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PARTIALLY CRITICAL INDECOMPOSABLE GRAPHS

ANDREW BREINER, JITENDER DEOGUN, AND PIERRE ILLE

Abstract. Given a graph G = (V, E), with each subset X of V is as-
sociated the subgraph G(X) of G induced by X. A subset I of V is an
interval of G provided that for any a, b ∈ I and x ∈ V \ I, {a, x} ∈ E if
and only if {b, x} ∈ E. For example, ∅, {x}, where x ∈ V , and V are
intervals of G called trivial intervals. A graph is indecomposable if all its
intervals are trivial; otherwise, it is decomposable. Given an indecom-
posable graph G = (V, E), consider a proper subset X of V such that
|X| ≥ 4 and G(X) is indecomposable. The graph G is critical according
to G(X) if for every x ∈ V \ X, G(V \ {x}) is decomposable. A graph
is partially critical if it is critical according to one of its indecomposable
subgraphs containing at least 4 vertices. In this paper, we characterize
the partially critical graphs.

1. Definitions and notations

A graph G is defined by a finite and nonempty set V of vertices and by
a family E of pairs of vertices called edges. Such a graph is denoted by
(V,E). With each nonempty subset X of V associate the subgraph G(X) =
(X, {{x, y} : {x, y} ∈ E;x, y ∈ X}) of G induced by X. For convenience,
given X ⊆ V , G(V \X) is also denoted by G−X and G−{x} by G−x for
x ∈ V .

For instance, given a set V , (V, ∅) is the empty graph on V whereas
(V, {{x, y};x 6= y ∈ V }) is the complete graph. Let G = (V,E) be a graph,
and consider a partition p of V . The graph G is multipartite by p if for every
M ∈ p, G(M) is empty. It is bipartite when |p| = 2.

Given graphs G = (V,E) and G′ = (V ′, E′), a bijection f from V onto V ′

is an isomorphism from G onto G′ provided that for any x, y ∈ V , {x, y} ∈ E
if and only if {f(x), f(y)} ∈ E′. Two graphs are then said to be isomorphic
if there exists an isomorphism from one onto the other. Given a graph G, an
isomorphism from G onto itself is called an automorphism of G. The family
of all the automorphisms of G constitutes a group, called the automorphism
group of G and denoted by Aut(G).
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With each graph G = (V,E) associate its complement G = (V,E) defined
as follows: given x 6= y ∈ V , {x, y} ∈ E if {x, y} 6∈ E.

Given a graph G = (V,E), we define an equivalence relation C on V in the
following way. For any x 6= y ∈ V , xCy if there are vertices x = x0, . . . , xn =
y such that {xi, xi+1} ∈ E for 0 ≤ i ≤ n − 1. The equivalence classes of
C are called the connected components of G. A vertex x of G is isolated if
{x} constitutes a connected component of G. The graph G is connected if
V is the unique connected component of G. For example, given n ≥ 2, the
path on n vertices Pn = ({0, . . . , n− 1}, {{i, j} : |i− j| = 1}i,j∈{0,...,n−1}) is
connected.

A perfect matching (called simply matching in this paper) of a graph
G = (V,E) is a subset of E which realizes a partition of V . Clearly, if a
graph G = (V,E) admits a matching, then |V | is even. For instance, the
family of pairs {{2i, 2i + 1}; 0 ≤ i ≤ n/2− 1} is the unique matching of Pn

when n is even.
Given a graph G = (V,E), a subset I of V is an interval [4, 5] of G

provided that for all a, b ∈ I and x ∈ V \ I, {a, x} ∈ E if and only if
{b, x} ∈ E. For example, ∅, {x}, where x ∈ V , and V are intervals of G
called trivial intervals. A graph is indecomposable [4, 5] if all its intervals
are trivial; otherwise, it is decomposable. Given a graph G, since G and
G share the same intervals, we obtain that G is indecomposable if and
only if G is indecomposable. Note that the connected components of a
graph are intervals, thus a non-connected graph with at least three vertices
is decomposable. Lastly, we recall that a graph (V,E), with |V | = 3, is
decomposable and that a graph (V,E), with |V | = 4, is indecomposable
if and only if it is isomorphic to P4. Furthermore, for every n ≥ 4, Pn is
indecomposable.

Given an indecomposable graph G = (V,E), with |V | ≥ 2, G is critical
[5] if for each vertex x of G, G−x is decomposable. For instance, the graph
G2n = ({0, . . . , 2n − 1}, E2n), shown in Figure 1, is critical for n ≥ 2, and
is defined as follows. For x, y ∈ {0, . . . , 2n − 1}, {x, y} ∈ E2n if there exist
i ≤ j ∈ {0, . . . , n− 1} such that {x, y} = {2i, 2j + 1}.

Now, we introduce the following weakening of the criticality. Given an
indecomposable graph G = (V,E), let X be a proper subset of V such
that |X| ≥ 4 and G(X) is indecomposable. The graph G is called critical
according to G(X) (or X-critical [1]) if for every x ∈ V \ X, G − x is
decomposable. Moreover, a graph G = (V,E) is said to be partially critical
if there exists X ⊂ V such that |X| ≥ 4, G(X) is indecomposable and G is
critical according to G(X).

In this paper, we characterize the class of partially critical graphs. The
rest of the paper is organized as follows. In Section 2, we review relevant
properties of indecomposable graphs. In Section 3, we give two examples of
partially critical graphs. We introduce preliminary properties of partially
critical graphs in Section 4, and in Section 5, we present our main results.
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2. Preleminaries

In this section, we review relevant properties of indecomposable graphs.
We begin with the well known properties of the intervals of a graph. Then
we examine the indecomposable subgraphs of an indecomposable graph.
Finally, we recall the characterization of critical graphs [5].

Proposition 2.1. Let G = (V,E) be a graph.
(1) Given a nonempty subset W of V , if I is an interval of G, then

I ∩W is an interval of G(W ).
(2) If I and J are intervals of G, then I ∩ J is an interval of G.
(3) If I and J are intervals of G such that I ∩ J 6= ∅, then I ∪ J is an

interval of G.
(4) If I and J are intervals of G such that I \ J 6= ∅, then J \ I is an

interval of G.

We examine the indecomposable subgraphs of an indecomposable graph
in the next results.

Proposition 2.2 (Sumner [6]). Given a graph G = (V,E), with |V | ≥ 4, if
G is indecomposable, then there is a subset X of V such that |X| = 4, G(X)
is indecomposable and hence is isomorphic to P4.

To construct larger indecomposable subgraphs, we define the following
partition from any indecomposable subgraph.

Given a graph G = (V,E), let X be a proper subset of V such that
|X| ≥ 4 and G(X) is indecomposable. We consider the following subsets of
V \X.

• Ext(X) is the family of the elements x of V \X such that G(X∪{x})
is indecomposable;
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• [X] is the family of the elements x of V \X such that X is an interval
of G(X ∪ {x});

• For each u ∈ X, X(u) is the family of the elements x of V \X such
that {u, x} is an interval of G(X ∪ {x}).

The family {Ext(X), [X]} ∪ {X(u);u ∈ X} is denoted by pX . Further-
more, [X] is divided into X− and X+ as follows.

