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ON GEOMETRIC CONSTRUCTIONS OF (k, g)-GRAPHS

ANDRÁS GÁCS AND TAMÁS HÉGER

Dedicated to the centenary of the birth of Ferenc Kárteszi (1907–1989).

Abstract. We give new constructions for k-regular graphs of girth 6, 8
and 12 with a small number of vertices. The key idea is to start with
a generalized n-gon and delete some lines and points to decrease the
valency of the incidence graph.

1. introduction

Noting that the smallest regular graph of valency 3 and girth 5 is the
Petersen graph, Ferenc Kárteszi posed the question to determine the least
number c(k, g) of vertices a regular graph of valency k and girth g can have.
The girth of a graph is the length of the shortest cycle in it. In 1960 Ferenc
Kárteszi [15] proved the following theorem.

Theorem 1.1. A regular graph with valency k and girth 6 has at least
2((k − 1)2 + (k − 1) + 1) vertices where equality holds if and only if it is the
incidence graph of a projective plane of order k − 1.

In 1963 Erdös and Sachs [11] showed that for every integer k ≥ 2 and
g ≥ 3 there exists a regular graph (without loops and multiple edges) of
valency k and girth g. Such graphs are called (k, g)-graphs. A (k, g)-graph
with c(k, g) points is called a (k, g)-cage. The problem of determining the
exact value of c(k, g) is still open for most of the cases, for a survey, we
refer to Wong [20] or to the website of Royle [18]. By counting the number
of vertices at distance 1, 2, ... from a vertex or an edge, the following lower
bound for c(k, g) is easily proved (see [6], page 180).

Proposition 1.2 (Moore bound).

c(k, g) ≥
{

1 + k + k(k − 1) + · · · + k(k − 1)
g−1

2
−1 for g odd;

2
(

1 + (k − 1) + (k − 1)2 + · · · + (k − 1)
g

2
−1

)

for g even.
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We shall refer to this as the Moore bound, though originally this name
came from an upper bound for the number of vertices a regular graph can
have with bounded valency and diameter. We will call a (k, g)-graph a
Moore graph if its number of vertices satisfy equality in the Moore bound
(some authors only use this term for graphs with g odd). There is extensive
literature on Moore graphs, and it turns out that for k ≥ 3, Moore graphs
may exist only if g = 3, 4, 5, 6, 8, 12. This result is due to Damerell [10],
Bannai and Ito [5] and Feit and Higman [12]. Furthermore, the Hoffmann-
Singleton theorem [14] says that a Moore graph of girth g = 5 may only
have valency k = 2, 3, 7, 57. Note that for g = 3 and 4 the problem is trivial:
for g = 3 the unique Moore graph is the complete graph on k + 1 vertices,
while for g = 4 the unique Moore graph is the complete bipartite graph on
2k vertices.

There are several constructions implying upper bounds on c(k, g). One
useful idea is to look for small regular subgraphs of known Moore graphs.
For example the unique (7, 5)-cage, the Hoffman-Singleton graph (which is
a Moore graph) contains the (6, 5)-cage, a (5, 5)-cage and the (3, 5)-cage
(i.e., the Petersen graph) as induced subgraphs (see [20]). In this paper we
apply this idea to obtain (k, g)-graphs for g = 6, 8, 12. In these cases there
are infinite series of Moore graphs.

When g = 2n ≥ 6, one can characterize Moore graphs as the incidence
graph of certain generalized n-gons. The incidence graph of a set system
in general is a bipartite graph, where the two vertex classes correspond to
points and sets respectively, and edges correspond to incident point-set pairs.

Definition 1.3. Let P be a finite set and L a set of subsets of P called
points and lines, respectively. The pair (P,L) is called a generalized n-gon
of order (s, t), if it satisfies the following axioms:

• there are s + 1 lines through every point;
• every line contains t + 1 points;
• the diameter and the girth of the incidence graph are n and 2n,

respectively.

It is straightforward to check that a regular graph G with girth 2n and
valency k is a Moore graph if and only if it is the incidence graph of a
generalized n-gon of order (k − 1, k − 1). Feit and Higman [12] proved that
generalized n-gons with s, t ≥ 2 can exist only if n ∈ {3, 4, 6, 8} and that for
n = 8, s = t cannot occur. Hence Moore graphs with k ≥ 3 and g even can
exist only if g ∈ {6, 8, 12}. There are examples whenever k − 1 is a prime
power and it is wide open if there exist examples for other values of k.

When g = 6, 8 or 12, but k−1 is not a prime power (i.e., there is no known
generalized g/2-gon of order (k − 1, k − 1)), then one can do the following.
Start from a Moore graph with valency q + 1, where q is the smallest prime
power bigger than or equal to k, and delete vertices from the graph to make
it k-regular. The first one to use this idea (for g = 6) seems to be Brown
[8]. In [1] Abreu, Funk, Labbate and Napolitano use a method which is in
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fact equivalent to Brown’s method applied for the projective plane PG(2, q).
In a recent paper by Araujo, Gonzalez, Montellano and Oriol [2], the same
idea was used for the g = 8 and 12 cases, too.

In this paper we apply the same method, but use more from the geomet-
rical structure of generalized n-gons to improve the previous constructions,
hence the upper bounds for c(k, g), g ∈ {6, 8, 12}. (In fact, our main im-
provements are for g = 6 and g = 8.)

