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THE SUM-PRODUCT PHENOMENON IN ARBITRARY
RINGS

TERENCE TAO

Abstract. The sum-product phenomenon predicts that a finite set A
in a ring R should have either a large sumset A + A or large product
set A ·A unless it is in some sense “close” to a finite subring of R. This
phenomenon has been analysed intensively for various specific rings, no-
tably the reals R and cyclic groups Z/qZ. In this paper we consider the
problem in arbitrary rings R, which need not be commutative or contain
a multiplicative identity. We obtain rigorous formulations of the sum-
product phenomenon in such rings in the case when A encounters few
zero-divisors of R. As applications we recover (and generalise) several
sum-product theorems already in the literature.

1. Introduction

1.1. The sum-product phenomenon. Let R = (R, 0,+,−, ·) be a ring
(which need not be commutative, and need not contain a multiplicative
identity 1). Given any sets A,B ⊂ R, we define the sum set

A+B := {a+ b : a ∈ A, b ∈ B},

the difference set

A−B := {a− b : a ∈ A, b ∈ B},

and the product set

A ·B := {ab : a ∈ A, b ∈ B}.

We also define the iterated sum sets and iterated product sets

nA := A+ · · ·+A; An := A · · · · ·A
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for n ≥ 1, with the convention 0A := {0}. We also write r · A := {r} · A,
A · r := A · {r}, and r + A = A+ r := A+ {r} for any ring element r ∈ R.
If A is a finite set, we use |A| to denote the cardinality of A.

We let R∗ denote the collection of non-zero-divisors of R, i.e. the elements
r ∈ R such that ra, ar 6= 0 whenever a 6= 0. Observe that R∗ is closed under
multiplication, and that |r ·A| = |A · r| = |A| for any r ∈ R∗ and finite A.

If A is a finite subring of R, then clearly |A+A| = |A| and |A ·A| ≤ |A|,
with equality holding in the latter case if A contains at least one non-zero-
divisor. The same holds if A is a dilate r ·R or R ·r of a commutative ring for
some non-zero-divisor r. The remarkable sum-product phenomenon asserts
a robust converse to this simple observation in many cases: very roughly
speaking, it asserts that if A is a finite non-empty subset of a suitable ring
R with A + A and A · A both having size comparable to A, then A should
be “very close” to a ring (or a dilate of a ring), for instance A might be
contained in a finite ring (or dilate of a finite ring) of size comparable to A.

1.2. Prior results. The first rigorous demonstration of the sum-product
phenomenon was by Erdős and Szemerédi [45] in the ring of integers Z, in
which of course there are no non-trivial finite subrings. In this context they
showed that for any finite non-empty set A ⊂ Z, one had |A+A|+ |A ·A| ≥
c|A|1+ε|A| for some c, ε > 0, and conjectured that one can in fact take
ε arbitrarily close to 1. There is a substantial further literature on this
problem [47], [58], [42], [39], [59], [44], [43], [29], [27], [28], [14], [15], [30],
[34], [67], [36], [57], [38], [64]; for instance, Solymosi [64] recently showed that
ε can be taken arbitrarily close to 1/3 (and that the integers can be replaced
with the reals). See [36] for a brief survey of some other recent results in
this direction. For a continuous version of the sum-product phenomenon in
R (related to the Erdős-Volkmann ring conjecture [46] first solved in [41]),
see [3]; this result has applications to geometric measure theory [55] and the
theory of invariant measures [19] and spectral gaps [21].

For the complex numbers C, Solymosi also showed in [65] that one can
take ε arbitrary close to 1/4. An earlier result of Chang [32] takes ε arbitrar-
ily close to 1/54, but allows R to be either C or the quarternion algebra, and
also gives similar results (with non-explicit values of ε) for finite-dimensional
division algebras over R; see also another paper of Chang [31] which achieves
a similar result for semi-simple commutative Banach algebras over R or C,
and in particular in the infinite product spaces RZ and CZ. On the other
hand, it was observed in [31] that ε cannot exceed 1− log 2

log 3 in those spaces.
When R is a matrix ring over R or C, it was shown in [35] that |A +

A| + |A · A| ≥ f(|A|)|A| whenever (A − A)\R∗ = {0}, for some function
f(x) depending on R which goes to infinity as x →∞; in the case when A
consisted entirely of real symmetric matrices, one could take f(x) = cxε for
some c, ε > 0 depending on R (as in previous sum-product results). In the
slightly different context of multiplicative matrix groups rather than rings,
it was shown in [37] that when A ⊂ SL3(Z) was a finite non-empty set, then
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|A ·A ·A| ≥ c|A|1+ε unless a large subset of A was contained in a coset of a
nilpotent subgroup; a similar result was also established for R = SL2(C) in
the same paper, in which the nilpotent subgroup was now abelian.

Now we turn to the case of finite characteristic. In the case when R is
a finite field of prime order, which has no non-trivial subrings other than
the full ring R, it was shown in [25], [26], [24] that for every δ > 0 there
exists ε > 0 and c > 0 such that |A + A| + |A · A| ≥ c|A|1+ε for all finite
non-empty A ⊂ R with |A| ≤ |R|1−δ. (Some upper bound on |A| is of
course necessary since |A+ A| and |A · A| clearly cannot exceed |R|.) This
estimate has numerous applications to exponential sums, number theory,
combinatorics, and computer science; see [4], [5], [6], [8], [16], [9], [12], [20],
[22], [11]. In [49], it was shown that one could take ε arbitrarily close to 1/14
if δ > 6/13; a slight variant of this argument in [54] showed that one can take
ε arbitrarily close to 1/13 if δ > 1/2, and in [23] it was shown that one can
take ε arbitrarily close to 1/12 if δ > 11/23 and A+A is replaced by A−A.
In [48] it was shown that one could take ε = δ/2 if δ < 1/3. Variants of these
results for elliptic curves, or for exponentiated versions of the sum-product
problem in finite fields, were obtained in [62], [63], [1]; generalisations to
other polynomials than the product operation were considered in [68]. Also,
in [69] a general embedding theorem was established which allowed one to
transfer sum-product type theorems in finite fields to commutative integral
domains of characteristic zero.

When R is a more general finite field, the situation is more complicated
due to the presence of non-trivial rings of intermediate size, namely the
subfields of R and their dilates. In [25, Theorem 4.3] it was shown that if
A ⊂ R is non-empty with |A+A|+ |A ·A| ≤ K|A| and |A| ≥ |R|δ then there
must be a subfield F of R of size |F | ≤ KOδ(1)|A| and an invertible element a
of F such that A ⊂ a·F+O(KOδ(1)), where O(N) denotes a non-empty set in
R of cardinality O(N), and the subscripts in the O() notation indicate that
the implied constants can depend on δ. In the converse direction, observe
that if A ⊂ a · F + O(KO(1)) then |A + A| + |A · A| = O(KO(1)|F |), so
this result is sharp up to polynomial factors in K and dependence on δ. In
[67, Theorem 2.55] the hypothesis |A| ≥ |R|δ was removed, with the result
also extending to infinite fields R (thus recovering in particular some of the
sum-product theory in Z, R, and C). In [53] the following explicit variant
was established: if |A + A| + |A · A| ≤ c|A|1+ 1

48 for some sufficiently small
absolute constant c > 0, then there exists a set A′ ⊂ A with |A′| ≥ |A|1−

1
48

and a subfield F of R of size |F | ≤ |A′|2 such that A′ ⊂ a · F + b for some
a, b ∈ R. Other results of sum-product type in finite fields (or bounded
dimensional vector spaces over such fields) in the case when A is large (e.g.
|A| > |F |1/2) were obtained in [50], [51], [40].