• X− is the set of the elements x of V \X such that for every y ∈ X,
{x, y} 6∈ E;

• X+ is the set of the elements x of V \X such that for every y ∈ X,
{x, y} ∈ E.

Similarly, for each u ∈ X, X(u) is divided into X−(u) and X+(u) as
follows.

• X−(u) is the set of the elements x of X(u) such that {u, x} 6∈ E;
• X+(u) is the set of the elements x of X(u) such that {u, x} ∈ E.

We then introduce the three families below.
• qX = {Ext(X), X−, X+} ∪ {X−(u), X+(u)}u∈X ;
• q−X = {X−} ∪ {X−(u);u ∈ X};
• q+

X = {X+} ∪ {X+(u);u ∈ X}.
The family pX is used as follows.

Lemma 2.3 (Ehrenfeucht and Rozenberg [2]). Given a graph G = (V,E),
let X be a proper subset of V such that |X| ≥ 4 and G(X) is indecompos-
able. The family pX realizes a partition of V \X. Moreover, the following
assertions are satisfied.

(1) Given x 6= y ∈ Ext(X), if G(X∪{x, y}) is decomposable, then {x, y}
is an interval of G(X ∪ {x, y}).

(2) Given x ∈ X(u) and y ∈ V \ (X ∪ X(u)), where u ∈ X, if G(X ∪
{x, y}) is decomposable, then {u, x} is an interval of G(X ∪ {x, y}).

(3) Given x ∈ [X] and y ∈ V \(X∪[X]), if G(X∪{x, y}) is decomposable,
then X ∪ {y} is an interval of G(X ∪ {x, y}).

Corollary 2.4 (Ehrenfeucht and Rozenberg [2]). Given a graph G = (V,E),
let X be a subset of V such that |X| ≥ 4 and G(X) is indecomposable. If G
is indecomposable and |V \X| ≥ 2, then there exist x 6= y ∈ V \X such that
G(X ∪ {x, y}) is indecomposable.

Given a graph G = (V,E), let X be a subset of V such that |X| ≥ 4,
|V \ X| ≥ 2 and G(X) is indecomposable. This corollary leads to the
definition of the graph GX = (V \X, EX) in the following manner. For any
x 6= y ∈ V \X, {x, y} ∈ EX if G(X ∪ {x, y}) is indecomposable.
Remark 2.5: Given a graph G = (V,E), let X be a subset of V such that
|X| ≥ 4, |V \ X| ≥ 2 and G(X) is indecomposable. Consider distinct
elements x and y of V \X. If x, y ∈ [X], then X is an interval of G(X∪{x, y}).
Given u ∈ X, if x, y ∈ X(u), then {u, x, y} is an interval of G(X ∪ {x, y}).
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Consequently, for each M ∈ pX \ {Ext(X)}, GX(M) is empty. In other
words, if Ext(X) = ∅, then GX is multipartite by pX .

Now, we study the intervals of GX .

Lemma 2.6. Given a graph G = (V,E), let X be a proper subset of V
such that |X| ≥ 4 and G(X) is indecomposable. If Ext(X) = ∅, then the
following two assertions hold.

(1) If I is an interval of G such that I ∩X = ∅, then I is an interval
of GX which is included in an element of qX .

(2) Given M ∈ pX and N ∈ qX such that N ⊆ M , if I is an interval of
GX such that I ⊆ N and if I is an interval of G(M), then I is an
interval of G.

Proof. Let I be an interval of G such that I ∩X = ∅. Given i 6= j ∈ I, we
have I∩(X∪{i, j}) = {i, j} is an interval of G(X∪{i, j}). Consequently, the
function, defined on X∪{i} by i 7→ j and k 7→ k for k ∈ X, is an isomorphism
from G(X ∪ {i}) onto G(X ∪ {j}). It follows from the definition of pX and
of qX that i and j belong to the same element of qX . Therefore, there exists
N ∈ qX such that I ⊆ N . The unique element of pX containing N is denoted
by M . By Remark 2.5, GX(M) is empty and thus I is an interval of GX(M).
Consequently, consider an element x of (V \X) \M . Firstly, assume that
M = X(u), where u ∈ X, and, for instance, that {u, x} ∈ E. By Lemma
2.3, for every i ∈ I, {i, x} ∈ E if and only if {i, x} 6∈ EX . Secondly, assume
that M = [X] and, for example, that N = X−. It follows from Lemma 2.3
that for every i ∈ I, {i, x} ∈ E if and only if {i, x} ∈ EX . Thus the first
assertion of the lemma follows.

Given M ∈ pX and N ∈ qX , N ⊆ M , let I be an interval of GX such that
I ⊆ N and I is an interval of G(M). Consider an element x of V \M . When
x ∈ (V \X) \M , we proceed in a way similar to the case of first assertion.
Consequently, assume that x ∈ X. If M = [X], then either I ⊆ X− or
I ⊆ X+. In both cases, I is an interval of G(I ∪ {x}). Lastly, assume that
M = X(u), where u ∈ X. As {u} ∪ X(u) is an interval of G(X ∪ X(u)),
I is an interval of G(I ∪ {x}) when x 6= u. When x = u, it is sufficient to
distinguish N = X−(u) and N = X+(u). �

To continue, we examine the isolated vertices of GX .

Lemma 2.7. Given a graph G = (V,E), let X be a proper subset of V such
that |X| ≥ 4 and G(X) is indecomposable.

(1) If I is an interval of G such that X ⊆ I, then the elements of V \ I
are isolated vertices of GX .

(2) Given u ∈ X, if I is an interval of G such that I ∩X = {u}, then
the elements of I \ {u} are isolated vertices of GX .

Consequently, if G admits a non trivial interval I such that I ∩X 6= ∅, then
GX possesses isolated vertices.
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Proof. Firstly, let I be an interval of G such that X ⊆ I. We have V \ I ⊆
[X]. Let x be an element of V \ I. For every y ∈ [X], X is an interval
of G(X ∪ {x, y}). Furthermore, for every y ∈ (V \ X) \ [X], y ∈ I and
hence I ∩ (X ∪{x, y}) = X ∪{y} is an interval of G(X ∪{x, y}). Therefore,
{x, y} 6∈ EX for every y ∈ (V \X) \ {x}.

Secondly, given u ∈ X, let I be an interval of G such that I ∩X = {u}.
We have I \ {u} ⊆ X(u). For every y ∈ X(u), {u, x, y} is an interval of
G(X ∪ {x, y}). Moreover, for every y ∈ (V \ X) \ X(u), y 6∈ I and thus
I ∩ (X ∪ {x, y}) = {u, x} is an interval of G(X ∪ {x, y}). It follows that for
every y ∈ (V \X) \ {x}, {x, y} 6∈ EX . �

Lastly, we recall the characterization of the critical graphs and some of
their properties.

Theorem 2.8 (Schmerl and Trotter [5]). Given G = (V,E), an indecom-
posable graph with |V | ≥ 2, G is critical if and only if G is isomorphic to
G2n or to G2n, where n ≥ 2.