In Section 2 we explain the construction method, and give two construc-
tions that work for every generalized n-gon.

In Section 3 we consider the g = 6 case, i.e., projective planes. In this
case the best construction we will find is when k is close to the square of a
prime power. Furthermore we will also prove that in this case one cannot
hope for a better construction by deleting vertices from a Moore graph.

Section 4 is devoted to the g = 8 case, i.e., generalized quadrangles. We
only achieve an improvement when k is a prime power (in this case a Moore
graph of valency k + 1 exists) and we cannot prove that this construction is
best possible.

In Section 5 we list the cases when our constructions yield a new upper
bound on c(k, g).

2. The construction method

In all the constructions of this paper we will look for regular subgraphs
(of valency k) of the incidence graph of a generalized n-gon (or order q) by
deleting a set of points and a set of lines. The girth of a graph of this kind
is at least 2n, since the original girth is exactly 2n. In all interesting cases
(i.e., for k not not much smaller than q) it is the direct consequence of the
Moore bound that the girth of the resulting graph cannot be larger than 2n.

Definition 2.1. The pair (P0,L0) in the generalized n-gon (P,L) is called
a t-good structure, if there are t lines of L0 through any point not in P0,
and there are t points of P0 on any line not in L0.

General construction method. Suppose (P0,L0) is a t-good structure in
the generalized n-gon (P,L) of order q. Deleting points and lines of P0 and
L0, respectively, the incidence graph of the resulting structure is (q +1− t)-
regular with girth at least 2n. To obtain small subgraphs, we need to find
large t-good structures.

Complements of P0 and L0 will be denoted by P1 and L1, respectively. We
will also call the points of P0 deleted points and the lines of L0 deleted lines.
Note that since we start with and get a regular bipartite graph, |P0| = |L0|
and |P1| = |L1| holds.

We end this section with two constructions that work in any generalized
n-gon (P,L). For a point p or line l of the generalized n-gon, p and l will
also denote the corresponding vertices of the incidence graph. We define the
distance d(x, y) for a pair x, y ∈ P ∪ L to be the distance in the incidence
graph, i.e., the length of the shortest path connecting x and y. The following
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construction can be found in [2] in a slightly different form (proof of Theorem
1). We will show that the given constructions are t-good if n is even (i.e., n =
4, 6), the n = 3 case will be proved in Section 3.

Construction 2.2. Take a generalized n-gon (P,L) of order (q, q). Let
p1, . . . , pt ∈ P all incident with a line l1 and let l2, . . . , lt be lines through
p1. Delete every line and point at distance at most n − 2 from pi or li,
i ∈ {1, . . . , t}. This gives a t-good structure of size tqn−2 +qn−3 + . . .+q+1.

Proof. It suffices to show that for any point p ∈ P1 there are exactly t lines
through p in L0. The analogous statement for the lines not deleted can be
seen dually. Since p is not deleted and n is even, d(pi, p) = n, d(li, p) = n−1
for every i ∈ {1, . . . , t}. Thus the lines incident with p are at distance n− 1
from the pis and at distance n or n − 2 from the lis. There is a unique
path connecting li and p of length n − 1 and hence there is a unique line ei

through p that is at distance n − 2 from a fixed li. These eis are pairwise
distinct, since ei = ej would imply that the union of the paths liei, ljei,
lilj contain a cycle of length at most (n − 2) + (n − 2) + 2 < 2n, which is
impossible. (Here we used that the intersection of li and lj , namely p1 is at
distance n − 1 from p, so it cannot be on the paths liei or ljei.) Therefore
there are exactly t deleted lines through p, the eis. The calculation of the
size is not difficult. �

The upper bound for c(k, 6) and c(k, 8) coming from the above construc-
tion was already proved (with another method) by Lazebnik, Ustimenko
and Woldar [16], for the case when the smallest prime power greater than
or equal to k is odd.

Construction 2.3. Take a generalized n-gon (P,L) of order (q, q). Let
p ∈ P and l ∈ L, where p is not on l. Deleting every line and point that
are at distance at most n − 2 from p or l, we get a 1-good structure of size
qn−2 + 2qn−3 + qn−4 + . . . + q + 1.

Proof. One can see that (P0,L0) is 1-good using the same ideas as in Con-
struction 2.2. We only calculate the size for the n = 6 case, the proof of the
n = 4 case is similar. Denote by l1 the vertex incident to p in the unique
path between p and l (in the incidence graph). Let Ai denote the vertices
of the graph, which are of distance i from p and i + 1 from l1 (i = 1, ..., 5),
and similarly, denote by Bi the vertices of the graph, which are at distance
i from l1 and i +1 from p (i = 1, ..., 5) (see Figure 1). Then l is either in B2

or in B4.
Let A0 = {p} and B0 = {l1}. Each vertex of Ai or Bi (0 ≤ i ≤ 4) is

incident to q vertices of Ai+1 or Bi+1, respectively; and each vertex of Ai or
Bi (1 ≤ i ≤ 5) is incident to a unique vertex of Ai−1 or Bi−1, respectively.
The only remaining edges (besides the one between p and l1) are those
between A5 and B5; here we have a regular bipartite graph of valency q.
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Figure 1

Note that the vertex sets corresponding to points of the generalized hexagon
are B5, B3, B1, A0, A2, A4. These are all of distance at most 4 from p, ex-
cept for B5. Hence all non-deleted points are in B5. Since all points from
B3, B1, A0, A2, A4 are deleted, |P0| = q3 + q + 1 + q2 + q4 + the number
of vertices deleted from B5. Hence to finish the proof, we have to count the
vertices of B5 at distance 1 or 3 from l. We distinguish two cases according
to whether l is in B2 or B4.

