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ARCS IN DESARGUESIAN NETS

ANNALISA BEATO, GIORGIO FAINA, AND MASSIMO GIULIETTI

Dedicated to the centenary of the birth of Ferenc Kárteszi (1907–1989).

Abstract. A trivial upper bound on the size k of an arc in an r-net
is k ≤ r + 1. It has been known for about 20 years that if the r-net is
Desarguesian and has odd order, then the case k = r + 1 cannot occur,
and k ≥ r−1 implies that the arc is contained in a conic. In this paper,
we show that actually the same must hold provided that the difference
r − k does not exceed

p

k/18. Moreover, it is proved that the same
assumption ensures that the arc can be extended to an oval of the net.

1. Introduction

An r-net of order n is an incidence structure Σ with n2 points whose
blocks, called lines, are partitioned into r ≥ 3 parallel classes so that each
class partitions the points of Σ and each two lines from different classes
have precisely one common point. A net Σ is said to be Desarguesian if it
is embedded in an affine plane AG(2, q) coordinatized over the finite field
with q elements Fq.

A subset K of k points in Σ is said to be a k-arc if each pair of points
of K is joined by a line, but no three points of K belong to the same line.
The arc K will be said to be proper if each parallel class of Σ contains some
secant of K. A trivial upper bound on the size of a k-arc is k ≤ r + 1. An
(r + 1)-arc in Σ is said to be a hyperoval, whereas an r-arc is said to be an
oval. The defect ∆ of a k-arc in an r-net is the difference ∆ = r + 1 − k.
Ovals in Desarguesian r-nets of order q were first used by Simmons [25] in
connection with a geometry based secret sharing scheme. For fixed r and q,
the implementation of such a scheme needs an arc with the smallest defect
as possible. This provides a motivation for investigating the minimum defect
of a k-arc in a Desarguesian r-net of order q, and for classifying k-arcs with
small defect (in particular, ovals and hyperovals). Any non-proper k-arc
in an r-net is a proper k-arc with smaller defect in an r ′-net with r′ < r;
therefore, throughout the paper we only deal with proper k-arcs.
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Examples of ovals in Desarguesian r-nets of order q are provided by
affinely regular polygons in AG(2, q). Let A1A2 . . . Ad be a regular d-gon
in the Euclidean plane. Kárteszi [15] called a d-gon B1B2 . . . Bd in an affine
plane (affinely) regular if the bijection Ai 7→ Bi preserves all parallelisms
between chords (i.e. sides, and diagonals), that is,

AiAj ‖ AkAm ⇐⇒ BiBj ‖ BkBm ,

for all 1 ≤ i < j ≤ d, and 1 ≤ k < m ≤ d. Kárteszi’s idea was developed by
his Ph.D. students Nguyen Mong Hy [14] and G. Korchmáros [16, 18, 17, 19].
A useful geometric property pointed out by Korchmáros [16] and indepen-
dently by Van de Craats and Simonis [27] is that every affinely regular d-gon
is inscribed in a conic, see also the survey papers [8, 20].

Simmons only considered Desarguesian nets of odd order, where hyper-
ovals do not exist [2]. Desarguesian nets of odd order holding an oval were
classified by Beutelspacher and Wettl [1], whose result was based on a pre-
vious paper by Wettl [28]: any oval in a Desarguesian r-net is contained in
a conic C of AG(2, q), and it consists of the points of a coset of the abelian
group (C,⊕) arising from the conic (the precise definition of the group law
⊕ is recalled in Section 4). Therefore, a Desarguesian r-net with ovals exists
if and only if r divides q, q − 1 or q + 1; in addition, if p2 does not divide
r, then the oval must coincide with an affinely regular polygon in AG(2, q).
Szőnyi’s [21] proved that proper k-arcs with defect ∆ = 2 and k ≥ 28 can
be uniquely extended to an oval, provided that q is odd. Furthermore, if the
order of magnitude of ∆ does not exceed

√
q/8, then either k ≤ (q +1)/2 or

r = q + 1. It should be noted that the results in [2, 21, 28] come from more
general results about internal nuclei. Let A be a pointset in the projective
plane PG(2, q). A point P ∈ A is said to be an internal nucleus of A if each
line through P meets A in at most two points including P . This notion was
introduced for sets of size q + 2 by Bichara and Korchmáros [2] and gener-
alized by Wettl [28]. If K is a proper k-arc with defect ∆ in a Desarguesian
net, and N denotes the set of points of the infinite line of AG(2, q) which do
not belong to any secant of K, then A = K ∪ N , viewed as a subset of the
projetive plane PG(2, q), is clearly a set of size q + 2 − ∆ and the k points
of K are internal nuclei of A.