Let G = (V,E) be a graph with |V | ≥ 3. The indecomposability graph of
G ([3]) is the graph Ind[G] defined on V as follows: given x 6= y ∈ V , {x, y}
is an edge of Ind[G] if G − {x, y} is indecomposable. An indecomposability
matching of G is a matching M of Ind[G] such that for every nonempty
subset N of M, G(∪N ) is indecomposable, where ∪N denotes the union
of the elements of N . Consider a subset X of V satisfying |X| ≥ 4, |V \
X| ≥ 2 and G(X) is indecomposable. An indecomposability matching of G
according to G(X) is a matching M of GX such that for every subset N of
M, G(X ∪ (∪N )) is indecomposable.

We use the following properties of the critical graph G2n.

Observation 2.9. Consider an integer n ≥ 2. The following assertions are
easy to verify.

(1) G2n is bipartite and

B(G2n) = {{2i; i ∈ {0, . . . , n− 1}}, {2i + 1; i ∈ {0, . . . , n− 1}}}
is the corresponding bipartition.

(2) Aut(G2n) = {Id{0,...,2n−1}, f2n}, where f2n denotes the permutation
of {0, . . . , 2n − 1} which interchanges i and (2n − 1) − i for i ∈
{0, . . . , 2n− 1}.

(3) For any distinct elements i and j of {0, . . . , 2n− 1}, if G2n − {i, j}
is not connected, then G2n − {i, j} admits isolated vertices.

(4) For every subset X of {0, . . . , 2n − 1}, with |X| ≥ 4, if G2n(X)
is indecomposable, then G2n(X) is critical and hence isomorphic to
G2m, where m = |X|/2. Furthermore, when n ≥ 3, consider a sub-
sequence i0 < · · · < ip−1 of {0, . . . , n− 1} with p ≥ 2. The subgraph
G2n({2i0, 2i0 +1, . . . , 2ip−1, 2ip−1 +1}) is isomorphic to G2p. It suf-
fices to consider the function defined on {2i0, 2i0+1, . . . , 2ip−1, 2ip−1+
1} by 2ij 7→ 2j and 2ij + 1 7→ 2j + 1 for j ∈ {0, . . . , p− 1}.
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(5) For every j ∈ {0, . . . , 2n − 1}, G2n − j admits a single non trivial
interval Ij determined by: I0 = {2, . . . , 2n−1}, I2n−1 = {0, . . . , 2n−
3} and Ij = {j − 1, j + 1} for 1 ≤ j ≤ 2n− 2.

(6) When n ≥ 3, we have Ind[G2n] = P2n so that {{2i, 2i + 1}; 0 ≤
i ≤ n − 1} is the unique matching of Ind[G2n]. It follows from
the fourth assertion that {{2i, 2i + 1}; 0 ≤ i ≤ n − 1} is the single
indecomposability matching of G2n.

Let G be a critical graph. Then by Theorem 2.8 there exists an iso-
morphism f from G onto G2n or G2n, where n ≥ 2. Since Aut(G2n) =
{Id{0,...,2n−1}, f2n} and since f2n interchanges {2i; i ∈ {0, . . . , n − 1}} and
{2i + 1; i ∈ {0, . . . , n− 1}}, the bipartition{

f−1 ({2i; i ∈ {0, . . . , n− 1}}) , f−1 ({2i + 1; i ∈ {0, . . . , n− 1}})
}

does not depend on the isomorphism f . It is denoted by B(G).
Given an indecomposable graph G = (V,E), let X be a proper subset

of V such that |X| ≥ 4 and G(X) is indecomposable. In this paper we
characterize the graph G that is critical according to G(X), by using the
partitions pX and qX of V \X together with the criticality of the subgraphs
of the graph GX induced by the connected components of GX .

3. Two examples

For our first example, as shown in Figure 2, we begin with the graph P5 de-
fined on X = {0, 1, 2, 3, 4}. Distinct elements x0, . . . , x2m−1 and y0, . . . , y2n−1,
where m,n ≥ 1, are added to X. We define the graph G = (V,E), where

V = X ∪ {x0, . . . , x2m−1} ∪ {y0, . . . , y2n−1}
and

E = {{0, 1}, {1, 2}, {2, 3}, {3, 4}}
∪ {{1, xi}; i ∈ {0, . . . , 2m− 1}}
∪ {{3, x2i+1}; i ∈ {0, . . . ,m− 1}}
∪ {{3, y2k}; k ∈ {0, . . . , n− 1}}
∪ {{x2i, x2j+1}; i ≤ j ∈ {0, . . . ,m− 1}}
∪ {{y2k, y2l+1}; k ≤ l ∈ {0, . . . , n− 1}}.

From our definition of G, we deduce the following assertions about the
structure of G.

• G(X) = P5;
• The function, defined on {0, . . . , 2m − 1}, that associates xi with

each i ∈ {0, . . . , 2m − 1}, realizes an isomorphism from G2m onto
G({x0, . . . , x2m−1});

• The function, defined on {0, . . . , 2n − 1}, that associates yk with
each k ∈ {0, . . . , 2n − 1}, realizes an isomorphism from G2n onto
G({y0, . . . , y2n−1});
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Figure 2. pX = q−X = {X−(0), X−(2), X−(4), X−} and
GX = G−X has two connected components.

• X−(0) = {x2i; i ∈ {0, . . . ,m− 1}};
• X−(2) = {x2i+1; i ∈ {0, . . . ,m− 1}};
• X−(4) = {y2k; k ∈ {0, . . . , n− 1}};
• X− = {y2k+1; k ∈ {0, . . . , n− 1}};
• pX = q−X = {X−(0), X−(2), X−(4), X−};
• GX = G−X.

Now, we want to show that the graph G is indecomposable and critical
according to G(X). We establish this in the following two claims.

Claim 3.1. The graph G is indecomposable.

Proof. Let I be an interval of G such that |I| ≥ 2. First, if I ∩ X = ∅,
then I is included in X−(0), X−(2), X−(4) or X−. Thus I would be a
non-trivial interval either of G({x0, . . . , x2m−1}) or of G({y0, . . . , y2n−1}),
which are indecomposable. Secondly, if I ∩X = {u}, then u ∈ {0, 2, 4} and
I\{u} ⊆ X−(u). However, given x ∈ I\{u}, there exists y ∈ V \(X∪X−(u))
such that {x, y} ∈ E, which is impossible because {u, y} 6∈ E. It follows that
X ⊆ I. If x ∈ V \I, then, by Proposition 2.1, I∩(X∪{x}) = X is an interval
of G(X ∪ {x}), that is, x ∈ [X]. Therefore, X−(0) ∪ X−(2) ∪ X−(4) ⊆ I.
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Given k ∈ {0, . . . , n− 1}, we have {y2k, y2k+1} ∈ E but {0, y2k+1} 6∈ E. As
0, y2k ∈ I, we obtain that y2k+1 ∈ I. Consequently, I = V . �

Claim 3.2. The graph G is critical according to G(X).