The case of more general cyclic rings R = Z/qZ than the fields of prime
order is considered in [17], [16], [22], [13]; in particular, it was shown in [13]
that if A ⊂ R and 1 ≤ |A| ≤ |R|1−δ1 , and |πq1(A)| ≥ qδ21 for all q1|q with
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q1 ≥ qε for some sufficiently small ε = ε(δ1, δ2) > 0, where πq1 : R→ Z/q1Z
is the projection homomorphism, then |A + A| + |A · A| ≥ qδ3 |A| for some
δ3 = δ3(δ1, δ2) > 0. Similar results for rings such as R = Z/pZ× Z/pZ also
appear in [4], [5], [8]. Applications of these estimates to exponential sums
appear in [18], [7], [13], [10].

Finally, we mention the result of Helfgott [52] that shows that if A ⊂
SL2(Fp) with |A| ≤ p3−δ, and A is not contained in any proper subgroup,
then |A · A · A| ≥ c|A|1+ε for some c, ε > 0 depending only on δ > 0.
This result (and variants for other groups, including continuous groups such
as SU(2)) has applications to expander graphs, sieving, and diophantine
approximation: see [20], [22].

1.3. New results. In this paper we study the sum-product phenomenon
in arbitrary rings R, which need not be commutative or to contain a multi-
plicative identity 1. In doing so one must make some sort of assumption to
avoid too many zero divisors; in the most extreme case, when the product
operation is identically zero, then A · A is always just {0}. There does not
appear to be any canonical way to get around this issue; for us, it will be
convenient to make two (related) non-degeneracy assumptions. The first is
that A ·A is not much smaller than A; the other is that A−A does not have
an extremely large number of zero-divisors. These assumptions seem to be
reasonable in situations in which the set of zero-divisors in R is very sparse;
it would be of interest to weaken our hypotheses to handle rings with many
zero-divisors1, but we will not do so here.

Our results are of the following general form: if A is a finite non-empty
subset of a ring R for which certain additive and multiplicative combinations
of A are small, and A is non-degenerate in the sense described above, then
A can be efficiently contained in a ring, or a slight modification of a ring.

The simplest case is if we assume that A+A ·A is small (comparable to
A in size). Examples of such sets include finite subrings S ⊂ R of R, as well
as dense subsets of such rings. Our first result, roughly speaking, asserts (in
the non-degenerate case) that these are in fact the only such sets with this
property.

Theorem 1.1 (Inhomogeneous sum-product theorem). Let R be a ring, and
let A ⊂ R be finite and non-empty. Suppose that |A + A · A| ≤ K|A| and
|A · A| ≥ |A|/K for some K ≥ 1. Then at least one of the following holds
for some absolute constant C > 0:

(i) (A−A has many zero divisors) We have |(A−A)\R∗| ≥ C−1K−C |A|;
or

(ii) (Subring structure) There exists a finite subring S of R such that
A ⊂ S and |S| ≤ CKC |A|.

1In particular, our results here do not fully recover the results in Z/qZ mentioned
above in the case when q has many small divisors. Indeed, it seems to the author that
this case requires a genuinely multiscale analysis and so may in fact be beyond the purely
elementary approach used here.
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Note in the converse direction that if A ⊂ S for some finite subring S
and |S| ≤ K|A|, then |A+ A · A| ≤ |S| ≤ K|A|, and so the conclusion here
is reasonably sharp up to polynomial losses. Also, the hypothesis |A · A| ≥
|A|/K is automatic if A contains at least one non-zero-divisor.

The hypothesis that A+A ·A is small is inhomogeneous in the sense that
it is not preserved by dilations A 7→ r · A (of course, the property of being
a subring is also not homogeneous). Let us now consider the homogeneous
case when A ·A−A ·A is small; examples of such sets A include dilates a ·S
of finite rings S for an invertible element a (assuming R has an identity),
as long as a normalises S in the sense that a · S = S · a. We can obtain
a converse to this claim, similarly to Theorem 1.2, under the additional
assumption that A contains an invertible element:

Theorem 1.2 (Homogeneous sum-product theorem with invertible ele-
ment). Let R be a ring with identity, and let A ⊂ R be finite and non-empty.
Suppose that |A · A − A · A| ≤ K|A| and |A · A| ≥ |A|/K for some K ≥ 1.
Suppose also that A contains an invertible element a. Then at least one of
the following holds for some absolute constant C:

(i) (A−A has many zero divisors) We have |(A−A)\R∗| ≥ C−1K−C |A|;
or

(ii) (Subring structure) There exists a finite subring S of R such that
A ⊂ a · S = S · a and |S| ≤ CKC |A|.

Now we consider the homogeneous case in more generality, when R need
not contain an identity and A need not contain an invertible element. In
this case, there are more examples of sets that have good additive and
multiplicative properties. For instance, if S is a finite ring and S[t] :=
{
∑d

n=0 ant
n : a0, . . . , ad ∈ S; d ≥ 0} is the polynomial ring generated by S

and a formal variable t that commutes with S, then the set A := S · t in the
ring S[t] · t of polynomials with no constant term is such that |A + A|, |A ·
A|, |A · A − A · A| ≤ |A|, but S[t] · t contains no non-trivial finite subrings.
Of course, this obstruction is artificial in nature because the ambient ring
S[t] · t can be embedded in a larger ring, such as the polynomial ring S[t] or
the Laurent polynomial ring S(t) generated by S, t, and a formal inverse t−1

to t, which does contain finite subrings, in particular the ring S of constant
polynomials, and once we embed into this larger ring, then A does become
efficiently captured by a dilate of a subring.

A generalisation of the above example occurs when one has a finite ring
S with an (outer) ring automorphism φ : S → S. Then one can form the
twisted polynomial ring S[t]φ generated by S and a formal variable t with the
relations ta = φ(a)t for all a ∈ S, or the larger twisted Laurent polynomial
ring S(t)φ generated by S, a formal variable t, and its formal inverse t−1

with the relations ta = φ(a)t (or equivalently at−1 = t−1φ(a)) for all a ∈ S.
Then, as before, the set A := S · t = t · S in the ring S[t]φ · t is such that
|A+A|, |A ·A|, |A ·A−A ·A| ≤ |A|, but A is not contained efficiently in a
dilate of a subring until one embeds that ring into S[t]φ or S(t)φ.
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We can now present a converse statement.

Theorem 1.3 (Homogeneous sum-product theorem in general). Let R be a
ring, and let A ⊂ R be finite and non-empty. Suppose that |A ·A−A ·A| ≤
K|A| and |A·A| ≥ |A|/K for some K ≥ 1. Then at least one of the following
holds for some absolute constant C > 0:

(i) (A−A has many zero divisors) We have |(A−A)\R∗| ≥ C−1K−C |A|;
or

(ii) (Ring structure in a Freiman model) There exists a finite ring R0

of cardinality between |A| and CKC |A|, an outer automorphism φ :
R0 → R0 of that ring, and embeddings ιn : 〈An〉 → R0 · tn from
the additive group 〈An〉 generated by the n-fold product set An :=
A · · · · ·A to the degree n component R0 · tn of the twisted polynomial
ring R0[t]φ such that the ιn are additive homomorphisms, and that
ιn(gn)ιm(gm) = ιn+m(gngm) for all n,m ≥ 1 and all gn ∈ 〈An〉 and
gm ∈ 〈Am〉.