In 1997, Holder [13] extended Simmons’s investigation to Desarguesian
nets of even order, where hyperovals can exist. However, classification of
Desarguesian nets holding a hyperoval seems to be an involved problem.
In a recent paper [3], Cherowitzo and Holder provided the classification of
small hyperfocused arcs, and constructed new examples. Further examples
are provided in [9]. The problem of the existence of r-nets of fixed order n
with either ovals or hyperovals has been recently investigated in [4, 5, 6, 7]
as well.

In this paper, some generalizations of the classifications in [1] and [21]
are obtained. In particular, it is shown that if q is odd and the defect of
the arc is small with respect to its size, then the arc is contained in an oval.
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For most values of k and ∆, this can be read as a non-existence result of a
proper k-arc of defect ∆ in a Desarguesian r-net; in other cases, this gives
a Segre-type embedding result.

Theorem 1.1. Let K be a proper k-arc with defect ∆ = 3 in a Desarguesian
r-net Σ of odd order q. Assume that either k > 145, or k > 108 and p > 5
hold. Then K is contained in a coset of size r = k + 2 of the abelian group
arising from a conic of AG(2, q). In particular, r divides q, q − 1 or q + 1.

Theorem 1.2. Let q = ps, with p an odd prime. Let k and ∆ be positive
integers. Assume that one of the following holds:

(i) ∆ <
√

k/18,

(ii) ∆ <
√

k/4 and p > 2∆.

Then any proper k-arc K with defect ∆ in a Desarguesian r-net Σ of odd
order q is contained in a coset of size r = k + ∆ − 1 of the abelian group
arising from a conic of AG(2, q). In particular, r divides q, q − 1 or q + 1.

For r-nets of small order, the following result can provide an improvement
on Theorem 1.2.

Theorem 1.3. Let q be odd, and let k and ∆ be positive integers. Let e
be the maximum integer such that all the three following conditions hold:
k > e(∆ + 4e), k > e(2∆ − e), and k > (9/2)e2. Assume that e ≥ 3. If

k >
2

d
(q + 1) +

2(d − 1)(d − 2)

d

√
q

holds for any integer d with e < d ≤ 2∆, then any proper k-arc K with
defect ∆ in a Desarguesian r-net Σ of odd order q is contained in a coset of
size r = k + ∆− 1 of the abelian group arising from a conic of AG(2, q). In
particular, r divides q, q − 1 or q + 1.

For q even, Theorem 6 in [21] yields that every arc with defect ∆ ≤ q/2−1
has size at most q/2. Here the following result is proved for the case ∆ = 3.

Theorem 1.4. Let K be a proper k-arc with defect ∆ = 3 in a Desarguesian
net Σ of even order q. Then either K is contained in a hyperoval of Σ, or
in a (k + 1)-arc with defect 2, or

k ≤ q + 1

3
+

2

3

√
q.

The key tool for proving our results is the algebraic envelope of a k-arc in
a Desarguesian net, which is defined in Section 2. For q odd, some results of
independent interest on the number of multitangents of an irreducible plane
algebraic curve are needed, see Theorems 3.2 and 3.5 in Section 3. Finally,
Theorems 1.1-1.4 are proved in Section 4.



ARCS IN DESARGUESIAN NETS 99

2. The algebraic envelope of a k-arc in a Desarguesian net

The idea of associating an algebraic curve to a k-arc in a Desarguesian
projective plane PG(2, q) goes back to Segre. Wettl [28] showed that when
the arc is an arc in an r-net, then this algebraic curve has a component of
small degree, see Proposition 2.1 below. This is the key tool for investigating
arcs with small defect in Desarguesian nets.

