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THE COP DENSITY OF A GRAPH

ANTHONY BONATO, GEŇA HAHN, AND CHANGPING WANG

Abstract. We consider the game of Cops and Robber played with in-
finitely many cops on countable graphs. We give a sufficient condition—
the strongly 1-e.c. property—for the cop number to be infinite. The cop
density of a finite graph, defined as the ratio of the cop number and
the number of vertices, is investigated. In the infinite case, the limits of
the cop densities of chains of finite graphs are studied. For a strongly
1-e.c. graph, any real number in [0, 1] may be realized as a cop density
of the graph. We prove that if the cop number is infinite, then there is a
chain with cop density 1; however, we give an example with cop number
1 and cop density 1. We consider the cop density of finite connected
graphs, and prove that for the G(n, p) random graph, almost surely the
cop density is around approximately (lnn)/n.

1. Introduction

All graphs we consider are simple, undirected, and, in sections beyond the
first, countably infinite (we will use countable to mean countably infinite).
The game of Cops and Robber is a vertex pursuit game played on a (possibly
infinite) graph G = (V,E). There are two players, a set of k cops (or
searchers) C, where k > 0 is a fixed cardinal, and the robber R. The cops
begin the game by occupying a set of k vertices, and the cops and robber
move in alternate rounds. More than one cop is allowed to occupy a vertex,
and the players may pass; that is, remain on their current vertex. Hence, we
consider the passive version of the game; the active version will not alter our
results, as we will explain at the end of Section 2. A move in a given round
for either player consists of a pass or moving to one of its neighbours. The
game is played with perfect information, that is, the players’ positions are
known to all at any time. The cops win and the game ends if at least one
of the cops can eventually occupy the same vertex as the robber; otherwise,
R wins. A strategy for the cops is an initial position c ∈ V κ together with
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a mapping s : V κ × V −→ V κ that leads them to a win no matter what the
robber’s initial position is (a precise definition is easy but cumbersome and
unnecessary for our purposes). Cops and Robber may be thought of as one
model for network security.

As placing a cop on each vertex guarantees that the cops win, we may
define the cop number, written c(G), as min{κ : κ cops have a winning
strategy on G}. We call a graph G κ-cop-win if c(G) = κ. The cop number
was introduced for finite graphs by Aigner and Fromme [1] who proved that
if G is finite and planar, then c(G) ≤ 3. When G is finite, then c(G) is
polynomial time computable (as a function of the number of vertices); see
[6, 16, 14]. So-called cop-win graphs (that is, graphs G with c(G) = 1) were
structurally characterized in [19, 21]. Recall that the closed neighbourhood
N [x] of a vertex x is x along with the vertices joined to x. The finite cop-
win graphs G = (V,E) are exactly those graphs which are dismantlable:
there exists a linear ordering of V = {xj : 1 ≤ j ≤ n} so that for each
i ∈ {1, . . . , n−1}, there is a j ∈ {i+1, . . . , n} such that N [xi]∩{xi, . . . , xn} ⊆
N [xj]∩{xi, . . . , xn}. Clearly, this characterization does not apply to infinite
cop-win graphs. For example, an infinite one-way ray has such an ordering,
but is not cop-win. See [19] for a characterization of infinite cop-win graphs.
See [9] for results on infinite dismantlable graphs. Finite chordal and bridged
graphs are cop-win; see [4]. No analogous structural characterization of finite
κ-cop-win graphs with (finite) cop number κ > 1 is known. For a survey of
results on the cop number and related search parameters for finite graphs,
see [2]. See also [3, 12, 13, 22].

The case for c(G) infinite was considered in [15, 19, 23]. No characteriza-
tion of graphs with infinite cop number is known. In this paper, we consider
the case where G is countable, and so at most countably many cops are
needed to catch the robber. Hence, c(G) is either a positive integer or ℵ0.