For l ∈ B2, all we have is l − B3 − B4 − B5 paths, so the number in
question is q3.
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For l ∈ B4, there are three different types of paths: l−B5, l−B3−B4−B5

and l − B5 − A5 − B5. The number of vertices (of B5) reached from these
paths is q, 1 · (q − 1) · q and q · q · (q − 1), respectively. This gives again q3

vertices. (Note that the girth of the graph assures that we did not count
any vertex more than once.) �

Note that the second construction is better than the first one for all three
cases, but improvement is achieved only for t = 1. As we shall see in the
next section, for n = 3 one can generalize Construction 2.3 to t > 1, and
this was already done in [1].

3. The g = 6 case: constructions from a projective plane

This section is devoted to the g = 6 case, that is, generalized triangles.
These are usually called projective planes. It is easy to see that the following
definition is equivalent to that of a generalized 3-gon of order (q, q).

Definition 3.1. Let P be a finite set and L a set of subsets of P called
points and lines, respectively. The pair (P,L) is called a projective plane of
order q, if it satisfies the following axioms.

• there are q + 1 lines through every point and q + 1 points on every
line;

• there is a unique line through any two distinct points and a unique
intersection point of any two distinct lines.

Note that the role of lines and points is symmetric in the definition, hence
for every definition and result we also have a dual definition and result by
changing the words point and line to each other. It is easy to see (either
from the above definition, or from the Moore bound) that the number of
points and lines is q2 + q + 1.

First we give two constructions which only use the definition of projective
planes. They are not new; see the remarks after the constructions.

Construction 3.2. Choose lines l1, . . . , lt through a point p1 and let p2,
. . . , pt be t − 1 other points on l1. Let P0 be the union of points on the lis
(i = 1, . . . , t) and L0 be the set of lines through any pi (i = 1, . . . , t). Then
(P0,L0) is t-good of size tq + 1.

Proof. Take a line e ∈ L1. Then e intersects every line li in one point,
therefore e contains t points of P0. Take a point p ∈ P1. We deleted the t
lines through p going through some pi (1 ≤ i ≤ t). The calculation of the
size is easy. �

This construction is the n = 3 case of Construction 2.2 (from [2]) and
seems to be originally due to Brown [8]. In a recent paper, though with a
different terminology, Abreu, Funk, Labbate and Napolitano give the same
construction [1, Construction (i), p. 126], see Remark 3.5.
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Construction 3.3. Let l1 be a line, p1 /∈ l1, p2, . . . , pt ∈ l, finally, let
l2, . . . , lt be the lines joining p1 to the pis (2 ≤ i ≤ t). Let P0 consist of all
points on the lis and let L0 consist of all the lines through the pis (1 ≤ i ≤ t).
Then (P0,L0) is t-good of size tq + 3 − t.

Proof. Lines in L1 do not contain any pi (1 ≤ i ≤ t), hence they meet
the lis in t different points, while from points in P1 (which are not on any
li (1 ≤ i ≤ t)) we deleted the t lines which connect the point with some pi.
The calculation of the size is easy.

�

This construction, though with a different terminology, can be found in
[1, Construction (ii), p. 126], see Remark 3.5.

Remark 3.4. Note that for t = 1, the second construction is slightly better
than the first one (recall that we need t-good sets as large as possible).
If t = 2, then the two constructions above are the same. This proves a
conjecture of the just mentioned paper [1, Remark 3.7, p. 127], see Remark
3.5.

Remark 3.5. Now we explain the connection of the above constructions to the
ones cited from [1]. For unexplained facts or definitions from finite geometry
we refer to [13]. First let us consider and rephrase the constructions in [1].
Let A = A(q) be the addition table of the finite field GF(q), i.e., the rows and
columns are indexed by the elements of the field and Ai,j = i + j. Similarly,
let M = M(q) be the multiplication table of the multiplicative group GF(q)∗

of GF(q), i.e., Mi,j = ij. Let H be an arbitrary matrix over GF(q) and
let z ∈ GF(q). Define the 0 − 1 matrix Pz(H) by Pz(H)i,j = 1 if and
only if Hi,j = z. Now the matrices corresponding to the two constructions
G∗(q, 1) and G+(q, 1) in [1, p. 126], are the following: substitute every
element Mi,j by PMi,j

(A) in M , and respectively, substitute every element

Ai,j by PAi,j
(M) in A. Let these “blow ups” be denoted by M and A,

respectively. The conjecture in [1], page 127 says that the incidence graphs
of the incidence structures corresponding to these incidence matrices are
isomorphic.