Throughout this section we assume that K is a proper k-arc of defect ∆
in a Desarguesian r-net of order q. It is also assumed that k ≥ 3. Without
loss of generality, we identify K with a set of k points in the affine plane
AG(2, q) no three of which collinear, and such that the number of directions
of the secants of K is precisely k +∆− 1. Embed AG(2, q) in the projective
plane PG(2, q), and denote `∞ the line of PG(2, q) corresponding to the
infinite line of AG(2, q). With a little abuse of notation, the image of K by
this embedding will be still denoted by K.

Let M(K) denote the set of points on `∞ which are collinear with two
points of K. Then ∆ = |M(K)| − k + 1. As a matter of terminology, any
tangent to K meeting `∞ in a point of M(K) is said to be special. Clearly
the number of special tangents through a point of K is equal to ∆.

Consider the set A = K ∪ (`∞ \ M(K)). It was already noted in the
Introduction that the internal nuclei of A are precisely the points of K.
Also, the tangents to A are the special tangents to K. Then Theorem 4 in
[28] reads as follows.

Proposition 2.1. Let K be a proper k-arc in a Desarguesian r-net of order
q, embedded in PG(2, q). Assume that k ≥ 3. Then the k∆ special tangents
to K belong to an algebraic envelope Γ with the following properties:

(1) for q even, the class of Γ is ∆;
(2) for q odd,

(i) the class of Γ is 2∆;
(ii) if LP is the pencil of lines with vertex P ∈ K, and m is a special

tangent at P , then the intersection multiplicity I(m,LP ∩Γ) of
LP and Γ at m is two;

(iii) Γ may contain components of multiplicity at most two, but does
not consist entirely of double components.

Throughout the paper, the algebraic curve corresponding to Γ in Propo-
sition 2.1, that is, the algebraic curve consisting of points whose coordinates
are the Plücker coordinates of the lines of Γ, will be denoted as X (K), and
will be said to be the algebraic envelope of K.

A k-arc is said to be complete in its r-net if it is maximal with respect to set
theoretical inclusion. Note that the k-arc K is complete in its Desarguesian
r-net if and only if there is no point Q in PG(2, q) \ `∞ such that K ∪ Q is
an arc and M(K ∪ {Q}) = M(K).

Proposition 2.2. Let K be a proper k-arc in a Desarguesian r-net, and let
X (K) be the algebraic envelope of K.
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(1) If K is complete (in its r-net), then X (K) has no Fq-rational linear
component.

(2) If K is complete (in its r-net) and k > 2, then X (K) has no linear
component.

(3) If either q is even or k > ∆, then X (K) has no non-Fq-rational
component.

Proof.

(1) Let ` be an Fq-rational linear component of X (K). Let Q be the
point whose coordinates are the Plücker coordinates of `. Then
clearly K ∪ {Q} is a (k + 1)-arc with M(K ∪ {Q}) = M(K).

(2) Any linear component ` of X (K) contains at least k Fq-rational
points. As k > 2, ` is Fq-rational. Then the assertion follows from
(1).

(3) Assume that X1 is a non-Fq-rational component of X (K) of degree
d. Then the image X2 of X1 via the Frobenius map (X0, X1, X2) 7→
(Xq

0 , Xq
1 , Xq

2 ) is another non-Fq-rational component of X (K) of de-
gree d. Then every Fq-rational point of X1 is a singular point of
X (K). This is impossible when q is even, as every point correspond-
ing to a tangent to K is a non-singular point of X (K). Assume then
that q is odd and that k > ∆. Clearly, 2d ≤ 2∆, whence k > d. Note
that X1 has at least d Fq-rational points on every line corresponding
to a point of K. This gives kd > d2 common points of X1 and X2,
which is a contradiction.

�

3. On the number of multitangents of a plane algebraic curve

The aim of this section is to provide an upper bound on the number of
multitangents of an irreducible plane algebraic curve of even degree, see The-
orems 3.2 and 3.5 below. This will be useful for investigating the algebraic
envelope of a k-arc in a Desarguesian r-net of odd order.