Observe that if A,R0, φ, ιn are as in (ii), then A · A − A · A ⊂ 〈A2〉 has
cardinality at most |R0| ≤ CKC |A|, so the conclusion (ii) is efficient up to
polynomial losses. It may be possible to combine all the separate embeddings
ιn : 〈An〉 → R0 · tn into a single embedding of the ring generated by A into
some suitable ring extension of R0, but we were not able to achieve this, and
in any event the “Freiman-type” or “graded ring homomorphism” collection
of embeddings ιn (somewhat analogous to the embeddings ιn : nA → nB
associated to a Freiman isomorphism ι1 : A → B of order at least 2n, see
[67, Section 5.3]) suffice for the purposes of studying (homogeneous) iterated
sum and product sets of A.

Finally, we return to the traditional hypotheses for the sum-product phe-
nomenon, in which we wish to classify the cases in which A + A and A · A
are small. For this we record a non-commutative version of the “Katz-Tao
lemma” originating in [55] (see also [25]) and then simplified in [8] (see also
[67, Lemma 2.53]), which lets us pass from a set A with A + A and A · A
both small, to a slightly smaller set A′ with A′ · A′ − A′ · A′ both small, as
long as we first throw away all zero divisors:

Lemma 1.4 (Katz-Tao lemma). Let R be a ring, and let A ⊂ R∗ be a finite
non-empty set of non-zero-divisors such that |A+A|, |A·A| ≤ K|A| for some
K ≥ 1. Then one of the following holds:

(i) (A − A has many zero divisors) |(A − A)\R∗| ≥ C−1K−C |A| for
some absolute constant C > 0;

(ii) (Existence of good subset) There exists a subset A′ of A such that
|A′| ≥ |A|/2K and |A′ ·A′ −A′ ·A′| = O(KO(1)|A′|).

The commutative version of this claim (without the need for the option
(i)) was established in [67, Lemma 2.53]. We do not know if the option (i)
can similarly be removed in the noncommutative setting; one may need to
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first strengthen the bound |A · A| ≤ K|A| to |A · A · A| ≤ K|A| for this (cf.
[66]).

Our methods here are elementary, relying entirely on Plünnecke-Ruzsa
sum set theory (see e.g. [67, Chapter 2] for a detailed treatment of this
topic), and an analysis of certain key sets Sr defined in (3.1), which roughly
speaking contain the elements x ∈ R for which x ·A and r ·A are “parallel”.

These elementary methods are able to treat sum-product estimates in any
ring that does not have too many “scales”; the sum-product phenomenon
in multi-scale situations such as continuous subsets of R [3], or subsets of
Zmp , Zp[t]/〈tm〉 or Zpm [7] for large m seem to require a more sophisticated
analysis which we do not study further here, due to the presence of many
zero-divisors. By the same token, however, due to the soft and elemen-
tary nature of our methods, our results do not distinguish between finite or
infinite rings, or between zero characteristic and positive characteristic.

1.4. Organisation of the paper. In Section 2 we recall the (standard)
sum set estimates from Plünnecke-Ruzsa theory that we shall need, together
with a proof of Lemma 1.4 in Section 2.1. In Section 3 we prove the key
proposition, Proposition 3.1, that analyses the sets Sr mentioned above,
allowing us to quickly prove our main theorems in Section 4. In the final
section, Section 5, we specialise our theorems to specific rings such as division
rings (or boundedly many products of division rings), cyclic groups, and
algebras, to illustrate the results and also to recover some (but certainly not
all) of the earlier sum-product results in the literature.

2. Sum set estimates

We recall some basic estimates from the Plünnecke-Ruzsa theory of sum
set estimates, as recorded for instance in [67, Chapter 2].

Lemma 2.1 (Ruzsa triangle inequality). [60] If A,B,C are finite non-empty
subsets of an additive group G, then |A− C| ≤ |A−B||B − C|/|B|.

Proof. From the identity a− c = (a− b) + (b− c) we see that every element
of A−C has at least |B| representations as the sum of an element of A−B
and an element of B − C. The claim follows. �

Lemma 2.2 (Ruzsa covering lemma). [61] If A,B are finite non-empty
subsets of an additive group G, then A ⊂ B −B + O( |A+B|

|B| ), and similarly

A ⊂ B − B + O( |A−B||B| ). (Recall that O(N) denotes an unspecified finite
non-empty set of cardinality O(N).)

Proof. Let X be a maximal subset of A with the property that the sets
x + B for x ∈ X are disjoint. One easily verifies that |B||X| ≤ |A + B|
and that A ⊂ B − B + X, and the first claim follows. The second claim
follows by replacing B by −B (note that B −B remains unchanged by this
reflection). �
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Lemma 2.3 (Plünnecke-Ruzsa sumset estimate). Let A,B be finite non-
empty subsets of an additive group such that |A + B| ≤ K|A| and B ≥
|A|/K. Then one has |n1A−n2A+n3B−n4B| ≤ KOn1,n2,n3,n4 (1)|A| for all
n1, n2, n3, n4 ≥ 0.

Proof. See e.g. [67, Proposition 2.27]. �

We will also routinely use elementary identities and inclusions in rings R
such as

A ·B ±A · C ⊂ A · (B ± C)

a ·A± a ·B = a · (A±B)

(A ·B) · C = A · (B · C)

(A+B) + C = A+ (B + C)
A+B = B +A

O(N) + O(M),O(N) ·O(M) = O(NM)

for A,B,C ⊂ R, a ∈ R, and N,M ≥ 1 without any further comment.
Remark: There is also a non-commutative version of the above theory for
use in multiplicative groups, see [66]. We will avoid using this theory here,
though, since the multiplicative structure of a ring is not quite as strong
as that of a group, even if we restrict to the cancellative semigroup R∗ of
non-zero-divisors. It seems of interest to develop such a theory for this
semigroup, though.

2.1. Proof of Lemma 1.4. We can now prove Lemma 1.4. Let A,K be as
in that lemma. From the identities

|A|2 =
∑
x∈A·A

|{(a, b) ∈ A×A : ab = x}|

and ∑
x∈A·A

|{(a, b) ∈ A×A : ab = x}|2 =
∑
a,b∈A

|a ·A ∩A · b|

we conclude that ∑
a,b∈A

|a ·A ∩A · b| ≥ |A|4

|A ·A|
≥ |A|3/K.

Since |a · A ∩ A · b| ≤ |A|, we conclude that |a · A ∩ A · b| ≥ |A|/2K for at
least |A|2/2K pairs (a, b). By the pigeonhole principle again, we can find
b0 ∈ A such that the set

A′ := {a ∈ A : |a ·A ∩A · b| ≥ |A|/2K}

has cardinality at least |A|/2K.
Now let a, a′ ∈ A′. Then

|(a ·A ∩A · b) +A · b| ≤ |(A+A) · b| ≤ K|A|
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and

|(a ·A ∩A · b) + a ·A| ≤ |a · (A+A)| ≤ K|A|

and thus by the Ruzsa triangle inequality (Lemma 2.1) we have

|a ·A−A · b| ≤ O(KO(1))|A|

and thus by the covering lemma (Lemma 2.2)

(2.1) a ·A ⊂ A · b−A · b+ O(KO(1)).