Let us consider M . It is natural to index its rows and columns by pairs
(a, b), a ∈ GF(q)∗, b ∈ GF(q). Now by its definition M (x,y),(m,b) = 1 exactly

when xm = y+b. Now we can see that the rows and columns of M naturally
correspond to the points and lines of the affine plane AG(2, q): the row
(x, y) corresponds to the point (x, y) in AG(2, q), while the column (m, b)
corresponds to the line defined by the equation y = mx−b (i.e., the line with
slope m and y-intercept −b), and a 1 entry in M corresponds to an incident
point-line pair. Since the first coordinates are from GF(q)∗, we do not have
lines having slope 0 or ∞ (i.e., horizontal and vertical lines), furthermore we
do not have points on the y axis. Since PG(2, q) can be viewed as AG(2, q)
and a line at infinity, one can see that the structure related to M comes
from PG(2, q) according to Construction 3.2 with l1 and l2 being the line
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at infinity and the y axis, and p1 and p2 being the points on the line at
infinity corresponding to the parallel classes of vertical and horizontal lines.
One may check easily that A has the same meaning, so the graphs defined
this way (the incidence graphs of the structures described by the incidence
matrices M and A) are isomorphic.

Furthermore, Construction 3.2 (or Construction 3.3) give rise to isomor-
phic structures and graphs for t = 2, independently from the choice of
p1, p2, l1, l2, since the automorphism group of PG(2, q) is well known to be
transitive on the quadruples of points in general position, and so there are
many automorphisms that bring p1, p2 and an arbitrary third point p3 on l2
to p′1, p

′
2 and an arbitrary third point p′3 on l′2, and this implies that P0 and

L0 are transformed into P ′
0 and L′

0, where (P0,L0) and (P ′
0,L′

0) are 2-good
structures given by Construction 3.2.

Remark 3.6. In the second construction ({p1, . . . , pt} , {l1, . . . , lt}) is a so
called degenerate subplane. This can be generalized by taking a subplane
S of order k and deleting all the lines through the points of S and all the
points on the lines which meet S in k+1 points. We do not give any details,
since this gives rise to smaller t-good sets than the previous ones.

We continue with a construction that is better than the previous ones,
but only works when q is a square prime power. First some definitions and
basic facts. A subset B of the points of a projective plane is called a Baer
subplane, if it has size q +

√
q +1 and meets every line in 1 or

√
q +1 points.

Easy calculation shows that through a point out of the set there is a unique
(
√

q + 1)-secant, while through points in the set the number of (
√

q + 1)-
secants is

√
q + 1. Hence the number of (

√
q + 1)-secants is q +

√
q + 1.

After this, one can easily deduce that B, together with its intersections with
(
√

q+1)-secants, forms a projective plane of order
√

q. The (
√

q+1)-secants
are sometimes called the lines of B.

Construction 3.7. Suppose that in our projective plane there are t disjoint
Baer subplanes B1, . . . , Bt with the property that no two of them has a com-
mon (

√
q + 1)-secant. Let P0 consist of the union of the Bis, and L0 of all

lines intersecting one of the Bis in
√

q + 1 points. Then (P0,L0) is t-good
of size t(q +

√
q + 1).

Proof. First of all note that by the above listed properties, all lines meet
P0 in either t or

√
q + t points. Lines in L1 meet any of the t deleted

subplanes in one point, hence we deleted t points from them. Let p ∈ P1

be an arbitrary point not deleted. For every 1 ≤ i ≤ t there is a unique
line through p meeting Bi in

√
q + 1 points, and these lines are different for

different i’s, so there are t lines deleted from p. The calculation of the size
is easy. �

In general, it is not true (or at least not known) that any projective plane
of square order has a Baer subplane, but it is true for the ones coordinatized
by the finite field GF(q). These are denoted by PG(2, q) and can be defined
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as follows. Let V denote a 3-dimensional vector space over GF(q). Let P
and L consist of the 1- and 2-dimensional subspaces of V , respectively, and
define incidence as inclusion. To make lines become subsets of points, one
can identify lines with the set of 1-dimensional subspaces it contains. The
pair (P,L) is a projective plane of order q. When q is square, PG(2, q) does
contain Baer subplanes, all of them are isomorphic to PG(2,

√
q). Moreover,

any two disjoint Baer subplanes have distinct (
√

q + 1)-secants. This is a
particular case of a theorem due to Sved [19]. Even more is true: PG(2, q)
can be partitioned into q −√

q + 1 disjoint Baer subplanes. For more about
projective planes, Baer subplanes and for the proofs of the listed properties,
we refer to [13].

Theorem 3.8. For any square prime power q and t ≤ q − √
q + 1, Con-

struction 3.7 works in the plane PG(2, q).

Proof. By the listed facts about PG(2, q), one can find q − √
q + 1 disjoint

Baer subplanes. Choosing only t of these will be appropriate, since all we
need is that the (

√
q+1)-secants are distinct, and this follows from the above

mentioned result by Sved. �

In [1, Section 4], there is a construction for q = 4, 9 and 16 giving a graph
of the same size as the one in Construction 3.7 here. The authors make a
conjecture which would imply that their construction works for every square
prime power q. Theorem 3.8 shows that a construction giving the same size
exists.

After this, it is natural to ask if one could improve this construction by
finding larger t-good structures. We will prove that, at least for t ≤ 2

√
q,

Construction 3.8 is the best possible. We also want to study, if there are
more constructions. We will prove the following theorems.

Theorem 3.9. In an arbitrary projective plane of order q, every t-good
structure with t ≤ 2

√
q has size at most t(q +

√
q + 1).

Theorem 3.10. In any projective plane a 1-good pair (P0,L0) is one of
those given by Constructions 3.2, 3.3, and 3.7.

