
n∑
i=1

εivi,

n∑
i=1

εivi

〉

=
∑

ε∈{−1,1}n

n∑
i=1

n∑
j=1

εiεj 〈vi, vj〉 =
n∑
i=1

n∑
j=1

 ∑
ε∈{−1,1}n

εiεj 〈vi, vj〉

 .
Now, for each fixed pair (i, j) there are two possibilities. If i 6= j, then

summing εiεj 〈vi, vj〉 over all ε ∈ {−1, 1}n gives 0: for each i, the map
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ri : {−1, 1}n → {−1, 1}n, which reverses the sign of the i-th coordinate and
leaves the others unchanged, sends εiεj 〈vi, vj〉 to −εiεj 〈vi, vj〉, and so all
these terms cancel out. If i = j, then εiεj 〈vi, vj〉 reduces to ε2i | vi |2, which
is simply 1; the last sum is then

∑n
i=1

∑
ε∈{−1,1}n 1 = nN , and the average

of | w1 |2, . . . , | wN |2 is n. �

Now we straightforwardly apply Lemma 6 to the ±-sums of v1, . . . , vn
with (say) k = 2, and discover that at most 2n/4 of these sums have norm
at least 2

√
n. In other words, at least 3 · 2n/4 of the sums have norm less

than 2
√
n. This shows that, even though the ±-sum of n unit vectors can

in principle have norm as large as n, most of the time there is a substantial
amount of “cancellation,” and the norm stays below the much smaller bound
of 2
√
n.

We can use this concentration effect in a weak version of Conjecture 4.

Proposition 8. For each integer d ≥ 1 there exists a constant Cd > 0 with
the following property. If v1, . . . , vn are unit vectors in an inner product
space H of dimension d, then there exists a ball of radius

√
d and center no

farther than 2
√
n from the origin, such that at least Cd 2n

nd/2 of the ±-sums
of v1, . . . , vn lie in it.

Proof. Let v1, . . . , vn be unit vectors in the space H, pick any ε > 0, and
let B,Bε be balls centered at the origin, with radii 2

√
n and (2 − ε)

√
n,

respectively. Another application of Lemma 6 shows that at most 2n/(2−ε)2
of the ±-sums of v1, . . . , vn lie outside Bε, thus at least 2n(1− 1/(2− ε)2) of
them lie in Bε. Divide B into disjoint cubes, with sides of length 2 parallel to
the coordinate axes. Since the volume of B is Kd(2

√
n)d for some constant

Kd (depending only on the dimension) and each cube has volume 2d, then
there are at most Kd(2

√
n)d/2d = Kdn

d/2 cubes entirely inside B. For fixed
and large enough n, the cubes entirely contained in B will cover Bε, and
hence also the ±-sums that lie in it. It follows that at least one of the cubes,
Q, contains at least Cd 2n

nd/2 of the sums, for Cd = (1− 1/(2− ε)2)/Kd. Now
we take the ball of radius

√
d centered at the same point as Q. It properly

contains Q, so we are done. �

Thus, we can find a small ball, relatively close to the origin, with many
sums in it. The full conjecture states that such a ball can be taken at the
origin. The proof of Proposition 8 is a simple volume argument.

4. Conclusions

Roughly speaking, the main challenge in Erdős’s conjecture is to estab-
lish fine grained control over some random distribution. Most of the tech-
niques used today in Probabilistic Combinatorics—a field founded by Erdős
himself—are only able to yield information about facts that occur “a con-
stant fraction” of the time, and do not adapt well to situations where this
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fraction depends on the instance of the problem (unless specific probability
distributions are assumed).

Let us give a concrete example, focusing on dimension two. Lemma 6,
applied to the ensemble of ±-sums, says that at least 2n(1 − 1/k2) of all
sums have norm less than k

√
n; this is only useful information if k > 1,

otherwise it would be the trivial statement that less than at least 0 of the
sums have norm less than

√
n. Taking k > 1 independent of n, as we did

in Proposition 8, we managed to get some not entirely obvious bounds, but
always with “rough” control on the position of the sums, at scales around√
n. If we attempt to improve this by letting k depend on n, so as to obtain

control at scales around 1, we are forced to make k ≈ 2/
√
n, and we get the

nonsensical statement that at least 2n(1−n/2)—a negative number—of the
sums have norm less than 2.

This is a recurring theme in combinatorics. Some standard probabilistic
inequalities can be used to show that, beyond 2

√
n, the density of the sums

decreases square-exponentially (i.e. like a Gaussian distribution), but are
powerless to examine the fine-scale behavior near the peak of the distribution
(the origin). It seems likely that more sophisticated methods are necessary
to completely solve Erdős’s problem.
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