Similarly

a′ ·A ⊂ A · b−A · b+ O(KO(1)).

Multiplying the latter by a we conclude

aa′ ·A ⊂ a ·A · b− a ·A · b+ O(KO(1))

and hence by (2.1) we have

aa′ ·A ⊂ A · b2 −A · b2 +A · b2 −A · b2 + O(KO(1)).

Thus if a′′, a′′′ are also in A′ then

(aa′ − a′′a′′′) ·A ⊂ (4A− 4A) · b2 + O(KO(1)).

In other words, for each d ∈ A′ ·A′ −A′ ·A′ we have

d ·A ⊂ (4A− 4A) · b2 + O(KO(1)).

By the pigeonhole principle, for each such d we can find x ∈ R and2 �
K−O(1)|A| elements a in A such that da ∈ (4A − 4A) · b2 + x, and thus we
can find� K−O(1)|A|2 pairs a, a′ ∈ A such that d(a−a′) ∈ (8A−8A)·b2, and
thus there are� K−O(1)|A| elements f of A−A such that df ∈ (8A−8A)·b2.
Since we may assume we are not in option (i) for some suitable choice of
constants c, C > 0, we conclude that there are � K−O(1)|A| pairs (f, g) ∈
(A − A) ∩ R∗ × (8A − 8A) such that df = gb2. But each pair (f, g) can be
associated to at most one d, thus

|A′ ·A′ −A′ ·A′| � KO(1)|A−A||8A− 8A|/|A|

and hence by sumset estimates (Lemma 2.3)

|A′ ·A′ −A′ ·A′| � KO(1)|A|,

and the lemma follows.

2Here and in the sequel we use X � Y or Y � X to denote the estimate X ≤ CY for
some constant C.
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3. The key proposition

Our analysis of sets A with good additive and multiplicative properties
will hinge around the properties of certain very structured sets Sr associated
to each ring element r ∈ R, which roughly speaking corresponds to the
“dilate” of A (or of the “completion” of A) that contains r. The precise
structure theory we need is contained in the following proposition.

Proposition 3.1 (Basic construction). If C0 > 0 is a sufficiently large
constant, then the following statements hold. Let R be a ring, and let A ⊂
R be a non-empty finite set. Suppose that |A · A − A · A| ≤ K|A| and
|A ·A| ≥ |A|/K for some K ≥ 2, and suppose that |(A−A)\R∗| < K−C0 |A|.
For each r ∈ R, define the set

(3.1) Sr := {x ∈ R : |x ·A+ r ·A| ≤ KC0 |A|}.
(i) (Self-improving property) If r ∈ R∗ and x ∈ Sr, then |x ·A+ r ·A| ≤

KO(1)|A|.
(ii) (Size bound) If r ∈ R∗, then |Sr| ≤ KO(1)|A|; in particular, Sr is

finite.
(iii) (Additive structure) If r ∈ R∗, then Sr is an additive group.
(iv) (Ring structure) If R has an identity 1, then S1 is a ring.
(v) (Right-multiplicative structure) If r ∈ R∗ and a ∈ (A−A)∩R∗, then

Sr · Sa ⊂ Sra.
(vi) (Left-multiplicative structure) If r, s ∈ R then s · Sr ⊂ Ssr.
(vii) (Reflexivity) For every r ∈ R, we have r ∈ Sr.

(viii) (Symmetry) If r, s ∈ R, then r ∈ Ss if and only if s ∈ Sr.
(ix) (Transitivity) If r, s ∈ R∗ and Sr ∩ Ss ∩R∗ 6= ∅, then Sr = Ss.

Remark: The results here can be viewed as a refinement of the analysis of the
“good” elements x (for which x ·A ⊂ A−A+O(KO(1))) in [25, Proposition
3.3].

Proof. We first make the observation that if |A ·A−A ·A| ≤ K|A|, then by
sum set estimates (Lemma 2.3) we have |A·A+A·A−A·A−A·A| ≤ KO(1)|A|
and thus |(A−A) · (A−A)| ≤ KO(1)|A|. Since A−A contains at least one
element in R∗, we conclude in particular that

(3.2) |A−A| ≤ KO(1)|A|.
We now show the (crucial3) self-improving property (i). Let r ∈ R∗, and

let x ∈ Sr. The map (a1, a2)→ xa1 + ra2 maps A×A to a set of cardinality
at most KC0 |A|. By Cauchy-Schwarz, we can thus find at least K−C0 |A|3
quadruplets (a1, a2, a

′
1, a
′
2) ∈ A×A×A×A such that xa1 +ra2 = xa′1 +ra′2,

or equivalently x(a1 − a′1) = r(a′2 − a2). Since each difference d ∈ A − A
can be represented at most |A| times in the form a − a′ for a, a′ ∈ A, we
conclude that there are at least K−C0 |A| elements d, d′ ∈ A − A such that

3Indeed, the self-improving property allows us to absorb all losses of KO(1) which arise
from our heavy use of the Plünnecke-Ruzsa sumset theory.
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xd = rd′; since r is not a zero-divisor, we conclude that there are at least
K−C0 |A| elements d ∈ A− A such that xd ∈ r · (A− A). Thus there exists
at least one d ∈ (A−A) ∩R∗ such that xd ∈ r · (A−A).

Let d be as above. Then we have xd ·A ∈ r · (A ·A−A ·A). On the other
hand, as d is not a zero-divisor, we have |d ·A| = |A|. Since |A ·A| ≥ |A|/K
and |d ·A−A ·A| ⊂ |A ·A−A ·A−A ·A| ≤ KO(1)|A| (by Lemma 2.3), we see
from Ruzsa’s covering lemma (Lemma 2.2) that A·A ⊂ d·A−d·A+O(KO(1)).
Thus

x ·A ·A ⊂ r · (A ·A−A ·A)− r · (A ·A−A ·A) + O(1)

= r · (2(A ·A)− 2(A ·A)) + O(KO(1))

and thus

(x ·A+ r ·A) · (A−A) ⊂ r · (5(A ·A)− 5(A ·A)) + O(KO(1)).

By sum set estimates we conclude

|(x ·A+ r ·A) · (A−A)| ≤ KO(1)|A|.

Since A−A contains at least one non-zero divisor, the claim (i) follows.
Now we prove the size bound (ii). Let r ∈ R∗ and let x ∈ Sr. By the

self-improving property we have |x · A + r · A| ≤ KO(1)|A|. Arguing as in
the proof of (i), we have at least K−O(1)|A| elements d ∈ A − A such that
xd ∈ r · (A−A). If C0 is large enough, we can thus find at least K−O(1)|A|
pairs (d, d′) ∈ (A − A) × (A − A) such that xd = rd′ and d is not a zero-
divisor. But each such pair (d, d′) corresponds to at most one x, while the
total number of pairs (d, d′) is at most |A− A|2 ≤ KO(1)|A|2 by (3.2). The
claim (ii) follows.