Proof. It suffices to observe the following.
(1) {2, x1} is an interval of G − x0 and {0, x2m−2} is an interval of

G− x2m−1;
(2) if m ≥ 2, then for 1 ≤ p ≤ 2m − 2, {xp−1, xp+1} is an interval of

G− xp;
(3) V \ {y0, y1} is an interval of G − y0 and {4, y2n−2} is an interval of

G− y2n−1;
(4) if n ≥ 2, then for 1 ≤ q ≤ 2n−2, {yq−1, yq+1} is an interval of G−yq.

�

For our second example, shown in Figure 3, we begin with the graph P4 de-
fined on X = {0, 1, 2, 3}. Distinct elements x0, . . . , x2m−1 and y0, . . . , y2n−1,
where m,n ≥ 1, are added to X. Thus, we define the graph G = (V,E),
where V = X ∪ {x0, . . . , x2m−1} ∪ {y0, . . . , y2n−1} and

E = {{0, 1}, {1, 2}, {2, 3}} ∪ {{1, x2i}; i ∈ {0, . . . ,m− 1}}
∪ {{1, y2k}; k ∈ {0, . . . , n− 1}}
∪ {{x2i, x2j+1}; i ≤ j ∈ {0, . . . ,m− 1}}
∪ {{y2k, y2l+1}; k ≤ l ∈ {0, . . . , n− 1}}.

The next assertions follow immediately:
• G(X) = P4;
• The function, defined on {0, . . . , 2m − 1}, that associates xi with

each i ∈ {0, . . . , 2m − 1}, realizes an isomorphism from G2m onto
G({x0, . . . , x2m−1});

• The function, defined on {0, . . . , 2n − 1}, that associates yk with
each k ∈ {0, . . . , 2n − 1}, realizes an isomorphism from G2n onto
G({y0, . . . , y2n−1});

• X−(0) = {x2i; i ∈ {0, . . . ,m− 1}} ∪ {y2k; k ∈ {0, . . . , n− 1}};
• X− = {x2i+1; i ∈ {0, . . . ,m− 1}} ∪ {y2k+1; k ∈ {0, . . . , n− 1}};
• pX = q−X = {X−(0), X−};
• GX = G−X.

In Claims 3.3 and 3.4 below, we prove that G is indecomposable and
critical according to G(X).

Claim 3.3. The graph G is indecomposable.

Proof. Let I be an interval of G such that |I| ≥ 2. First, if I ∩ X = ∅,
then I is included either in X−(0) or in X−. If I ⊆ X−(0), then, since
G({x0, . . . , x2m−1}) and G({y0, . . . , y2n−1}) are indecomposable, there exist
i ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , n − 1} such that I = {x2i, y2k}. This
is impossible because {x2i, x2i+1} ∈ E and {y2k, x2i+1} 6∈ E. Similarly, if
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Figure 3. pX = q−X = {X−(0), X−} and GX = G −X has
two connected components.

I ⊆ X−, then, since G({x0, . . . , x2m−1}) and G({y0, . . . , y2n−1}) are inde-
composable, there exist i ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , n − 1} such
that I = {x2i+1, y2k+1}. This is impossible because {x2i+1, x2i} ∈ E and
{y2k+1, x2i} 6∈ E. Secondly, if I ∩X = {u}, then u = 0 and I \{0} ⊆ X−(0).
However, given x ∈ I \ {0}, there exists y ∈ X− such that {x, y} ∈ E,
which is impossible because {0, y} 6∈ E. It follows that X ⊆ I. There-
fore, V \ I ⊆ [X] and thus X ∪ X−(0) ⊆ I. Given i ∈ {0, . . . ,m − 1}, we
have {x2i, x2i+1} ∈ E and {0, x2i+1} 6∈ E. As 0, x2i ∈ I, we obtain that
x2i+1 ∈ I. Consequently, {x0, . . . , x2m−1} ⊆ I. In the same manner, we
verify that {y0, . . . , y2n−1} ⊆ I. �

Claim 3.4. The graph G is critical according to G(X).

Proof. It suffices to observe the following.
(1) V \ {x0, x1} is an interval of G− x0 and {0, x2m−2} is an interval of

G− x2m−1;
(2) if m ≥ 2, then for 1 ≤ p ≤ 2m − 2, {xp−1, xp+1} is an interval of

G− xp;
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(3) V \ {y0, y1} is an interval of G − y0 and {0, y2n−2} is an interval of
G− y2n−1;

(4) if n ≥ 2, then for 1 ≤ q ≤ 2n−2, {yq−1, yq+1} is an interval of G−yq.
�

4. The first properties

In the section, we consider an indecomposable graph G = (V,E) and
a proper subset X of V such that |X| ≥ 4 and G(X) is indecomposable.
Moreover, we assume that G is critical according to G(X).

Lemma 4.1. For every proper subset Y of V which includes X, if G(Y )
is indecomposable, then |V \ Y | is even. In particular, |V \X| is even and
Ext(X) = ∅.

Proof. By applying Corollary 2.4 several times, we obtain G(Z) from G(Y )
such that Y ⊆ Z ⊂ V , G(Z) is indecomposable and either |V \Z| = 1 when
|V \ Y | is odd or |V \ Z| = 2 when |V \ Y | is even. �

It follows from Remark 2.5 that GX is multipartite by pX . The next
result is a simple consequence.

Proposition 4.2. For every subset X ⊂ Y ⊆ V , if G(Y ) is indecomposable,
then G(Y ) is critical according to G(X).

Proof. By the last lemma, |V \ Y | is even. Consequently, for all x ∈ Y \X,
|V \ (Y \ {x})| is odd and thus G(Y )− x is decomposable. �

Lemma 4.3. Given distinct elements a, b, c of V \X, if {a, b}, {a, c} ∈ EX ,
then {b, c} is an interval of G(X ∪ {a, b, c}) and hence there exists M ∈ qX

such that b, c ∈ M .

Proof. By the definition of GX = (V \X, EX), G(X ∪{a, b}) is indecompos-
able. By Lemma 4.1, c 6∈ Ext(Y ), where Y = X∪{a, b}. If c ∈ [Y ], that is, if
Y is an interval of G(Y ∪{c}), then Y ∩ (X ∪{a, c}) = X ∪{a} is an interval
of G(X ∪ {a, c}), which contradicts {a, c} ∈ EX . Therefore, there is u ∈ Y
such that c ∈ Y (u), that means, {u, c} is an interval of G(Y ∪ {c}). Since
G(X ∪ {a, c}) is indecomposable, {u, c} ∩ (X ∪ {a, c}) is a trivial interval of
G(X ∪ {a, c}) and thus u = b. �

Lemma 4.4. Given M,N ∈ pX , consider a ∈ M and b 6= c ∈ N such that
{a, b} ∈ EX and {a, c} 6∈ EX . Then the following two assertions hold.

(1) If N = [X], then X ∪ {a, b} is an interval of G(X ∪ {a, b, c}).
(2) If N = X(u), where u ∈ X, then {u, c} is an interval of G(X ∪

{a, b, c}).