Let X : F (X0, X1, X2) be an irreducible plane curve defined over an
algebraically closed field of characteristic p. The Gauss map of X is the
rational map

πX = (FX0
: FX1

: FX2
).

To every non-singular point P of X , the Gauss map associates the Plücker
coordinates of the tangent line of X at P . If the degree d of X is greater
than 1, then πX is not constant, and the image πX (X ) is an irreducible plane
curve, called the dual curve X ∗ of X . If the characteristic p is equal to 0,
then X ∗ is never a line. On the other hand, when p > 0 the degree d∗ of X ∗

can be equal to 1, and in this case X is said to be a strange curve. A conic
in characteristic 2 is an example of a strange curve.

Some results on the Gauss map in positive characteristic are summarized
in Proposition 3.1 below, see e.g. [12, Section 5.11].
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Proposition 3.1. Let X be a plane algebraic curve, and let X ∗ be its dual
curve.

(1) If p > d, then X is not strange.
(2) Let X be a non-strange curve. If X is not the locus of its singular

points and its inflections, then
(i) X ∗ is birationally equivalent to X ,
(ii) (X ∗)∗ = X holds,
(iii) the degree d∗ of X ∗ satisfies d∗ ≤ d(d − 1).

(3) If p > d, then X is not the locus of its singular points and its inflec-
tions.

Throughout the rest of this section, we assume that d is even and greater
than 2, and that X is not strange. Let N1 be the number of singular points
of X , and N2 the number of lines that are tangents to X in d/2 distinct
points. We recall that for an irreducible plane algebraic curve X ,

(3.1) g +
∑

P∈X

mP (mP − 1)

2
≤ (d − 1)(d − 2)

2

holds, where g denotes the genus of X and mP is the multiplicty of P as a
point of X . As the genus of any algebraic curve is a non-negative integer,
clearly

N1 ≤ (d − 1)(d − 2)

2
holds. Any tangent to X in d/2 distinct points corresponds to a d

2
-fold point

in X ∗. Then, (3.1) implies

d

4

(

d

2
− 1

)

N2 ≤ (d∗ − 1)(d∗ − 2)

2
.

Taking into account Proposition 3.1, the following inequality can be easily
achieved.

Theorem 3.2. Let X be a non-strange curve of even degree d > 2. If X is
not the locus of its singular points and its inflections, then

N1 + N2 ≤ 9

2
d2 − 3

2
d − 7 − 4

d
.

If the characteristic p is greater than d, Theorem 3.2 can be significantly
improved. Let B be the set of branches of X . For a branch γ ∈ B, let rγ

denote the order, and sγ denote the class of γ. The center Pγ of a branch
γ or order rγ is a t-fold point for X with t ≥ rγ . If γ is the only branch
centered at Pγ , then equality holds; moreover, rγ + sγ is the intersection
multiplicity at Pγ of X and the unique tangent line of X at Pγ . The integer
sequence (0, rγ , rγ + sγ) is called the order sequence at γ with respect to the
linear series cut out by lines.

Let γ′ be the image of γ by the Gauss map πX . The following is a classical
result, see e.g. [24, II.35], which also holds when p > d, see [12, Section 5.12,
Exercise 7].
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Proposition 3.3. Let γ be any branch of X . If p > d, then

rγ = sγ′ , sγ = rγ′ .

Now we are in a position to provide a precise formula for the degree of
the dual curve.

Proposition 3.4. Let g be the genus of X . If p > d, then the degree of the
dual curve is

d∗ = 2g − 2 + 2d − ε,

where

ε =
∑

γ∈B

(rγ − 1).

Proof. By Proposition 3.1, the Gauss map is a birational isomorphism. This
yields that the genus of X ∗ is equal to g. Since p > d, X is not the locus
of its singular points and its inflections. Proposition 3.3 implies that the
same holds for X ∗. Let R (resp. R∗) be the ramification divisors of X
(resp. X ∗) with respect to the linear series cut out by lines, see [26]. We
compute the orders of R and R∗. By [26, Corollary 1.7], the hypothesis on
the characteristic p ensures that the weight of a branch γ in R is 2rγ +sγ−3,
while the weight of γ ′ in R∗ is 2sγ + rγ − 3.