Now we show (iii). Let r ∈ R∗. If x, y ∈ Sr, then |x ·A+r ·A| ≤ KO(1)|A|
and |y · A+ r · A| ≤ KO(1)|A|. By the Ruzsa covering lemma (Lemma 2.2)
we conclude that

(3.3) x ·A ⊂ r ·A− r ·A+ O(KO(1))

and similarly

(3.4) y ·A ⊂ r ·A− r ·A+ O(KO(1)),

and thus (x+y) ·A+ r ·A ⊂ r · (3A−2A) +O(KO(1)). Applying the sumset
estimate (Lemma 2.3), we obtain |(x + y) · A + r · A| ≤ KO(1)|A|, and so
x+ y ∈ S if C0 is large enough. Thus S is closed under addition; since it is
also finite, it must be an additive group. This establishes (iii).

Now we prove (iv). In view of (iii), it suffices to show that S1 is closed
under multiplication. Let x, y ∈ S1, thus by (i) we have |x·A+A|, |y·A+A| ≤
KO(1)|A|. Multiplying y · A + A by x we have |xy · A + x · A| ≤ KO(1)|A|,
and thus by Ruzsa’s triangle inequality (Lemma 2.1) and sum set estimates
(Lemma 2.3) we have |xy·A+A| ≤ KO(1)|A|, and thus (if C0 is large enough)
xy ∈ S1, yielding the desired closure property.
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Now we show (v). Let r ∈ R∗ and a ∈ (A− A) ∩ R∗, and let x ∈ Sr and
y ∈ Sa. By (i), we have |x·A+r ·A| ≤ KO(1)|A| and |y ·A+a·A| ≤ KO(1)|A|.
Also, we have

a ·A+A · a ⊂ A ·A−A ·A+A ·A−A ·A.

By sum set estimates

|a ·A+A · a| ≤ KO(1)|A|,

so by the Ruzsa triangle inequality

|y ·A+A · a| ≤ KO(1)|A|,

and thus by the Ruzsa covering lemma

y ·A ⊂ A · a−A · a+ O(KO(1)).

Multiplying by x we obtain

xy ·A ⊂ x ·A · a− x ·A · a+ O(KO(1)).

Meanwhile, by the Ruzsa covering lemma again we have

x ·A ⊂ r ·A− r ·A+ O(KO(1)),

and thus
xy ·A ⊂ r · 2A · a− r · 2A · a+ O(KO(1)).

But by the covering lemma again we have

A · a ⊂ a ·A− a ·A+ O(KO(1)),

so
xy ·A ⊂ ra · 4A− ra · 4A+ O(KO(1)),

and thus
|xy ·A+ ra ·A| ≤ KO(1)|5A− 4A|.

By sum set estimates we thus have |xy · A + ra · A| ≤ KO(1)|A|, and so
xy ∈ Sra. The claim (v) follows.

Clearly (vi) and (viii) are immediate from (3.1), while (vii) follows from
(3.2), so we now turn to (ix). Let r, s, t ∈ R∗ be such that t ∈ Sr ∩Ss. Then
by (i) we have |t · A + r · A|, |t · A + s · A| ≤ KO(1)|A|, and hence by the
covering lemma (Lemma 2.2) we have r · A ⊂ t · A − t · A + O(KO(1)) and
t ·A ⊂ s ·A− s ·A+ O(KO(1)), and thus r ·A ⊂ s · (2A− 2A) + O(KO(1)).
If x ∈ Ss, we thus have

|x ·A+ r ·A| ≤ KO(1)|x ·A+ s ·A+ s ·A− s ·A− s ·A|.

Hence by (i) and sum set estimates (Lemma 2.3),

|x ·A+ r ·A| ≤ KO(1)|A|,

and thus x ∈ Sr. This shows that Ss ⊂ Sr; a similar argument gives Sr ⊂ Ss,
and the claim follows. �
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4. Proofs of theorems

With the key proposition in hand, we can now quickly conclude the main
theorems of the paper.

4.1. Proof of Theorem 1.1. By increasing K if necessary we may take
K ≥ 2. Let A be as in the theorem. By sumset estimates (Lemma 2.3) we
have |A ·A−A ·A| ≤ KO(1)|A|; by increasing K if necessary we can assume
|A ·A−A ·A| ≤ K|A|.

Let C0 be a sufficiently large absolute constant. We may assume that
|(A−A)\R∗| < K−C0 |A|, since the claim is trivial otherwise. We set S := S1,
where Sr is defined in (3.1). By Proposition 3.1(ii) we have |S| ≤ KO(1)|A|;
by Proposition 3.1(iv) S is a ring. Finally, since |A+A ·A| ≤ K|A|, we have
A ⊂ S by (3.1), if C0 is large enough. The claim follows.

4.2. Proof of Theorem 1.2. Again we can take K ≥ 2. Let A be as in
the theorem with an invertible element a, and let C0 be a sufficiently large
absolute constant. Again we may assume |(A−A)\R∗| ≤ K−C0 |A|.

We set S := S1 again. Using Proposition 3.1(ii) as before, we have |S| ≤
KO(1)|A|, and from Proposition 3.1(iv) S is a ring.

By sum set estimates (Lemma 2.3), we have |A · A + A · A| ≤ KO(1)|A|.
Since a ∈ A, we conclude that |A ·A+a ·A| ≤ KO(1)|A|; since a is invertible;
we thus have |a−1 · A · A+ A| ≤ KO(1)|A|, and thus (if C0 is large enough)
a−1 ·A ⊂ S, and thus A ⊂ a · S.

The only remaining task is to show that a · S = S · a. Since S is finite
and a is invertible, it suffices to show that a · S · a−1 ⊂ S. Now let x ∈ S.
Since A ⊂ a · S, and S is a ring, we have

axa−1 ·A+A ⊂ a · S · a−1 · a · S + a · S = aS.

Thus
|axa−1 ·A+A| ≤ |S| ≤ KO(1)|A|

and thus axa−1 ∈ S by (3.1). This shows that a · S · a−1 ⊂ S as claimed.
Remark: It is also possible to deduce Theorem 1.2 from Theorem 1.1 by
applying the latter theorem to a−1 · A, though one does need to invoke the
sum set estimates (in a manner very similar to that performed above) to
verify that a−1 ·A obeys the required hypotheses for a suitable choice of K.
We leave the details as an exercise to the reader.

4.3. Proof of Theorem 1.3. Again we can take K ≥ 2. Let A be as in
that theorem. Let C0 > 0 be a large absolute constant; as before we may
assume that |(A−A)\R∗| < K−C0 |A|. In particular we can find an element
a ∈ (A−A) ∩R∗. By hypothesis and (3.1) we see that A ⊂ Sa.

For each n ≥ 1, let Gn := 〈An〉 be the additive group generated by the
n-fold product set An := A · · · · · A. Observe that Gn · Gm ⊂ Gn+m for all
n,m ≥ 1. Also, by Proposition 3.1(iii) we have G1 ⊂ Sa, so by Proposition
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3.1(v) and induction we have Gn ⊂ San for all n ≥ 1. In particular, from
Proposition 3.1(ii) we have

|Gn| ≤ KO(1)|A|
for all n. On the other hand, since a · Gn ⊂ Gn+1, we know that |Gn| is
a non-decreasing function of n. Thus the quantity N := limn→∞ |Gn| is
finite (and takes values between |A| and KO(1)|A|, and furthermore we have
|Gn| = N for all sufficiently large n. In particular, we see that the map
x 7→ ax is a bijection from Gn to Gn+1 for all sufficiently large n.