Proof. As observed in the preceding proof, where Y = X ∪ {a, b}, G(Y )
is indecomposable and c 6∈ Ext(Y ). As {a, b} ∈ EX , it follows from Re-
mark 2.5 that M 6= N . If c ∈ Y (a), that is, if {a, c} is an interval of
G(X ∪ {a, b, c}), then a and c would belong to the same element of pX by
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Lemma 2.6. Therefore, c 6∈ Y (a). Furthermore, suppose that c ∈ Y (b)
or, equivalently, that {b, c} is an interval of G(X ∪ {a, b, c}). By Lemma
2.6 applied to G(X ∪ {a, b, c}), {b, c} would be an interval of GX({a, b, c}),
which is impossible because {a, b} ∈ EX and {a, c} 6∈ EX . It follows that
either c ∈ [Y ] or c ∈ Y (u), where u ∈ X. Clearly, we have [Y ] ⊆ [X] and
Y (u) ⊆ X(u) for every u ∈ X. Firstly, assume that N = [X]. Since pX is a
partition of V \X, c 6∈ X(u) and hence c 6∈ Y (u) for every u ∈ X. It follows
that c ∈ [Y ]. Secondly, assume that N = X(u), where u ∈ X. As c ∈ X(u),
c 6∈ [X] and thus c 6∈ [Y ]. Therefore, there is v ∈ X such that c ∈ Y (v).
Consequently, c ∈ X(v) and, as pX is a partition of V \X, u = v. �

Corollary 4.5. The graph GX has no isolated vertices.

Proof. The family of the isolated vertices of GX is denoted by W . Since
Ext(X) = ∅, it suffices to prove that V \ ([X] ∩ W ) is an interval of G
and {u} ∪ (W ∩X(u)) is an interval of G for each u ∈ X. First, we claim
that, given x ∈ [X] ∩W , X ∪ {y} is an interval of G(X ∪ {x, y}) for every
y ∈ (V \ X) \ ([X] ∩W ). Indeed, as x is isolated in GX , G(X ∪ {x, y}) is
decomposable. If y 6∈ [X], the claim follows from Lemma 2.3. Therefore, let
y ∈ [X] \W . As y 6∈ W , there is z ∈ V \X such that {y, z} ∈ EX . Since
x ∈ W , {x, z} 6∈ EX and the claim follows from Lemma 4.4. Secondly, we
claim that, given x ∈ W ∩X(u), {u, x} is an interval of G(X ∪ {x, y}) for
every y ∈ (V \X) \ (W ∩X(u)). Similar to our proof of the first claim, the
second claim follows from Lemma 2.3 when y ∈ (V \X) \X(u). Otherwise,
Lemma 4.4 can be used by considering an element z such that z ∈ V \ X
and {y, z} ∈ EX . �

Corollary 4.6. The partitions pX and qX coincide.

Proof. It is sufficient to show that X− = ∅ or X+ = ∅ and that for every
u ∈ X, X−(u) = ∅ or X+(u) = ∅. By contradiction, suppose firstly that
there are a ∈ X− and b ∈ X+. By Corollary 4.5, there exist c, d ∈ V \X such
that {a, c}, {b, d} ∈ EX . It follows from Lemma 4.3 that {a, d}, {b, c} 6∈ EX .
In particular, c 6= d. By Lemma 4.4 applied to a, b, c, X∪{a, c} is an interval
of G(X ∪ {a, b, c}) and, since b ∈ X+, {a, b} ∈ E. Similarly, by applying
Lemma 4.4 to a, b, d, we have X ∪ {b, d} is an interval of G(X ∪ {a, b, d})
and, since a ∈ X−, {a, b} 6∈ E. Secondly, suppose that for u ∈ X, there
exist a ∈ X−(u) and b ∈ X+(u). Again, consider c 6= d ∈ V \X such that
{a, c}, {b, d} ∈ EX and {a, d}, {b, c} 6∈ EX . We arrive at a contradiction
similar to first claim. Indeed, by Lemma 4.4 applied to a, b, c, {u, b} is an
interval of G(X ∪ {a, b, c}) and, since a ∈ X−(u), {a, b} 6∈ E. Again, by
Lemma 4.4 applied to a, b, d, {u, a} is an interval of G(X ∪ {a, b, d}) and,
since b ∈ X+(u), {a, b} ∈ E. �

Corollary 4.7. For every M ∈ q−X , G(M) is empty, and for every M ∈ q+
X ,

G(M) is complete.

Proof. By interchanging the graph G = (V,E) and its complement G =
(V,E), we only need to consider the case for M ∈ q−X . It suffices to establish
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that each connected component M ′ of G(M) is an interval of G. Clearly,
M ′ is an interval of G(M). Moreover, it follows from Corollary 4.6 that
M ∈ pX . Consequently, by Lemma 2.6, it is sufficient to show that M ′ is
an interval of GX . Since GX(M) is empty, M ′ is an interval of GX(M).
Therefore, consider an element x of (V \X) \M . As G(M ′) is connected,
it suffices to verify that for a, b ∈ M ′, with {a, b} ∈ E, {a, x} ∈ EX if and
only if {b, x} ∈ EX . Otherwise, there are a, b ∈ M ′ such that {a, b} ∈ E,
{a, x} ∈ EX and {b, x} 6∈ EX . A contradiction follows from Lemma 4.4.
That is, if M = X−, then X∪{a, x} would be an interval of G(X∪{a, b, x})
and thus {a, b} 6∈ E and if M = X−(u), where u ∈ X, then {u, b} would
be an interval of G(X ∪ {a, b, x}). This implies that {a, b} 6∈ E because
a ∈ X−(u). �

Discussion. It follows that G−X is entirely determined by pX and by GX .
More precisely, let a and b be distinct elements of V \ X. Denote by M
(resp. N) the element of pX which contains a (resp. b). It follows from
Corollary 4.6 that M,N ∈ qX . Consequently, if M = N , then Corollary 4.7
is used. Indeed, either M ∈ q−X and {a, b} 6∈ E or M ∈ q+

X and {a, b} ∈
E. Now, suppose that M 6= N and, for instance, that M = X− (resp.
M = X+). It follows that {a, b} ∈ E if and only if {a, b} ∈ EX (resp.
{a, b} 6∈ EX). Finally, suppose that M = X(u) and N = X(v), where u and
v are distinct elements of X such that {u, v} 6∈ E (resp. {u, v} ∈ E). The
same equivalences are obtained.

Consequently, we examine the connected components of GX in the next
section.

5. The main results

Proposition 5.1. Given an indecomposable graph G = (V,E), let X be a
proper subset of V such that |X| ≥ 4 and G(X) is indecomposable. If G
is critical according to G(X), then for each connected component C of GX ,
there exist distinct elements MC and NC of pX satisfying C ∩ MC 6= ∅,
C ∩NC 6= ∅ and C ⊆ MC ∪NC .