The following equalities are then obtained:
∑

γ∈B

(2rγ + sγ − 3) = 3(2g − 2) + 3d,

∑

γ∈B

(2sγ + rγ − 3) = 3(2g − 2) + 3d∗.

Then the claim follows from straightforward computation. �

Theorem 3.5. If p > d > 2, d even, then

N1 + N2 ≤ 4(d2 − 9).

Proof. Any tangent to X at d/2 distinct points corresponds to a d/2-fold
point of X ∗. Also, any branch of positive class s corresponds to a branch of
order s in X ∗. Then, (3.1) implies

d

4

(

d

2
− 1

)

N2 + δ ≤ (d∗ − 1)(d∗ − 2)

2
− g,

where δ =
∑

γ∈B(sγ − 1). Note that

δ = 3d∗ − 3d + ε.

Therefore

d

4

(

d

2
− 1

)

N2 ≤ (d∗ − 1)(d∗ − 2)

2
− g − 3d∗ + 3d − ε.
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Since ε ≤ 3(g − 1) + (3/2)d and d > 3, the maximum possible right hand
side correspond to ε = 0 and d∗ = 2g − 2 + 2d. Then

d

4

(

d

2
− 1

)

N2 ≤ (2g + 2d − 3)(2g + 2d − 4)

2
− g − 3(2g − 2 + 2d) + 3d,

whence
d

2
(d − 2) N2 ≤ 4g2 + 4g(2d − 7) + 12 − 6d,

that is,
d

16
(d − 2)N2 ≤ g2 + g(2d − 7) + (d − 2)(d − 3).

Taking into account that g ≤ (d − 1)(d − 2)/2 − N1, we obtain

d

16
(d − 2)N2 ≤ d(d − 2)(d2 − 9)

4
− N1

(

d2 − d − 5 − N1

)

.

Since

N1 ≤ (d − 1)(d − 2)

2
,

we have

d

16
(d − 2)N2 ≤ d(d − 2)(d2 − 9)

4
− N1

(

d2 − d − 5 − (d − 1)(d − 2)

2

)

,

whence

d

16
(d − 2)N2 ≤ d(d − 2)(d2 − 9)

4
− N1

(

d2 + d − 12

2

)

.

Finally,

N2 + 8N1

(

d2 + d − 12

d(d − 2)

)

≤ 4(d2 − 9)

holds, and the claim follows from straightforward computation. �

4. Proof of the main results

We keep the notation of the previous sections. In particular, K is a proper
k-arc of defect ∆ in a Desarguesian r-net of order q.

Lemma 4.1. Let q be odd, and let C be any non-linear non-double com-
ponent of X (K). If k > 2∆ + 1, then C is not strange, and (C∗)∗ = C
holds.

Proof. Let s be the number of lines corresponding to points of K intersecting
C in d = deg(C) distinct points. Then C has at least sd points in common
with a curve of degree 2∆ − d, namely the curve obtained from X (K) by
dismissing C. Therefore, by Bézout’s Theorem, s ≤ 2∆− d holds. As d ≥ 2,
the hypothesis k > 2∆+1 ensures the existence of at least three tangent lines
to C corresponding to points of K. As no three points of K are collinear,
these tangent lines are not concurrent. This proves that C is not strange.
Also, C is not the locus of its singular points and of its inflections by (ii) in
Proposition 2.1. Then the assertion follows from Proposition 3.1. �
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Lemma 4.2. Let q be odd. If k > 2∆− 1, then X (K) does not contain any
non-double line.

Proof. Let ` be a non-double linear component of X (K). Then the inter-
section points of ` and the k lines corresponding to the points of K must
belong to a curve of degree 2∆ − 1, namely the curve obtained from X (K)
by dismissing `. As such intersection points are collinear, k ≤ 2∆ − 1 must
hold. �

Lemma 4.3. Let q be odd, and assume that X (K) consists of double com-
ponents and of s > 1 conics. Then k ≤ 4∆.