It is usual to think of the countably infinite random graph R as a graph
having N as the vertex set, with each pair of vertices joined with (indepen-
dent) probability 1/2. Erdős and Rényi showed in [11] that, with probability
1, a countably infinite random graph has a unique isomorphism type written
R. The unique isomorphism type is that of the countable graph satisfying
the existentially closed (or e.c.) property: for all finite disjoint sets of ver-
tices A,B, there is a vertex z /∈ (A∪B) such that z is joined to each vertex
of A and to no vertex of B. Equivalently, a graph satisfies the e.c. property
if and only if it satisfies the strongly n-e.c. property for each n ∈ N, that is,
the e.c. property with the added restriction that |A| ≤ n (while |B| remains
arbitrary and finite). See the survey [8] for further discussion.

It is straightforward to see that c(R) = ℵ0; that is, R is infinite-cop-win.
For a sketch of the proof, note that if the cops occupy a set A of vertices,
with the robber at a vertex b, a vertex z in R joined to b and not A supplies
an “escape route” for the robber. This sketch will be made more precise
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in Theorem 2.1, where we generalize this result to the uncountable class of
strongly 1-e.c. graphs.

We consider the cop density of a finite graph, defined by

Dc(G) =
c(G)

|V (G)|
.

Note that Dc(G) is a rational number in [0, 1]. The parameter Dc measures
how dense the cops are in the graph. We extend the definition of Dc to
infinite graphs by considering limits of chains of finite graphs. In this way,
the cop density for infinite graphs is a real number in [0, 1].

A chain of graphs is a sequence (Gn : n ∈ N), each Gn is an induced
subgraph of Gn+1, for all n ∈ N. Given a chain (Gn : n ∈ N) of induced
subgraphs of G, we write G = limn→∞ Gn if V (G) =

⋃

n∈N
V (Gn) and

E(G) =
⋃

n∈N
E(Gn). Note that every countable graph G is the limit of

a chain of finite graphs, and there are infinitely many distinct chains with
limit G. Suppose that G = limn→∞ Gn, where C = (Gn : n ∈ N) is a fixed
chain of induced subgraphs of G. We say that C is a full chain for G. Define

D(G,C) = lim
n→∞

Dc(Gn),

if the limit exists (and then it is a real number in [0, 1]). This is the cop

density of G relative to C; if C is clear from context, we refer to this as the
cop density of G. We will only consider graphs and chains where this limit
exists. Indeed, if the cop number of G is infinite, then for some chain the
cop density equals 1 (see Theorem 2.1 and Theorem 2.5). The upper cop

density of G, written UD(G), is defined as

sup{D(G,C) : C is a full chain for G}.

We illustrate these parameters with some examples. If G is a ray (that
is, a path on the vertex set {vi : i ∈ N} with the edge set {vivi+1 : i ∈ N}),
then we may take C to be (Pn : n ∈ N), where Pn is the path induced by
{v0, v1, . . . , vn}. As c(Pn) = 1, we have that D(G,C) = 0. Let G be the

disjoint union of infinitely many 4-cycles {C
(i)
4 : i ∈ N}, and let Gn be the

disjoint union of the first n C
(i)
4 . If C = (Gn : n ∈ N), then D(G,C) = 1/2.

If G is an infinite clique, then UD(G) = 0, while UD(H) = 1 if H is an
infinite co-clique (that is, a graph with no edges).

Since infinitely many cops are needed to catch the robber in R, one may
suspect the cop density always equals 1, or is bounded below by some positive
constant. Quite to the contrary, we prove in Theorem 2.3 that for all strongly
1-e.c. graphs G, such as R, and all r ∈ [0, 1], we can find full chains C such
that D(G,C) = r. In Theorem 2.5 we prove that there is a full chain with
upper cop density 1 if and only if G satisfies the 0-e.c. property (that is,
for each finite set S of vertices, there is a vertex not in S that is not joined
to any vertex of S). Indeed, we will show UD(G) always equals either 0
or 1. In Theorem 2.6, we prove that if a graph has infinite cop number,
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then it has upper density 1. However, this does not characterize infinite-
cop-win graphs: in Theorem 2.7 for each r ∈ [0, 1] we supply a graph with
cop number 1 but with density r.