Theorem 3.11. In PG(2, q), q > 256, every 2-good structure is one of
those given by Constructions 3.2, 3.3, and 3.7.

In the proof of Theorem 3.9 we will use the so called standard equations.
For any point set S in a projective plane of order q, denote by ni the number
of i-secants to S. Recall that both the number of points and lines is q2+q+1.
By counting the total number of lines, incident pairs (P, l) with P ∈ S, and
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triples (P,Q, l) with P 6= Q ∈ S, we obtain the following three equations:

q+1
∑

i=0

ni = q2 + q + 1,

q+1
∑

i=0

ini = |S| (q + 1) ,

q+1
∑

i=0

i (i − 1) ni = |S| (|S| − 1) .

Proof of Theorem 3.9. For a t-good structure (P0,L0), let n0
i denote the

number of i-secants to P0 in L0 and n1
i the number of i-secants to P0 in L1.

Then the total number of i-secants to P0 is ni = n0
i + n1

i . Since (P0,L0) is
t-good, by definition

(3.1) n1
i =

{

q2 + q + 1 − |L0| for i = t,
0 otherwise.

Using 3.1, the standard equations and |P0| = |L0|, we obtain

q+1
∑

i=0

n0
i = |L0| ,

q+1
∑

i=0

in0
i = |L0| (q + 1 + t) − t(q2 + q + 1),

q+1
∑

i=0

i(i − 1)n0
i = |L0|2 + |L0| (t2 − t − 1) − t(t − 1)(q2 + q + 1).

Using the three equations above we get

0 ≤
q+1
∑

i=0

(i − (
√

q + t))2n0
i

=

q+1
∑

i=0

i(i − 1)n0
i −

q+1
∑

i=0

(2(
√

q + t) − 1)in0
i +

q+1
∑

i=0

(
√

q + t)2n0
i

= |L0|2 + |L0|
[

t2 − t − 1 − (2(
√

q + t) − 1)(q + 1 + t) + (
√

q + t)2
]

+ (q2 + q + 1) [(2t(
√

q + t) − t) − t(t − 1)]

= |L0|2 − 2 [(q + 1)t +
√

q(q −√
q + 1)] |L0| + (q2 + q + 1)(2t

√
q + t2)

= (|L0| − t(q +
√

q + 1)) (|L0| − (t + 2
√

q)(q −√
q + 1)) ;

hence either |L0| ≤ t(q +
√

q + 1) or |L0| ≥ (t + 2
√

q)(q − √
q + 1) (it is

easy to check that the first root is smaller than the second one). Assuming
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0 ≤ t ≤ 2
√

q and |L0| ≥ (t + 2
√

q)(q − √
q + 1), the number of vertices in

the (q + 1 − t)-regular graph induced by L1 and P1 would be

|L1| + |P1| ≤ 2
(

q2 + q + 1 − (t + 2
√

q) (q −√
q + 1)

)

< 2
(

q2 + q + 1 − t(2q − t + 1)
)

= 2
(

(q − t)2 + (q − t) + 1
)

,

contradicting the Moore-bound. Therefore |L0| ≤ t(q +
√

q + 1) must hold.
�

One can characterize equality in the previous bound for PG(2, q) using
the following result due to Blokhuis, Storme and Szőnyi. A subset of the
points of a projective plane is called a t-fold blocking set, if it meets every
line in at least t points. For t = 1, it is simply called a blocking set.

Theorem 3.12. (Blokhuis, Storme, Sznyi [7]) In PG(2, q) a t-fold blocking
set has at least t

(

q +
√

q + 1
)

points for t < 4
√

q/2, and equality holds if and
only if the set is the union of t disjoint Baer-subplanes.

In the proof of Theorem 3.9 equality holds exactly when n0
i 6= 0 ⇐⇒ i =√

q + t, which means that every line in L0 intersects P0 in
√

q + t points.
The lines in L1 meet P0 in t points, hence P0 is a t-fold blocking set.

Corollary 3.13. If t < 4
√

q/2 and (P0,L0) is a t-good structure in PG(2, q)

with |P0| = t
(

q +
√

q + 1
)

, then P0 is the union of t disjoint Baer-subplanes
and the lines in L0 are those that intersect one of the Baer-subplanes in√

q + 1 points, hence we have Construction 3.7.

For the proofs of Theorems 3.10 and 3.11, we need some more definitions
and results about projective planes.

It is easy to check that any blocking set contains at least q + 1 points,
with equality if and only if it is a line.

Theorem 3.14 (Bruen [9]). In any projective plane of order q a blocking
set not containing a line has size at least q+

√
q+1 with equality if and only

if it is a Baer subplane.

Lemma 3.15. Let (P0,L0) be a t-good structure, t <
√

q. Then P0 is a
blocking set.

Proof. Assume that there exists a line l not meeting P0. Then l must be in
L0. Since any point p on l is in P1, there has to be exactly t − 1 lines from
L0 different from l through p, therefore |L0| = 1+(q +1)(t− 1) = tq− q + t.
On the other hand, taking a line e ∈ L1, we can see at least (q + 1 − t)t
deleted lines intersecting e, thus tq + t− t2 ≤ tq − q + t, which cannot occur
for t <

√
q. �

Proof of Theorem 3.10. First note that by Lemma 3.15, P0 is a blocking set.
Since a line not deleted meets P0 in exactly t = 1 points, every line joining
two deleted points has to be deleted, and dually, the intersection of two
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deleted lines is in P0. We distinguish three cases according to the maximum
number ν of points in P0 such that no three of them is collinear:
Case 1. ν = 2.