Proof. Let `1, . . . , `k be the lines corresponding to the points of K. Let ni

be the number of points on `i that are not tangency point with any of the
s conics. Then we have

n1 + n2 + . . . + nk

singular points on the union of the s conics. As the number of singular
points of a (non-necessarily irreducible) plane curve of degree d is at most
(

d
2

)

(see e.g. [10]), n1 + . . . + nk ≤
(

2s
2

)

holds. On the other hand, for each i
we have s−ni tangent conics to `i. That is, `i correspond to an intersection
point of

(

s−ni

2

)

pairs of dual conics. Therefore
(

s − n1

2

)

+ . . . +

(

s − nk

2

)

≤ 4

(

s

2

)

.

As
(

s−ni

2

)

≥ s − ni − 1 we obtain

n1 + (s − n1 − 1) + . . . + nk + (s − nk − 1) ≤
(

2s

2

)

+ 4

(

s

2

)

,

that is,
k(s − 1) ≤ 4s(s − 1),

whence
k ≤ 4s ≤ 4∆.

�

Lemma 4.4. Let q be odd. Assume that X (K) has a non-double component
of odd degree d. Then

k ≤ d(2∆ − d) ≤ ∆2.

Proof. Let C be a non-double component of X (K) of odd degree d. Then any
line corresponding to a point of K contains at least one intersection point of
C and a curve of degree 2∆ − d, namely the curve obtained from X (K) by
dismissing C. Therefore by Bézout’s Theorem, k ≤ d(2∆ − d) holds. Then
the claim follows. �

Lemma 4.5. Let q be odd. Assume that X (K) has precisely one non-double
component C of degree d > 2. Then

k ≤ 18∆2 − 3∆ − 7 − 2

∆
.
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If in addition p > d, then

k ≤ 4(4∆2 − 9).

Proof. If d is odd, then the assertion follows from Lemma 4.4. Assume then
that d is even. As C is the unique non-double component of X (K), any
line corresponding to a point of K is either a tangent to C at d/2 points, or
contains a double point of C. Then the assertions follow from Theorems 3.2
and 3.5, taking into account that d ≤ 2∆. �

Lemma 4.6. Let q be odd. Assume that X (K) has more than one non-
double components C, all of which are of even degree. Then

k ≤ 18∆2.

If in addition p > d, then
k ≤ 16∆2.

Proof. By Lemma 4.3, we can assume that there exists a non-double com-
ponent C of X (K) of (even) degree d with 2 < d ≤ 2∆− 2. Let R be the set
of lines ` corresponding to points of K and containing at least one point P
with I(P, ` ∩ C) = 1. As d is even, on each line in R there are at least two
points P with I(P, ` ∩ C) = 1. Then, arguing as in the proof of Lemma 4.4,
we obtain | R |≤ d(2∆ − d)/2. Any line corresponding to a point in K but
not in R, is either a tangent to C at d/2 points, or contains a double point
of C. Then Theorem 3.2 yields

k ≤ d

2
(2∆ − d) +

9

2
d2 ≤ d(∆ + 4d) ≤ 18∆2.

If p > d, then by Theorem 3.5 we obtain

k ≤ d

2
(2∆ − d) + 4d2 ≤ d(∆ +

7

2
d) ≤ 16∆2.

�

The next step is to prove that, for q odd, an arc in a Desarguesian net
with small defect whose algebraic envelope consists of double components
and of a conic can actually be extended to an oval. For this purpose, a
known result on the abelian group arising from a conic in an affine plane is
needed, see e.g. [28]. Let C be a conic in AG(2, q). Fix a point Q0 ∈ C, and
consider the following binary operation on the set of points of C:

Q1 ⊕ Q2 = Q3 ⇐⇒ Q0Q3 ‖ Q1Q2

(when Qi = Qj by the line QiQj we mean the tangent line of C at Qi).
Then (C,⊕) is an abelian group, whose neutral element is Q0. It may be
noted that (C,⊕) is isomorphic to the additive (or the multiplicative) group
of the groundfield, when C is a parabola (or a hyperbole). Also, if C is an
ellipse, then (C,⊕) is isomorphic to a subgroup of the multiplicative group
of a quadratic extension of the groundfield. So for a hyperbole (or an ellipse)
the group (C,⊕) is cyclic, but this holds true for a parabola as far as the
groundfield is a finite field of prime order.
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The next lemma is a trivial consequence of Kneser’s theorem (see also
[22, 23]).