We consider Dc(G) for finite connected graphs G. If G has n vertices and
is connected, then Dc(G) ≤ n/2. However, as we will prove in Corollary 3.6,
almost all graphs have their cop density equal approximately (lnn)/n.

2. Cop density of infinite graphs

Our first result finds connections between infinite-cop-win graphs and the
strongly 0- and 1-e.c. properties. Recall from the introduction that a graph
satisfies the strongly 0-e.c. property if for all finite sets of vertices S, there
is a vertex x /∈ S that is not joined to any vertex of S. A graph G has the
strongly 1-e.c. property if for all finite sets of vertices S and all vertices x
not in S, there is a vertex y /∈ S∪{x} so that y is joined to x, but not joined
to a vertex of S. Note that the strongly 1-e.c. property implies the strongly
0-e.c. property.

Theorem 2.1.

(1) If G is strongly 1-e.c., then c(G) = ℵ0.

(2) If c(G) = ℵ0, then G satisfies the strongly 0-e.c. property. In par-

ticular, G is a spanning subgraph of R.

Proof. (1) Given only finitely many cops in G, we describe a winning strategy
for the robber R. Let the cops first occupy a set of vertices S0. By the
strongly 0-e.c. property, R may first occupy a vertex u0 that is not joined to
a vertex of S0. Hence, R may evade capture on the cops first move, where
the cops move to the set S1. Suppose after the cops nth move, C occupies
the set Sn, and R occupies the vertex un−1. By the strongly 1-e.c. property,
there is a vertex un joined to un−1 and not joined to a vertex of Sn. The
robber moves to un and may evade capture on the cops (n + 1)st move. In
this way, by induction, the robber may indefinitely evade capture.

(2) The robber has a winning strategy if there are only finitely many cops.
Hence, no matter what finite set of vertices S the cops first choose to occupy,
the robber can evade capture. It follows that there is a vertex x /∈ S that is
not joined to any vertex of S. The second statement of (2) follows from the
well-known fact that a strongly 0-e.c. graph is a spanning subgraph of R (it
may be proved directly by a back-and-forth argument; see [8]). �

We will use the following result in the proof of our next theorem. The
lemma follows directly, or from Theorems 3.1 and 3.2 of [6]. An endvertex

is a vertex of degree 1.

Lemma 2.2. Let H result from G by adding a single endvertex. Then

c(G) = c(H).

In the next theorem, we prove that if G is strongly 1-e.c., then the cop
density of G may be any real number in [0, 1]. The strongly 1-e.c. property
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is fairly weak: by Erdős, Rényi [11], almost all countable graphs satisfy it.
In fact, for each n ≥ 0, there are 2ℵ0 non-isomorphic countable graphs that
are strongly n-e.c. but not strongly (n + 1)-e.c.; see Theorem 4.1 of [7].

Theorem 2.3. If G is strongly 1-e.c., then for all r ∈ [0, 1], there is a chain

C in G such that D(G,C) = r.

Proof. Let (pn : n ∈ N) be a sequence of rationals in [0, 1] such that
limn→∞ pn = r, with p0 = 1. We construct a chain C = (Gn : n ∈ N)
in G such that G = limn→∞ Gn, and with the property that Dc(Gn) = pn.
Enumerate V (G) as {xn : n ∈ N}.

We proceed inductively on n. For n = 0, let G0 be the subgraph induced
by x0. Then c(G0)/|V (G0)| = 1 = p0.

Fix n ≥ 1, suppose the induction hypothesis holds for all k ≤ n, and
let pn+1 = a/b, where a, b are positive integers. Further suppose for an
inductive hypothesis that {x0, . . . , xn} ⊆ V (Gn). Without loss of generality,
as r ∈ [0, 1] we may assume a < b, and gcd(a, b) = 1.