Proof. By Corollary 4.5, there exist a 6= a′ ∈ C such that {a, a′} ∈ EX . By
Remark 2.5, there are MC 6= NC ∈ pX such that a ∈ MC and a′ ∈ NC . For
every b ∈ C, there exists a sequence a = a0, . . . , an = b of elements of C
such that {ai, ai+1} ∈ EX for 0 ≤ i ≤ n − 1. From Lemma 4.3 it follows
that a = a0, a2, . . . ∈ MC and a1, a3, . . . all belong to the same element of
pX . Therefore, it suffices to verify that a1 ∈ NC . It is obviously the case
if a1 = a′. Otherwise, Lemma 4.3 may be applied because {a, a′}, {a, a1} ∈
EX . �

Remark 5.2: Given an indecomposable graph G = (V,E), let X be a proper
subset of V such that |X| ≥ 4 and G(X) is indecomposable. Assume that G
is critical according to G(X). It follows from Remark 2.5 and Proposition
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5.1 that for each connected component C of GX , GX(C) is bipartite by
{C ∩MC , C ∩NC}.

Theorem 5.3. Given a graph G = (V,E), let X be a proper subset of V such
that |X| ≥ 4 and G(X) is indecomposable. The graph G is indecomposable
and critical according to G(X) if and only if the three assertions below are
fulfilled.

H1: The partitions pX and qX coincide.
H2: For every M ∈ q−X , G(M) is empty, and for M ∈ q+

X , G(M) is
complete.

H3: For each connected component C of GX , G(X∪C) is indecomposable
and critical according to G(X).

Proof. To begin, assume that G is indecomposable and critical according to
G(X). Assertions H1 and H2 are Corollaries 4.6 and 4.7 respectively. For
Assertion H3, consider a connected component C of GX . By Proposition 4.2,
it is sufficient to establish that G(X∪C) is indecomposable. More precisely,
we prove that if G(X ∪ C) admits a non trivial interval I, then I would be
a non trivial interval of G as well. By Lemma 2.7 applied to G(X ∪ C), if
I ∩X 6= ∅, then GX(C) admits isolated vertices. Consequently, C reduces
to a singleton, which contradicts Corollary 4.5. It follows that I ∩X = ∅.
By the last proposition and by Corollary 4.6, there exist MC 6= NC ∈ qX

such that C ⊆ MC∪NC . By Lemma 2.6 applied to G(X∪C), I is an interval
of GX(C) and, for instance, I ⊆ MC . As C is a connected component of
GX , I is an interval of GX . Moreover, it follows from Corollary 4.7 that I is
an interval of G(MC). Lastly, by Lemma 2.6 applied to G, I is an interval
of G.

Conversely, we start with two simple observations. Firstly, a connected
component C of GX does not reduce to a singleton because G(X ∪ C) is
critical according to G(X). It follows that GX does not have isolated ver-
tices. Secondly, given x ∈ V \X, denote by C the connected component of
GX which contains x. By Lemma 4.1, since G(X ∪ C) is critical according
to G(X), G(X ∪{x}) is decomposable, and thus, Ext(X) = ∅. To continue,
by contradiction suppose that G possesses a non trivial interval I. It follows
from Lemma 2.7 that I ∩ X = ∅. Let i be an element of I. Denote by
C the connected component of GX containing i. Since i is not an isolated
vertex of GX , there exists x ∈ C such that {i, x} ∈ EX . We obtain that
I ∩ (X ∪{i, x}) is a trivial interval of G(X ∪{i, x}) and necessarily x 6∈ I. It
follows that x ∈ C \I. By Lemma 2.6, I is an interval of GX . Consequently,
for j ∈ I, {j, x} ∈ EX and hence j ∈ C. It follows that I ⊆ C \ {x} and I
would be a non trivial interval of G(X ∪ C).

To complete the proof, we demonstrate that G is critical according to
G(X). Consider an element x of V \X. Denote by C the connected com-
ponent of GX containing x. As G(X ∪ C) is critical according to G(X),
G(X ∪ C) − x admits a non trivial interval I. Firstly, if X ⊆ I, then
(C \ I) \ {x} ⊆ [X] and we verify that V \ (C \ I) is an interval of G − x.
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Given y ∈ (C \ I) \ {x}, we claim that for every z ∈ V \ (C \ I), X ∪ {z} is
an interval of G(X ∪ {y, z}). If z ∈ X ∪C, then I ∩ (X ∪ {y, z}) = X ∪ {z}
is an interval of G(X ∪ {y, z}). If z ∈ (V \ X) \ C, then {y, z} 6∈ EX , im-
plying G(X ∪ {y, z}) is decomposable. If z 6∈ [X], then the claim follows
from Lemma 2.3. If z ∈ [X], then, by Hypothesis H1, either y, z ∈ X−

or y, z ∈ X+. It is then sufficient to apply Hypothesis H2. Secondly, if
I ∩ X = {u}, then I \ {u} ⊆ X(u) and we prove that I is an interval of
G− x. Given y ∈ I \ {u}, we claim that for every z ∈ (V \ I) \ {x}, {u, y}
is an interval of G(X ∪ {y, z}). If z ∈ X ∪C, then I ∩ (X ∪ {y, z}) = {u, y}
is an interval of G(X ∪ {y, z}). If z ∈ (V \X) \ C, then {y, z} 6∈ EX , that
is, G(X ∪ {y, z}) is decomposable. If z 6∈ X(u), then the claim follows from
Lemma 2.3. If z ∈ X(u), then, by Hypothesis H1, either y, z ∈ X−(u)
or y, z ∈ X+(u). Hypothesis H2 is then applied. Thirdly, if I ∩ X = ∅,
then we establish that I is an interval of G − x. By Lemma 2.6 applied to
G(X ∪ C)− x, there exists N ∈ qX such that I ⊆ N . Furthermore, I is an
interval of GX(C) − x. Since C is a connected component of GX , I is an
interval of GX − x. By Hypothesis H2, I is an interval of G(N) − x. By
Hypothesis H1, we have N ∈ pX . Lastly, by applying Lemma 2.6 to G− x,
I is an interval of G− x. �

Given a graph G = (V,E), let X be a proper subset of V such that |X| ≥ 4
and G(X) is indecomposable. We now characterize the cases where G is
indecomposable and critical according to G(X), assuming GX is connected.
If |V \X| = 2, then the following is evident. The graph G is indecomposable
and critical according to G(X) if and only if Ext(X) = ∅. Consequently,
we assume that |V \X| ≥ 3.

Theorem 5.4. Given a graph G = (V,E), let X be a proper subset of V such
that |X| ≥ 4, |V \ X| ≥ 3, G(X) is indecomposable and GX is connected.
The graph G is indecomposable and critical according to G(X) if and only
if the following four assertions are satisfied.

K1: Ext(X) = ∅.
K2: The partitions pX and qX coincide.
K3: For every M ∈ q−X , G(M) is empty, and for M ∈ q+

X , G(M) is
complete.

K4: The graph GX is critical and B(GX) = pX .

Proof. To begin, assume that G is indecomposable and critical according to
G(X). Assertions K1, K2 and K3 are respectively Lemma 4.1 and Corollaries
4.6 and 4.7. Concerning the fourth assertion, K4, we first prove that GX is
indecomposable. More precisely, we prove that if I is a non trivial interval
of GX , then I is a non trivial interval of G. By Proposition 5.1, pX admits
two elements denoted by M and N . By Remark 5.2, GX is bipartite by
{M,N}. Since GX is connected, we have either I ⊆ M or I ⊆ N . For
instance, assume that I ⊆ M . By Corollary 4.7, I is an interval of G(M)
and, by Corollary 4.6, M,N ∈ qX . By applying Lemma 2.6 to G, I is an
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interval of G. Now, we prove that GX is critical. Given, for example, an
element x of M , consider a non trivial interval I of G−x. By Lemma 2.7, if
I ∩X 6= ∅, then GX − x admits isolated vertices and thus is decomposable.
Consequently, assume that I ∩X = ∅. It follows from Lemma 2.6 applied
to G− x that either I ⊆ M or I ⊆ N and I is an interval of GX − x.