Then P0 is contained in a line, but since it is a blocking set, it has to be
the full line. It is easy to see that this is Construction 3.2.

Case 2. ν = 3.
In this case |P0| ≤ q + 2, since it cannot contain two pairs of points on
two different lines, since that would imply ν ≥ 4. By Theorem 3.14, P0

has to contain a line, thus |P0| = q + 2. It is easy to see that this is
Construction 3.3.

Case 3. ν ≥ 4.
Assume that P0 contains a full line l. Then by ν ≥ 4, there must be
at least two points of P0 not on l, but then the lines joining these two
points to the points of l are all deleted, thus |L0| ≥ 2q +2, contradicting
the upper bound of Theorem 3.9. Therefore P0 is a blocking set that
does not contain a full line, hence by Theorem 3.14 and Theorem 3.9 it
is a Baer-subplane, i.e., we have Construction 3.7.

�

For the proof of Theorem 3.11, we need one more lemma.

Lemma 3.16. If t = 2 and q ≥ 5, then |P0| = |L0| ≥ 2q + 1 with equality if
and only if we have Construction 3.2.

Proof. Let p ∈ P1. There are q − 1 lines from L1 through p all containing
exactly 2 points of P0, hence |P0| = |L0| = 2q − 2 + c, where c denotes the
number of deleted points on the two deleted lines through p. By Lemma
3.15, P0 is a blocking set, so we can deduce that c ≥ 2. Hence |P0| ≥ 2q with
equality if and only if the two deleted lines through p meet P0 in 1 point.
One can repeat this counting from any p ∈ P1 to deduce that if |P0| = 2q,
then all lines from L0 meet P0 in 1 or q + 1 points. It is easy to see that
this cannot be true for a set of 2q points.

Finally, suppose that |P0| = 2q + 1. The above counting shows that
through a point of P1, the two deleted lines meet P0 in 1 and 2 points,
respectively. Hence lines of L0 are 1-,2-, or (q + 1)-secants to P0. Let
p ∈ P0. There are q + 1 lines through p, so even if they all belong to L0,
one of them has to have at least 2 more points of P0, so we can deduce that
there is a line l ∈ L0 with all of its point in P0. Take any two points from P0

not on l. The line through them contains at least 3 points from P0, hence
all of its points are in P0. Hence the deleted points are exactly the points of
two lines. The dual of this argument implies that the deleted lines are the
lines going through two points. It is easy to see that we have Construction
3.2. �

Recall that for t = 2, Constructions 3.2 and 3.3 are the same. Now we
are ready to prove Theorem 3.11.
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Proof of Theorem 3.11. By Lemma 3.16, a possible counterexample would
have |P0| ≥ 2q+2. But this implies that P0 is a double blocking set: if a line
l had at most 1 point from P0, then, since through the non-deleted points
of l there is exactly one more deleted line, we would have |L0| ≤ q + 1 + q,
a contradiction.

Using the result of Blokhuis, Szőnyi and Storme (Theorem 3.12) for t = 2,
we deduce that |P0| ≥ 2(q +

√
q + 1) with equality if and only if P0 is the

union of two Baer subplanes, that is, we have Construction 3.7. Applying
Theorem 3.9 completes the proof. �

Note that almost everything goes through for an arbitrary projective plane
of order q. The only moment when we had to use that we are in PG(2, q)
is (after deducing that P0 is a double blocking set) when we used the result
of Blokhuis, Storme and Szőnyi.

We end this section by listing some results without proofs, and definitions
which are only interesting from the finite geometry point of view.

The lower bound |L0| ≥ (q + 1 − t)t is sharp if and only if t =
√

q and
P0 consists of the points of a maximal (k,

√
q)-arc. In this case P0 is not a

blocking set. If P0 is a blocking set, then one can add t to the lower bound,
hence |P0| ≥ (q + 2 − t)t for t <

√
q. One can prove that assuming t <

√
q,

this is sharp only if t = 1. However, for t =
√

q+1, a unital and its tangents
form a t-good pair with |P0| = (q + 2 − t)t and in this example P0 is a
blocking set.

Small t-good structures can be constructed using subplanes: delete the
lines through the points of a subplane of order s and the points that are on
the lines intersecting the subplane in s+1 points. This is an (s2+s+1)-good
structure of size (s2 + s + 1)q − (s − 1)(s2 + s + 1).

It is easy to prove that for t < (q +1)/2, if P0 and L0 consist of all points
on t given lines and all lines on t given points, respectively, then (P0,L0)
is t-good if and only if the points and lines in question form a (possibly
degenerate) subplane.

There are t-good structures of size larger than tq+1 when t = (q+1)/2, for
example take the external points and the secants of an oval. Note that the
graph constructed in this way is quite far from the Moore bound, since t is
large. However, considering this in PG(2, q), where the oval is a conic arising
from a polarity, one can identify the secants and the external points using
the polarity. The graph obtained is regular of girth five exactly when q ≡
3 (mod 4). Replacing the external points with internal points and secants
with skew lines, we get a similar example which works for q ≡ 1 (mod 4).
This construction is due to Jason Williford (see [18]).