We add vertices to Gn in several ways. Let, G′
n+1 be the graph induced

by V (Gn) ∪ {xn+1}. Suppose that c(G′
n+1) = a′ and |V (G′

n+1)| = b′. If
a′/b′ = a/b, then let Gn+1 = G′

n+1. Otherwise, we add some new vertices
to adjust the parameter Dc(G

′
n+1).

Each time an isolated vertex is added to a graph, the cop number increases
by 1. This follows since a cop must be on each isolated vertex for the cops
to win, otherwise the robber chooses the isolated vertex as his first position
and wins. By Lemma 2.2, adding an endvertex to a graph does not change
the cop number. We may assume that a′/b′ < a/b by adding an appropriate
number of endvertices. In this way, b′ will become larger, while a′ will remain
unchanged.

We may add an arbitrary finite number of isolated vertices and endvertices
to G′

n+1 by the strongly 1-e.c. property. We add x isolated vertices and y
endvertices to G′

n+1 to form Gn+1 so that Dc(Gn+1) = c(Gn+1)/|V (Gn+1)| =
a/b. This is possible if we can solve the equation

a

b
=

a′ + x

b′ + x + y
.

which is equivalent to

(2.1) (b − a)x − ay = ab′ − a′b.

Note that ab′ − a′b > 0, since otherwise, ab′ ≤ a′b which is contrary
to hypothesis. Hence, we obtain a linear Diophantine equation cx + dy =
e, where c = (b − a) > 0, d = −a < 0, and e = ab′ − a′b > 0. As
gcd(b − a,−a) = gcd(a, b) = 1, (2.1) has infinitely many solutions. The
general integer solution of (2.1) is

(2.2) x = x0 − at, y = y0 − (b − a)t,

where (x0, y0) is a particular fixed solution, and t is an integer. (For example,
we may take (x0, y0) = (−a′, a′ − b′).) As the coefficients of t in (2.2) are
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both negative, we may choose an appropriate t < 0 to ensure an integer
solution of (2.1) (x, y) with x, y ≥ 0. This completes the induction step in
constructing Gn+1.

As {x0, . . . , xn} ⊆ V (Gn) for all n ∈ N, we have that C=(Gn : n ∈ N) is
a full chain for G. Further,

D(G,C)= lim
n→∞

pn = r.

�

As the infinite random graph R satisfies the strongly 1-e.c. property, we
have the following corollary.

Corollary 2.4. For all r ∈ [0, 1], there is a chain C in R such that

D(R,C) = r.

Our next result completely characterizes the upper cop density of a graph
G : UD(G) takes on one of the two values 0 or 1, and equals 1 exactly when
G is strongly 0-e.c.

Theorem 2.5. The following are equivalent.

(1) UD(G) = 1.
(2) UD(G) > 0.
(3) G is strongly 0-e.c.
(4) G is a spanning subgraph of R.

Proof. As (1 ⇒ 2) is trivial, and (3 ⇔ 4) is well known (see, for example,
[8]), we prove that (2 ⇒ 3) and (3 ⇒ 1).

For (2 ⇒ 3), suppose for the contrapositive that G is not strongly 0-e.c.
Then there is some finite set S of vertices of G with the property that each
vertex not in S is joined to some vertex of S; in other words, S is a finite
dominating set for G. Let C=(Gn : n ∈ N) be a fixed full chain of finite
graphs in G, and suppose that n0 is the least integer n where S ⊆ V (Gn).
Fix t ≥ n0. Then c(Gt) ≤ |S|, since S is a dominating set for G and hence,
Gt. Thus, Dc(G) ≤ |S|/|V (Gt)|, and the latter term tends to 0 as t → ∞.
Hence, UD(G) = 0.