Conversely, it follows from Hypotheses K2 and K4 that B(GX) = pX =
qX has two elements denoted by M and N . By Hypothesis K1, M 6= Ext(X)
and N 6= Ext(X). To begin, we verify that G is indecomposable. More
precisely, we verify that if I is a non trivial interval of G, then I would be
a non trivial interval of GX also. It follows from Lemma 2.7 that I ∩X =
∅ and it suffices to apply Lemma 2.6. Therefore, we want to show that
G is critical according to G(X). Let x be an element of M . Following
Observation 2.9.(5), we distinguish three cases. First, assume that there
exists y ∈ N such that y is an isolated vertex of GX − x and N = [X]. For
each x′ ∈ M \ {x}, {x′, y} 6∈ EX and, by Lemma 2.3, X ∪ {x′} is an interval
of G(X ∪ {x′, y}). For every y′ ∈ N \ {y}, it follows from Hypothesis K3
that X ∪{y′} is an interval of G(X ∪{y, y′}). It follows that V \{x, y} is an
interval of G−x. Now, assume that there is y ∈ N such that y is an isolated
vertex of GX − x and N = X(u), where u ∈ X. For each x′ ∈ M \ {x},
{x′, y} 6∈ EX and, by Lemma 2.3, {u, y} is an interval of G(X ∪{x′, y}). For
every y′ ∈ N \ {y}, it follows from Hypothesis K3 that {u, y} is an interval
of G(X ∪ {y, y′}). It follows that {u, y} is an interval of G − x. Lastly,
assume that there are y 6= z ∈ N such that {y, z} is an interval of GX − x.
By Lemma 2.6 applied to G− x, {y, z} is an interval of G− x. �

Given an indecomposable graph G = (V,E), consider a proper subset X
of V such that |X| ≥ 4 and G(X) is indecomposable. Assume that G is
critical according to G(X). We use the following notation to describe the
indecomposability matching of G according to G(X). Consider a connected
component C of GX . By Theorem 5.3, G(X ∪ C) is indecomposable and
critical according to G(X). By Lemma 4.1 applied to G(X ∪ C), we have
|C| is even. Denote |C|/2 by n(C). If |C| = 2, then we denote by gC an
isomorphism from P2 onto GX(C). Assume that |C| > 2. By Theorem 5.4
applied to G(X ∪ C), there exists an isomorphism, denoted by gC , from
G2n(C) onto GX(C). Moreover, for any connected component C of GX ,
MC denotes the family {{gC(2i), gC(2i + 1)}; 0 ≤ i ≤ n(C) − 1}. Lastly,
we denote by MG the union of the families MC over all the connected
components C of GX .

Proposition 5.5. Given an indecomposable graph G = (V,E), consider a
proper subset X of V such that |X| ≥ 4 and G(X) is indecomposable. If
G is critical according to G(X), then MG is the unique indecomposability
matching of G according to G(X).

Proof. Consider an indecomposability matching M of G according to G(X).
For any x 6= y ∈ V \ X such that {x, y} ∈ M, we have G(X ∪ {x, y}) is
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indecomposable, that is, {x, y} ∈ EX and hence x and y belong to the
same connected component of GX . Given a connected component C of
GX , denote by (M)C the family of the elements of M contained in C. We
proved that M is the union of the families (M)C over all the connected
components C of GX . Clearly, for each connected component C of GX ,
(M)C is an indecomposability matching of G(X ∪ C) according to G(X).
To show that M = MG, it suffices to verify that (M)C = MC for every
connected component C of GX . If |C| = 2, then (M)C = {C} and thus
(M)C = MC . Now, assume that |C| > 2. Let x and y be distinct elements
of C such that {x, y} ∈ (M)C . We have

G (X ∪ (∪((M)C \ {{x, y}}))) = G(X ∪ C)− {x, y}

is indecomposable. By Proposition 4.2, G(X ∪ C) − {x, y} is critical ac-
cording to G(X). Firstly, assume that |C| = 4 so that GX(C) − {x, y} has
two vertices x′ and y′. We have G(X ∪ C) − {x, y} = G(X ∪ {x′, y′}) is
indecomposable, that is, {x′, y′} ∈ EX . Since gC is an isomorphism from
G4 onto GX(C), we obtain that {x, y} = {gC(0), gC(1)}, {gC(1), gC(2)} or
{gC(2), gC(3)}. Necessarily, (M)C = {{gC(0), gC(1)}, {gC(2), gC(3)}} be-
cause (M)C is a partition of C. Secondly, assume that |C| > 4. By Corollary
4.5 applied to G(X∪C)−{x, y}, GX(C)−{x, y} does not have isolated ver-
tices. By Observation 2.9.(3), GX(C)− {x, y} is connected because GX(C)
is isomorphic to G2n(C). By Theorem 5.4 applied to G(X ∪ C)− {x, y}, we
have GX(C) − {x, y} is indecomposable. But, by Observation 2.9.(6), we
have Ind[G2n(C)] = P2n(C). Consequently, there exists i ∈ {0, . . . , 2n(C)−2}
such that {x, y} = {gC(i), gC(i + 1)}. It follows that

(M)C ⊆ {{gC(i), gC(i + 1)}; 0 ≤ i ≤ 2n(C)− 2}.

Since (M)C is a partition of C, we obtain that (M)C = MC .
To complete the proof, we establish that MG constitutes an indecompos-

ability matching of G according to G(X). Given a nonempty subset N of
MG, we have to show that G(X ∪ (∪N )) is indecomposable. By applying
Theorem 5.3 to G(X ∪ (∪N )), it suffices to prove the following. For each
connected component D of GX(∪N ), G(X ∪D) is indecomposable and crit-
ical according to G(X). By Proposition 4.2, it is sufficient to verify that
G(X ∪D) is indecomposable. As GX(D) is connected, there is a connected
component C of GX such that D ⊆ C. Therefore, D ⊆ ∪NC , where NC

denotes the family of the elements of N included in C. Clearly, if |NC | = 1,
then D = ∪NC and thus G(X∪D) is indecomposable. Consequently, assume
that |NC | ≥ 2. Since GX(C) is isomorphic to G2n(C), it follows from Obser-
vation 2.9.(4) that GX(∪NC) is isomorphic to G2p(C), where p(C) = |NC |/2.
In particular, GX(∪NC) is connected and hence D = ∪NC . Furthermore, it
follows from Theorem 5.4 applied to G(X ∪ (∪NC)) that G(X ∪ (∪NC)) is
indecomposable. �
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The existence of such an indecomposability matching of G according to
G(X) is obtained in [1] without its uniqueness. An immediate consequence
follows.