4. The g = 8 case: constructions from a generalized
quadrangle

In this section we first give the necessary definitions and recall some re-
sults about generalized quadrangles. It is straightforward to check that the
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following definition is equivalent to the one given in the introduction (for
g = 8).

Definition 4.1. Let P be a finite set and L a set of subsets of P called points
and lines, respectively. The pair (P,L) is called a generalized quadrangle of
order (s, t), if it satisfies the following axioms:

• there are s + 1 lines through every point;
• every line has t + 1 points;
• for any point p and line l not through p, there is a unique line through

p intersecting l.

Note that the role of points and lines in the definition of a generalized
quadrangle is symmetric, hence interchanging the role of points and lines,
one finds another generalized quadrangle (of order (t, s)). This generalized
quadrangle is not necessarily isomorphic to the original one even if s = t
holds. Taking any definition or result, one can integerchange the words point
and line to find a dual definition or result.

The point-line incidence graph of such a structure is a Moore graph (with
g = 8 and k = s + 1) if and only if s = t. So from now on we suppose that
s = t; in this case one usually says that the generalized quadrangle has order
s and denote the structure by GQ(s).

For any subset of the points U , U⊥ denotes the set of points collinear
with all points of U , and U⊥⊥ the set of points collinear with all points of
U⊥. One can similarly define W⊥ and W⊥⊥ for a set W of lines. Next we
summarize some easy consequences of the definition.

Lemma 4.2. Let GQ(s) be a generalized quadrangle of order s. Then

(i) there are (s + 1)(s2 + 1) points (respectively lines);
(ii) for any two non-collinear points u and v,

∣

∣{u, v}⊥
∣

∣ = s + 1;

(iii) for any two non-collinear points u and v,
∣

∣{u, v}⊥⊥
∣

∣ ≤ s + 1;

(iv) for any two skew lines l and m,
∣

∣{l,m}⊥
∣

∣ = s + 1;

(v) for any two skew lines l and m,
∣

∣{l,m}⊥⊥
∣

∣ ≤ s + 1.

Proof.

(i) Fix a point p. There are s + 1 lines through p, hence the number
of collinear points to p is 1 + (s + 1)s. By the third axiom of GQ-s,
all lines not through p have a unique point collinear to p, hence the
number of lines is s + 1 + (s + 1)s2 = (s + 1)(s2 + 1). The number
of points is the same by duality.

(ii) There are s + 1 lines through v, all of them have a unique point
collinear to u.

(iii) Choose two different points a, b ∈ {u, v}⊥. Then {u, v}⊥⊥ ⊆ {a, b}⊥,
hence (ii) implies (iii).

(iv),(v) These are the dual of (ii) and (iii).

�
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A non-collinear point-pair u, v is called regular if
∣

∣{u, v}⊥⊥
∣

∣ = s+1 holds.
One can similarly define a regular line-pair. Next we list some properties of
regular pairs that will be needed for our constructions.

Lemma 4.3. Suppose the point-pair (u0, u1) is regular and let {u0, u1}⊥ =
{v0, . . . , vs}, {u0, u1}⊥⊥ = {u0, . . . , us}. Denote by L′ the set of lines joining
a point ui to a point vj.

(i) Any ui is collinear to any vj, but no different ui and uj or vi and vj

can be collinear.
(ii) L′ contains (s + 1)2 lines;
(iii) for any ui, uj (i 6= j), {ui, uj}⊥ = {v0, . . . , vs}, and for any vi, vj

(i 6= j), {vi, vj}⊥ = {u0, . . . , us};
(iv) all lines through an ui or vi are in L′;
(v) through any point not in {u0, . . . , us}∪{v0, . . . , vs}, there is a unique

line in L′.

Proof.

(i),(ii) Any ui is collinear to any vj by definition of the orthogonal of a set.
If an ui and an uj were collinear, then the line joining them and any
vk would contradict the third axiom of GQ-s.

(iii) This follows from (i) and Lemma 4.2 (ii).
(iv) Note that there are s+1 lines through a point, and we see s+1 lines

through any ui or vi in L′.
(v) First suppose that there are at least two lines in L′ through a point

p /∈ {u0, . . . us}∪{v0, . . . vs}. Without loss of generality suppose that
p is collinear to ui and uj. Then {ui, uj}⊥ contains at least s + 2
points, contradicting Lemma 4.2 (ii). Hence the number of points
on the lines of L′ is 2(s + 1) + (s + 1)2(s − 1) = (s + 1)(s2 + 1), this
is the number of points of GQ(s), hence every point is on a line of
L′.

�

Construction 4.4. Suppose the GQ(s) has a regular point-pair (u, v). Fix
a point p /∈ {u, v}⊥ ∪ {u, v}⊥⊥. Let P0 = {u, v}⊥ ∪ {u, v}⊥⊥ ∪ p⊥. Let L0

consist of lines joining a point of {u, v}⊥ to a point of {u, v}⊥⊥ together
with lines through p. Then (P0,L0) is 1-good with |P0| = |L0| = s2 +3s+1.