Lemma 4.7 ([22, Theorem 2]). Let D be a non-empty subset of a finite
abelian group (G,+). If | D + D |< 3/2 | D |, then D + D is a coset of a
subgroup H of (G,+) (and D is also contained in a coset of H).

Proposition 4.8. Let q be odd, and assume that X (K) consists of double
components and of a conic. If k > 2∆ − 2 > 0, then K can be extended
to a (k + ∆ − 1)-arc with defect 1, consisting of the points of a coset of the
abelian group (C,⊕), with C a conic of AG(2, q).

Proof. Let X (K) consist of double components and of a conic Y. Then
each line corresponding to a point of K is a tangent to Y. That is, K is
contained in the dual curve Y∗ of Y. As p > 2, the curve Y∗ is a conic. Let
C = Y∗ ∩ AG(2, q). Then K can be viewed as a non-empty subset of the
finite abelian group (C,⊕). Note that the set {Pi ⊕Pj | Pi, Pj ∈ K,Pi 6= Pj}
corresponds to the set of k + ∆ − 1 directions determined by the secants of
K. Note that k > 2∆−2 is equivalent to | K⊕K |< 3/2 | K |. Then Lemma
4.7 yields that K ⊕K = H ⊕Q for some subgroup H of size k + ∆− 1, and
some point Q ∈ C. Then, for any P ∈ K, we have

K ⊕ P ⊆ K ⊕ K = H ⊕ Q,

that is, K is contained in a coset K ′ = H ⊕ (Q 	 P ) of size k + ∆ − 1. As
clearly | K ′ ⊕K ′ |=| K ′ |, we have that K ′ is an arc of defect 1, whence the
assertion. �

Now we are in a position to prove the main results of the paper.

Proof of Theorem 1.1. Note that if X (K) has a line as a component, then K
is contained in an arc of defect 2, and hence in an oval as k > 28. Note also
that by Proposition 4.8, it is enough to show that X (K) consists of double
components and of a conic. If X (K) consists of conics, this is guaranteed
by Lemma 4.3. By Lemma 4.5, the envelope X (K) cannot be an irreducible
sextic curve. Also, X (K) cannot consist of two cubic curves by Lemma 4.4.
We are left with the case where X (K) splits into a conic C and a quartic
curve Q. The number of lines corresponding to points of K and containing
points from both C and Q is at most 4. Then there are at least 104 lines
that are either bitangent to Q or contain some singular points of Q. But
this is impossible by Theorem 3.5. �

Proof of Theorem 1.2. The assertion follows from Lemmas 4.4, 4.5, and 4.6,
together with Proposition 4.8. �

Proof of Theorem 1.3. Assume on the contrary that K is not contained in
an oval. By Proposition 4.8, the envelope X (K) does not consist of double
components and of a conic. Taking into account Lemmas 4.2, 4.3 and 4.4,
we have that X (K) has at least one non-double component C of degree d
with 4 ≤ d ≤ 2∆. By the proofs of Lemmas 4.4, 4.5 and 4.6, the conditions
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on k rule out the possibility that all non-double components have degree
less than or equal to e. Whence d > e can be assumed. Note that C has
at least kd/2 Fq-rational points. Also, C is Fq-rational by (3) of Proposition
2.2. By [11, Corollary 2.30], then we have

kd

2
≤ q + 1 + (d − 1)(d − 1)

√
q,

a contradiction. �

Proof of Theorem 1.4. If K is not complete, then the claim is straightfor-
ward. Then it can be assumed that X (K) has no linear components, that
is, X (K) is an irreducible cubic curve. It is well known that any irreducible
cubic curve defined over Fq can have at most q + 1 + 2

√
q points, see e.g.

[11]. As X (K) has at least 3k Fq-rational points, the claim follows. �
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