Corollary 5.6 (Deogun et al. [1]). Given an indecomposable graph G =
(V,E), let X be a proper subset of V such that |X| ≥ 4 and G(X) is inde-
composable. If G is critical according to G(X), then for each x ∈ V \ X,
G−x admits a unique non trivial interval I and either |I| = 2 or |V \I| = 2.

Proof. For every x ∈ V \X, there exists y ∈ V \X such that {x, y} ∈ MG.
Let Y = V \ {x, y}. Since MG is an indecomposability matching of G
according to G(X), G(X ∪ (∪(MG \ {{x, y}}))) = G(Y ) is indecomposable.
As G is critical according to G(X), G − x is decomposable, that is, y 6∈
Ext(Y ). Therefore, G − x admits a unique non trivial interval which is
V \ {x, y} if y ∈ [Y ] and {u, y} if y ∈ Y (u), where u ∈ Y . �

Observation 5.7. We can specify the non trivial interval I of G−x. Recall
that we proved the following in the last part of the proof of Theorem 5.3.
Denote by C the connected component of GX which contains x. As G(X ∪
C) was assumed to be indecomposable and critical according to G(X) by
Assertion H3, G(X ∪ C) − x admits a non trivial interval J . Then, we
established:

• if X ⊆ J , then V \ (C \ J) is an interval of G− x;
• if |X ∩ J | ≤ 1, then J is an interval of G− x as well.

Assume that there is y ∈ V \ X such that C = {x, y}. If y ∈ [X], then
J = X and I = V \ {x, y}. If y ∈ X(u), where u ∈ X, then I = J = {u, y}.
Now, assume that |C| ≥ 4. By Proposition 5.1 and Corollary 4.6, there
exist MC 6= NC ∈ qX such that C ⊆ MC ∪NC . By Theorem 5.4 applied to
G(X ∪C), GX(C) is critical and B(GX(C)) = {MC ∩C,NC ∩C}. Assume
that x ∈ MC . It follows from Observation 2.9 that if GX(C)− x admits an
isolated vertex y, then y ∈ NC ∩ C. Otherwise, there are y 6= z ∈ NC ∩ C
such that {y, z} is an interval of GX(C)− x. In the last part of the proof of
Theorem 5.4, we obtained the following interval J of G(X ∪ C)− x.

• If GX(C)−x admits an isolated vertex y ∈ NC ∩C and if NC = [X],
then (X ∪C) \ {x, y} is an interval of G(X ∪C)− x. Consequently,
I = V \ {x, y}.

• If GX(C)−x admits an isolated vertex y ∈ NC∩C and if NC = X(u),
where u ∈ X, then {u, y} is an interval of G(X ∪C)−x. Therefore,
I = {u, y}.

• If there are y 6= z ∈ NC ∩ C such that {y, z} is an interval of
GX(C) − x, then {y, z} is an interval of G(X ∪ C) − x. It follows
that I = {y, z}.

To conclude, we compare the structure of the indecomposability graph of a
critical graph and of a partially critical graph.
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Corollary 5.8. Given an indecomposable graph G = (V,E), let X be a
proper subset of V such that |X| ≥ 4, |V \ X| ≥ 2 and G(X) is in-
decomposable. If G is critical according to G(X), then Ind[G] − X and
GX share the same connected components. Furthermore, for each con-
nected component C of GX , Ind[G](C) is isomorphic to the path P|C| and
Ind[G](C) = Ind[GX(C)] when |C| > 4.

Proof. If |V \X| = 2, then V \X is the unique edge of Ind[G] −X and of
GX . Consequently, assume that |V \X| > 2. Given x ∈ V \X, denote by
C the connected component of GX containing x. Consider an element x′ of
V \ X such that {x, x′} is an edge of Ind[G]. The next three cases follow
from Observation 5.7. Firstly, there exists y ∈ C such that V \ {x, y} is an
interval of G − x. Necessarily, x′ = y. Secondly, there are y 6= z ∈ C such
that {y, z} is an interval of G−x. Consequently, x′ = y or z. Thirdly, there
exist y ∈ C and u ∈ X such that {u, x} is an interval of G− x. As x′ 6∈ X,
we have x′ = y. In the three cases, we obtain that x′ ∈ C. Therefore, each
connected component of Ind[G]−X is contained in a connected component
of GX .

Consider a connected component C of GX . Let x and x′ be distinct
elements of C. By Proposition 4.2, {x, x′} is an edge of Ind[G] if and only if
G − {x, x′} is indecomposable and critical according to G(X). Clearly, the
connected components of GX −{x, x′} are the connected components of GX

distinct from C together with the connected components of GX(C)−{x, x′}.
By Theorem 5.3, for every connected component D of GX such that D 6= C,
G(X∪D) is indecomposable and critical according to G(X). In particular, if
C = {x, x′}, then {x, x′} is an edge of Ind[G] by applying Theorem 5.3 to G−
{x, x′}. Therefore, assume that |C| > 2. By Theorem 5.3 again, we deduce
that {x, x′} is an edge of Ind[G] if and only if for every connected component
C ′ of GX(C)− {x, x′}, G(X ∪ C ′) is indecomposable and critical according
to G(X) or, equivalently by Proposition 4.2, G(X ∪ C ′) is indecomposable.
Consequently, by assuming that GX(C) − {x, x′} is connected, we have:
{x, x′} is an edge of Ind[G] if and only if G(X∪C)−{x, x′} is indecomposable.
Firstly, assume that |C| = 4 so that GX(C)−{x, x′} possesses two vertices y
and y′. We obtain that {x, x′} is an edge of Ind[G] if and only if {y, y′} ∈ EX .
Since gC is an isomorphism from G4 onto GX(C), {y, y′} ∈ EX if and
only if {x, x′} = {gC(0), gC(1)}, {gC(1), gC(2)} or {gC(2), gC(3)}. Secondly,
assume that |C| > 4. To begin, assume that {x, x′} is an edge of Ind[G].
By Corollary 4.5 applied to G − {x, x′}, GX − {x, x′} and thus GX(C) −
{x, x′} do not have isolated vertices. Since GX(C) is isomorphic to G2n(C),
it follows from Observation 2.9.(3) that GX(C) − {x, x′} is connected. As
previously seen, we deduce from Theorem 5.3 applied to G − {x, x′} that
G(X ∪ C) − {x, x′} is indecomposable and critical according to G(X). By
Theorem 5.4 applied to G(X ∪ C)− {x, x′}, GX(C)− {x, x′} is critical. In
particular, GX(C) − {x, x′} is indecomposable, that is, {x, x′} is an edge
of Ind[GX(C)]. Conversely, assume that {x, x′} is an edge of Ind[GX(C)].
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By Observation 2.9.(4), GX(C)− {x, x′} is critical. In particular, GX(C)−
{x, x′} is connected. It results from Theorem 5.4 applied to G(X ∪ C) −
{x, x′} that G(X ∪ C) − {x, x′} is indecomposable and critical according
to G(X). Finally, it follows from Theorem 5.3 applied to G − {x, x′} that
G− {x, x′} is indecomposable. �
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