Proof. By Lemma 4.3, through a point q ∈ P1 there is exactly one line
joining a point of {u, v}⊥ to a point of {u, v}⊥⊥ (and no lines through p,
since points collinear to p were deleted). For a line l ∈ L1, there is a unique
line through p meeting l by the definition of generalized quadrangles. For
the size, note that by Lemma 4.3, there is a unique line through p joining a
point of {u, v}⊥ to a point of {u, v}⊥⊥. Hence |L0| = (s + 1)2 + s + 1− 1 =
s2 + 3s + 1. �

Construction 4.5. Suppose the GQ(s) has a regular point-pair (u, v) and a
regular line pair (l,m). Suppose also that there are no points from {u, v}⊥∪
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{u, v}⊥⊥ on the lines of either {l,m}⊥ or {l,m}⊥⊥. Let P0 consist of the
points from {u, v}⊥ ∪ {u, v}⊥⊥ together with points from lines in {l,m}⊥ ∪
{l,m}⊥⊥. Dually, let L0 consist of the lines from {l,m}⊥∪{l,m}⊥⊥ together
with lines through points of {u, v}⊥∪{u, v}⊥⊥. Then (P0,L0) is 1-good with
|P0| = |L0| = s2 + 4s + 3.

Proof. Let p ∈ P1. By Lemma 4.3, there is a unique line joining a point of
{u, v}⊥ to a point of {u, v}⊥⊥, and since p is not in P0, there is no line in
{l,m}⊥ ∪{l,m}⊥⊥ through p. Hence there are s lines in L1 through p. The
dual of this argument (using the dual of Lemma 4.3) implies that on any
line in L1 there are exactly s points. The calculation of the size is easy. �

Looking through the literature of generalized quadrangles, it turns out
that examples with both regular point- and line-pairs only exist for q even.
Here we show an example where our constructions work.

Definition 4.6. The symplectic generalized quadrangle of order q denoted
by W(q) is the following: as point-set, we take all points of the 3-dimensional
projective geometry PG(3, q). The lines are the totally isotropic lines with
respect to a symplectic polarity of PG(3, q).

W(q) is a generalized quadrangle of order q. For the proof of this last
statement and further properties of W(q), we refer to [4].

Theorem 4.7. In W(q), Construction 4.4 always works. Construction 4.5
works if and only if q is even.

Proof. By [17], all point-pairs are regular of W(q), and the sets {u, v}⊥
and {u, v}⊥⊥ consist of points of a non-symplectic line l and points of l⊥,
respectively. There is at least one regular line-pair if and only if all line pairs
are regular if and only if q is even.

If q is even, then for two skew lines l and m of W(q), the sets {l,m}⊥ and
{l,m}⊥⊥ are the two opposite reguli on a hyperbolic quadric. Hence after
choosing l and m for Construction 4.5, all we have to do is choose u and v to
be two points determining a non-isotropic line disjoint from the hyperbolic
quadric in question. �

5. Order of (k, g)-cages

In this section we summarize the consequences of our constructions. All
improvements depend on how close a prime power is to k.

Theorem 5.1. Denote by q the smallest prime power greater or equal to
k − 1. If q is a square, then

c(k, 6) ≤ 2 (kq − (q − k)(
√

q + 1) −√
q) .

Proof. We need to delete t Baer subplanes from PG(2, q) using Construction
3.7 (see also Theorem 3.8) with t = q + 1 − k. Hence the number of points
of the incidence graph of the resulting structure is

2
(

(q2 + q + 1) − (q + 1 − k)(q +
√

q + 1)
)

.
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A little calculation shows that this equals the formula stated. �

If the smallest prime power q ≥ k − 1 is not a square, then one can use
(the previously known) Construction 3.3 to find an upper bound on c(k, 6).

Note that it is very rare that the smallest prime power q ≥ k − 1 is a
square. If q is not a square, then even if q + 1 is a square prime power, and
Constructions 3.3 and 3.2 starting from a plane of order q are better than
Construction 3.7 starting from a plane of order q + 1.

By Theorem 3.9, one cannot hope for a better bound on c(k, 6) using
the same construction method. However, there is one example known when
c(k, 6) is smaller than the one coming from Theorem 5.1: there is a construc-
tion due to Baker [3] (see also [18]) for a (7, 6) graph (which is a regular graph
of valency 7 and girth 6) with 90 vertices. Our method would start with a

plane of order 7, and even if there was a Baer subplane of order
√

7, Con-
struction 3.7 would give a graph on 2

(

(72 + 7 + 1) − (7 +
√

7 + 1)
)

≈ 92.7
vertices.

Theorem 5.2. Suppose that k is a prime power. If k is even, then c(k, 8) ≤
2(k3 − 3k − 2). If k is odd, then c(k, 8) ≤ 2(k3 − 2k).

Proof. One should start with W (k) and use Construction 4.4 or 4.5 according
to whether k is odd or even (see also Theorem 4.7). Hence the number of
points of the incidence graph of the resulting structure is 2(k3 + k2 + k +
1) − 2 |P0|. �

Finally, our slight improvement for the g = 12 case is the following.

Theorem 5.3. Suppose k is a prime power. Then c(k, 12) ≤ 2(k5 − k3).

Proof. One should start with a generalized hexagon of order k and use Con-
struction 2.3. �

Acknowledgement

We thank Tamás Szőnyi for his many suggestions and help.

References

1. M. Abreu, M. Funk, D. Labbate, and V. Napolitano, On (minimal) regular graphs of
girth 6, Australas. J. Combin. 35 (2006), 119–132.
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