For every integer d ∈ Z, define a partial dilation T = (Tn)∞n=n0
of degree

d to be a sequence of additive homomorphisms Tn : Gn → Gn+d defined for
all n ≥ n0 and some n0 ≥ max(1, 1− d) such that Tn+m(gngm) = Tn(gn)gm
for all n ≥ n0, m ≥ 1, gn ∈ Gn, and gm ∈ Gm. We say that a partial dilation
is maximal if one cannot decrease n0 (and add additional homomorphisms
Tn) without destroying the partial dilation property. We observe some key
examples of partial and maximal dilations:

(a) The identity sequence (gn 7→ gn)∞n=1, where gn denotes a variable in
Gn, is a maximal dilation of degree 0.

(b) For any m ≥ 1 and h ∈ Gm, the sequence (gn 7→ hgn)∞n=1 is a
maximal dilation of degree m. In particular every element of A
gives rise to a maximal dilation of degree 1 in this manner. Also this
construction associates 0 to a maximal dilation of degree m for each
m.

(c) For all n larger than a sufficiently large constant n0, we have seen
that the map gn−1 7→ agn−1 from Gn−1 to Gn, and thus has an
inverse agn−1 7→ gn−1. The sequence (agn−1 7→ gn−1)∞n=n0

is thus a
partial dilation of degree −1.

(d) If (Tn)∞n=n0
and (T ′n)∞n=n′0

are partial dilations of the same degree
d, then (Tn + T ′n)∞n=max(n0,n′0) is also a partial dilation of degree d,
where of course Tn + T ′n : Gn → Gn+d is the map x 7→ Tnx + T ′nx.
Similarly, (−Tn)∞n=0 is also a partial dilation of degree d.

(e) If (Tn)∞n=n0
and (T ′n)∞n=n′0

are partial dilations of degree d and d′

respectively, then (Tn+d′ ◦ T ′n)∞n=n1
is a partial dilation of degree

d+ d′ for n1 := max(n′0, n0 − d′).
Suppose that we have two partial dilations (Tn)∞n=n0

and (T ′n)∞n=n′0
which

collide in the sense that Tn1 ≡ T ′n1
for some n1 ≥ max(n0, n

′
0). We then

claim that in fact Tn ≡ T ′n for all n ≥ max(n0, n
′
0). To see this, we first

observe from the identities Tn(x)am = Tn(xam), T ′n(x)am = T ′n(xam) and
the fact that am is not a zero divisor for any m ≥ 1 that it suffices to
establish this for sufficiently large n. But when n is large enough, we have
|Gn| = |Gn−n1 | = N and so the map x 7→ an1x is a bijection from Gn−n1

to Gn. Since Tn1(an1) = T ′n1
(an1), we conclude that Tn ≡ T ′n as required.

We conclude in particular that every partial dilation has a unique maximal
extension.
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For each d ∈ Z, let Rd denote the collection of all maximal dilations of
degree d. From the previous paragraph and (d) we can give Rd the struc-
ture of an additive group. Also, from the previous paragraph and (e) we can
define a product operation · : Rd ×Rd′ → Rd+d′ which is associative and is
distributive over the additive structure, thus the direct sum

⊕
d∈ZRd has

the structure of a (graded) ring; in particular R0 is itself a ring. From (a)
we have a multiplicative identity 1 ∈ R1 in this ring, while from (b) we can
embed Gn into Rn in a manner preserving the additive and multiplicative
structure. (The embedding is injective, as can be seen by testing the result-
ing dilations on a non-zero-divisor such as a.) In particular, the element a
can be identified with an element t of R1. Finally from the previous para-
graph and (c) we see that we can construct an inverse t−1 ∈ R−1 which is
both a right and left inverse of t. In particular, Rd = R0t

d = tdR0 for all
d ∈ Z. We thus see that the ring

⊕
d∈ZRd is isomorphic to the the ring

R0(t)φ, where φ : R0 → R0 is the outer automorphism φ : r0 7→ tr0t
−1, and

we can embed Gn with elements of R0t
n in this ring.

Finally, we observe that if we have two elements (Tn)∞n=n0
and (T ′n)∞n=n′0

of R0 such that Tn(an) = T ′n(an) for some n ≥ max(n0, n
′
0), then (since the

map x 7→ anx is a bijection from Gm to Gm+n for sufficiently large m) we
conclude that Tm+n ≡ T ′m+n for sufficiently large m, and thus the maximal
extensions (Tn)∞n=n0

and (T ′n)∞n=n′0
must be identical. On the other hand,

Tn(an) takes values in a set of size at most N . We conclude that R0 is finite
with cardinality at most N ≤ KO(1)|A|. (In fact, since R0 contains t−nGn
for every n ≥ 1, we see that R0 has cardinality exactly N .) The claim
follows.
Remark: In the case when the original ring R is commutative, one can show
that all maximal dilations commute with each other, so that R0 is commu-
tative and the twist map φ used to define R0(t)φ is in fact trivial; we leave
the verification of this as an exercise to the reader. Thus in this case one
can embed A into the commutative polynomial ring R0[t].

5. Special cases

We now specialise the above theory to various special cases of interest.
Broadly speaking, our results are useful in any context in which the set of
zero divisors is sparse and has an easily understood structure; this covers
many (but definitely not all) cases of interest.

5.1. Division rings. The simplest application is to division rings, since in
this case every non-zero element is invertible (and thus not a zero-divisor):

Theorem 5.1 (Sum-product phenomenon in division rings). Let D be a
division ring, and let A be a finite non-empty subset of D such that |A +
A|, |A · A| ≤ K|A| for some K ≥ 1. Then there exists a finite subring S of
D of cardinality |S| � KO(1)|A| and an invertible element a ∈ A such that
a · S = S · a and A ⊂ a · S + O(KO(1)).
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For the case when D is commutative (i.e. D is a field, this is [67, Theorem
2.55]). For finite-dimensional division rings over R, such as the quaternions,
this result is in [32]. Note that this result also implies the original sum-
product result of Erdős and Szemerédi [45] in Z, as well as the sum-product
result over finite fields in [25], [26], [24]. One also recovers the sum-product
estimates from [69] for integral domains of characteristic zero, since these
domains can be embedded inside their field of fractions and contain no finite
subrings.

Proof. We can assume that |A| ≥ CKC for some large C, since the claim is
trivial otherwise. Applying Lemma 1.4 (removing 0 from A if necessary) we
can find a subset A′ of A with |A′| � K−O(1)|A| such that |A′ ·A′−A′ ·A′| �
KO(1)|A′| (since there are not enough zero divisors for option (i) to hold).
Applying Theorem 1.2 with a equal to an arbitrary non-zero (and hence
invertible) element of A′, we conclude that there exists a finite subring S of
D of cardinality |S| � KO(1)|A′| ≤ KO(1)|A| with a · S = S · a such that
A′ ⊂ a · S. Since |A + A′| ≤ |A + A| ≤ K|A|, the claim then follows from
the covering lemma (Lemma 2.2). �

5.2. Products of division rings. After division rings, the next easiest case
to study is the product R = D1 × · · · ×Dk of a bounded number k = O(1)
of division rings (with the obvious pointwise ring operations), since in this
case the zero divisors of R are easily identified and have a clean and sparse
structure, indeed we have R∗ = (D1\{0})×· · ·×(Dk\{0}). A model example
here is Fp ×Fp; the sum-product phenomenon in this ring was first studied
by Bourgain [4], [5], [8] in connection with exponential sums connected to
the Diffie-Hellman cryptosystem, and also to certain exponential sums of
Mordell type.

Our main result here is as follows.

Theorem 5.2 (Sum-product phenomenon in products of division rings).
Let D1, . . . , Dk be division rings, let R := D1 × · · · ×Dk, and let A ⊂ R be
a non-empty finite set such that |A + A|, |A · A| ≤ K|A| for some K ≥ 1.
Then one of the following holds:

(i) There exists 1 ≤ j ≤ k such that |πj(A)| � kKO(1), where πj : R→
Dj is the projection homomorphism.

(ii) There exists a finite subring S of R of cardinality |S| � KO(1)|A|
and an invertible element a ∈ A such that a · S = S · a and A ⊂
a · S + O(KO(1)).

This result implies the sum-product theorems in [4], [5], [8] for the ring
Fp × Fp as a special case, after noting that the only non-trivial proper
subrings of Fp×Fp are of the form Fp×{0}, {0}×Fp, or {(x, ax) : x ∈ Fp}
for some a ∈ F∗p. Note that the results cited treat the case when K ≥ pε for
ε > 0, but Theorem 5.2 can also be applied for much smaller values of K
(though this is not the case of interest for exponential sum applications). It
also largely recovers the sum-product estimates in [17], [16].
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For applications to exponential sums, the above theorem is only useful
when k is small; when k is large, the conclusion (i) becomes weak unless K
is small compared to min1≤j≤k |Dj |, which is not the case of interest in these
applications. In particular, we do not recover the sum-product theorem for
Zkp for fixed p and large k that appears in [7], [13], [10].

Proof. Suppose first that A − A contains � K−O(1)|A| zero-divisors, then
by the pigeonhole principle there exists 1 ≤ j ≤ k such that the set Aj :=
(A−A)∩π−1

j ({0}) has cardinality� K−O(1)|A|/k. Observe that |A+Aj | ≥
|πj(A)||Aj | due to the disjointness of the fibres π−1

j ({aj}) for aj ∈ Dj . On
the other hand, by sum set estimates (Lemma 2.3) we have

|Aj +A| ≤ |A−A+A| � KO(1)|A|.
Thus

|πj(A)| � kKO(1),

and then we are in case (i).
We may thus assume instead that A − A does not contain so many

zero-divisors. The above argument also shows that we may assume that
|Aj | ≤ cK−C |A|/k for any fixed c, C > 0 and all j, which implies that
|A ∩ π−1

j ({0})| ≤ cK−C |A|/k In particular, at most half of the elements of
A are zero-divisors. By removing such elements (and increasing K slightly)
we may thus assume that A ⊂ R∗. We can now apply Lemma 1.4 to find a
subset A′ ⊂ A with |A′| � K−O(1)|A| such that |A′ ·A′−A′ ·A′| � KO(1)|A′|.
Applying Theorem 1.2 (and noting that A′ − A′ is a subset of A − A and
thus cannot have � K−O(1)|A′| zero-divisors) we conclude that there exists
a finite subring S of R of cardinality |S| � KO(1)|A| and a ∈ A′ such that
a ·S = S ·a and A′ ⊂ a ·S. The claim then follows from the covering lemma
as in the proof of Theorem 5.1. �

5.3. Cyclic rings of low prime power order. Another interesting case
are the cyclic Z/pkZ of prime power order. We are not able to obtain
satisfactory results in the important case when k is large (in particular, we
do not recover the results in [13], [10]), but we can obtain the following
result which is efficient in the regime k = O(1).

Theorem 5.3 (Sum-product phenomenon in cyclic rings). Let p be a prime,
let R := Z/pkZ for some k ≥ 1, and let A ⊂ R be a non-empty finite set
such that |A+A|, |A ·A| ≤ K|A| for some K ≥ 1. Then one of the following
holds:

(i) We have A ⊂ p ·R+ O(KO(1));
(ii) We have |A| � K−O(1)|R|.

Proof. By using the covering lemma (Lemma 2.2), we see that if the set
A1 := (A−A)∩p·R has cardinality� K−O(1)|A|, then A ⊂ p·R+O(KO(1)).
Thus we may assume that |A1| ≤ cK−C |A| for some suitable c, C > 0. In
particular this implies that at most half the elements of A lie in p ·R, so by
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removing those elements and increasing K slightly we may assume that all
elements of A are invertible. We then apply Lemma 1.4 to find a subset A′

of A of cardinality � K−O(1)|A| such that |A′ · A′ − A′ · A′| � KO(1)|A′|;
by theorem 1.2, we can thus find a ∈ A′ and a subring S of R such that
|S| � KO(1)|A| and A′ ⊂ a · S. But the only subring of the cyclic ring R
that contains an invertible element is the full ring R, and so we are in case
(ii) as desired. �

5.4. Algebras. Now we consider the case of a finite-dimensional algebra R
over a field F (which may be finite or infinite), such as a matrix algebra
Md(F ). As before, our results are only useful in the regime when the di-
mension d is relatively low and F is large. More precisely, our result is as
follows.

Theorem 5.4 (Sum-product phenomenon in algebras). Let R be a d-dimensional
algebra over some field F , and let A ⊂ R be a non-empty set with |A+A|, |A·
A| ≤ K|A| for some K ≥ 1. Suppose that the characteristic of F is either
zero, or is sufficiently large depending on d. Then one of the following holds:

(i) There exists a linear subspace V ⊂ R such that every element of V is
a zero divisor, and such that |A ∩ (x+ V )| �d K

−Od(1)|A| for some
x ∈ R. (The subscripting by d means that the implied constants are
allowed to depend on d.)

(ii) There exists subset A′ of A of cardinality � K−O(1)|A|, a finite ring
R0, an automorphism φ : R0 → R0, and embeddings ιn : 〈(A′)n〉 →
R0 · tn ⊂ R0[t]φ for n ≥ 0 which are additive homomorphisms, and
such that ιn+m(anam) = ιn(an)ιm(am) for all n,m ≥ 0 and an ∈
〈(A′)n〉, am ∈ 〈(A′)m〉.

The author conjectures that the hypothesis on the characteristic can be
omitted, but does not know how to prove this.

Before we show Theorem 5.4, we first need a result combining algebraic
geometry with additive combinatorics, which may be of some independent
interest.

Lemma 5.5 (Linearisation). Let V be a d-dimensional vector space over
a field F , let W be an algebraic set {x ∈ V : P1(x) = · · · = Pk(x) = 0}
cut out by k polynomials P1, . . . , Pk : V → F of degree at most D, and
let A ⊂ W be a non-empty set such that |A+ A| ≤ K|A|. Suppose that the
characteristic of F is either zero, or is sufficiently large depending on d, k,D.
Then there exists an affine space U contained in W such that |A∩U | �d,k,D

K−Od,k,D(1)|A|.

Proof. Without loss of generality we may take F to be algebraically closed,
since the general case follows by replacing F with its algebraic closure F ,
and V with the tensor product V ⊗F F (and noting that the restriction of
an affine space over F in V ⊗F F to V is an affine space over F ).
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Since any algebraic set cut out by k polynomials of degree at most D can
be expressed4 as the union of Od,k,D(1) algebraic varieties (i.e. irreducible
algebraic sets) cut out by Od,k,D(1) polynomials of degree at most Od,k,D(1),
it suffices (by the pigeonhole principle) to verify the claim for algebraic
varieties.

We induct on the dimension d; since the claim is trivial for d = 0, we
assume d ≥ 1 and that the claim has been proven for smaller d. Once d is
fixed, we perform a secondary induction on the dimension dim(W ) of the
algebraic variety. The claim is trivial if dim(W ) = 0 (since |W | = Od,k,D(1)
in this case), so assume dim(W ) ≥ 1 and that the claim has already been
proven for smaller dimensional varieties in the same vector space V .

Suppose that there is a non-zero element v of V such that W + v = W .
Let I(W ) be the ideal of polynomials that vanish on W , then this ideal is
invariant under translation by v. In particular, if P is a polynomial in I(W ),
then the derivative P (·+ v)−P (·) also lies in I(W ). Iterating this (starting
with one of the generators of W ) we conclude that I(W ) contains at least
one non-trivial polynomial P of degree Od,k,D(1) that is invariant under v;
from the assumption on the characteristic of F , we conclude that P factors
through the projection map π : V → V/F · v. As a consequence, we see that
the projection π(W ) is a non-trivial algebraic set in the vector space V/F ·v,
which is cut out by Od,k,D(1) polynomials of degree at most Od,k,D(1).

Let M be the maximum value of |A∩π−1({x})| as x ranges over V/F · v.
Observe that |A + A| ≥ |π(A)|M ; since |A + A| ≤ K|A|, we conclude that∑

x∈π(A) |A ∩ π−1({x})| ≤ M |π(A)|/K. We conclude that there exists a
subset Ã ⊂ π(A) of cardinality |Ã| ≥ |π(A)|/2K such that |A∩π−1({x})| ≥
M/2K for all x ∈ Ã. If we now decompose π(W ) into algebraic varieties
and use the pigeonhole principle as before, and apply the outer induction
hypothesis, we conclude that there exists an affine space Ũ contained in
π(W ) such that |Ã ∩ Ũ | �d,k,D K−Od,k,D(1)|Ã|. If we let U := π−1(Ũ), we
see from construction that U is an affine space contained in W and

|A ∩ U | ≥ |Ã ∩ Ũ |M/2K

�d,k,D K−Od,k,D(1)|Ã|M

�d,k,D K−Od,k,D(1)|π(A)|M

�d,k,D K−Od,k,D(1)|A|,

thus closing the induction in this case. Thus we may assume without loss of
generality that W + v 6= W for all non-zero v; since W is irreducible, this
implies that W + v ∩W is an algebraic set consisting of varieties of strictly
smaller dimension than W .

4This is Corollary 6.11 of Kleiman’s article [56] in SGA6
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Using the identities∑
a,a′∈A

|(a+A) ∩ (a′ +A)| =
∑

x∈A+A

|{(a, b) ∈ A : a+ b = x}|2

and ∑
x∈A+A

|{(a, b) ∈ A : a+ b = x}| = |A|2,

and Cauchy-Schwarz, we have∑
a,a′∈A

|(a+A) ∩ (a′ +A)| ≥ |A|4/|A+A| ≥ |A|3/K.

The contribution of the diagonal term a = a′ is negligible unless |A| = O(K),
in which case the claim is trivial. In all other cases, we can apply the
pigeonhole principle and conclude that there exist distinct a, a′ ∈ A such
that

|(a+A) ∩ (a′ +A)| � |A|/K.
If we set v := a′−a and A′ := A∩(A+v), we thus conclude that |A′| � |A|/K
and

|A′ +A′| ≤ |A+A| ≤ K|A| � K2|A′|.
Also, A′ is contained in W ∩ (W + v) and is thus contained in Od,k,D(1)
varieties of dimension strictly less than W , and cut out by Od,k,D(1) poly-
nomials of degree Od,k,D(1). Applying the inner induction hypothesis we
may thus find an affine subspace U in W ∩ (W + v) (and hence in W ) such
that |A′ ∩ U | �d,k,D K−Od,k,D(1)|A′| �d,k,D K−Od,k,D(1)|A|, thus closing the
induction in this case also. �

Now we can prove Theorem 5.4.

Proof of Theorem 5.4. We can assume that |A| ≥ CKC for some large C,
since the claim is trivial otherwise. By writing the product operation on R
in coordinates over F , we observe that the set of non-zero-divisors in R is
an algebraic set cut out by Od(1) polynomials of degree at most Od(1). If
more than half the elements of A lie in this set, then we can apply Lemma
5.5 to those elements and establish conclusion (i) of the theorem; thus we
may assume that fewer than half of the elements of A are zero-divisors. By
throwing away all the zero-divisors we may thus assume that A lies entirely
in R∗. Applying Lemma 1.4 and we may now assume that either A − A
contains � K−O(1)|A| zero-divisors, or that |A′ · A′ − A′ · A′| � KO(1)|A|
for some subset A′ ⊂ A of cardinality � K−O(1)|A|. In the former case, if
we apply Lemma 5.5 to (A−A)\R∗ we can locate a vector space V of zero
divisors such that the set A′ := (A−A)∩ V has cardinality �d K

−Od(1)|A|
elements of A−A. By sum set estimates (Lemma 2.3) we have

|A′ +A| ≤ |A−A+A| � KO(1)|A|.
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Thus by the covering lemma (Lemma 2.2) we conclude that

A ⊂ A′ −A′ + Od(KOd(1)) ⊂ V + Od(KOd(1)),

and so we are again in conclusion (i) of the theorem. Thus we may assume
that |A′ · A′ − A′ · A′| � KO(1)|A′| for some A′ ⊂ A of cardinality �
K−O(1)|A|. We then apply Theorem 1.3 and conclude that either A′ − A′
contains � K−O(1)|A| zero divisors, or else we are in conclusion (ii) of the
theorem. In the former case we can argue as before to end up in conclusion
(i) of the theorem, and the claim follows. �

It should be possible to analyse the conclusions (i) and (ii) of Theorem 5.4
further for specific algebras. For instance, when F is finite and R contains an
identity, then every non-zero-divisor is invertible, and one can use Theorem
1.2 instead of Theorem 1.3 to simplify conclusion (ii). If instead we have
R = M2(F ), then the only affine spaces of zero divisors are either one or
zero-dimensional, or are two dimensional and consist of the matrices which
either left-annihilate or right-annihilate a nonzero vector v ∈ F 2; this leads
to a more explicit description of conclusion (i), although the final form is
somewhat complicated to express and will not be done here.
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intersections et théorème de Riemann-Roch (SGA6), expose XIII, Lecture Notes in
Math., vol. 225, Springer-Verlag, Berlin-New York, 1971, pp. 616–666.

57. S. Konyagin and I.  Laba, Distance sets of well-distributed planar sets for polygonal
norms, Israel J. Math. 152 (2006), 157–179.

58. M. Nathanson, On sums and products of integers, Proc. Am. Math. Soc. 125 (1997),
9–16.

59. M. Nathanson and G. Tenenbaum, Inverse theorems and the number of sums and
products, Structure theory of set addition, vol. 258, Astérisque, no. xiii, 1999, pp. 195–
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