For (3 ⇒ 1) enumerate V (G) as {xi : i ∈ N}. Fix a countable sequence of
real numbers εn ∈ (0, 1), such that limn→∞ εn = 1 and ε0 = 1. It is sufficient
to inductively construct a full chain C=(Gn : n ∈ N) of finite graphs in G
satisfying the following conditions for all n ∈ N:

(1) xn ∈ V (Gn);

(2)
c(Gn)

|V (Gn)|
≥ εn.

If items 1 and 2 hold, then

UD(G) ≥ lim
n→∞

Dc(Gn) ≥ lim
n→∞

εn = 1,

and so UD(G) = 1.
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Let G0 be the subgraph induced by {x0}. Then G0 satisfies items 1 and
2 above. Suppose Gn has been constructed. Add xn+1 to Gn to form the
induced subgraph G′

n+1. If c(G′
n+1)/|V (G′

n+1)| ≥ εn+1, then let Gn+1 =
G′

n+1. Otherwise, suppose that c(G′
n+1)/|V (G′

n+1)| = p/q < εn+1. By the
strongly 0-e.c. property of G, we may add k isolated vertices to G′

n+1 to
form Gn+1, where k is a positive integer that is to be determined. Then

c(Gn+1)

|V (Gn+1)|
=

p + k

q + k
.

We choose k so that (p + k)/(q + k) ≥ εn+1, which holds so long as

k ≥
εn+1q − p

1 − εn+1
.

�

The following corollary gives a necessary condition for G to have infinite
cop number, and follows directly by Theorems 2.1 and 2.5.

Corollary 2.6. If c(G) = ℵ0, then UD(G) = 1.

The converse of Theorem 2.6, however, is false in a strong sense.

Theorem 2.7. For each real number r ∈ [0, 1], there is a graph G(r) with

c(G(r)) = 1, so that for some full chain C in G(r), D(G(r), C) = r.

Proof. Fix r ∈ [0, 1], and let (pn : n ∈ N) be a sequence of rationals such
that limn→∞ pn = r, with p0 = 1. We construct a full chain
C = (Gn : n ∈ N) for G = G(r) with the property that Dc(Gn) = pn.

The vertex set of G is X ∪ Y , where X =
⋃

i∈N
Xi and Y =

⋃

j∈N
Yj are

families of finite disjoint sets of vertices. The set X induces a clique, while Y
induces a co-clique. Each vertex of Xn is joined to all vertices of Ym, where
m < n. The cardinalities of the finite sets Xi and Yj are to be determined,
while we take X0 and Y0 to have one element. For all n ∈ N, let Gn be the
subgraph induced by

{Xi : i ≤ n} ∪ {Yj : j ≤ n}.

Suppose that Dc(Gn) = pn and pn+1 = a/b, with a < b and gcd(a, b) = 1.
Suppose that |V (Gn)| = kn.

Note that c(Gn+1) = 1 + |Yn+1|, since one cop is needed to capture the
robber if he is in V (Gn) or Xn+1, while |Yn+1| cops are needed if the robber
is in Yn+1. Let |Xn+1| = xn, and |Yn+1| = yn. Then

c(Gn+1)

|V (Gn+1)|
=

1 + yn

kn + xn + yn

.

By a method similar to the one used in Theorem 2.3, we may find non-
negative integers xn and yn such that c(Gn+1)/|V (Gn+1)| = a/b. Hence,

lim
n→∞

Dc(Gn) = r.
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One cop may win on G in at most three rounds. To see this, let C first
move to X1. If R moves to a vertex of X, then he is captured in the next
round. Suppose that R moves to a vertex of Yj . Then C moves to Xj+1.
As vertices of Yj are only joined to vertices of X, to avoid capture in the
second round, R must move to some Xk. But then R is captured in the
third round, as X is a clique. �

The diagram below summarizes the logical correspondence between the
concepts studied in Theorems 2.1, 2.3, 2.5, and 2.6.

strongly 1-e.c.

ttiiiiiiiiiiiiiiiii

((QQQQQQQQQQQQQ

D(G,C) any number in [0, 1]

**UUUUUUUUUUUUUUUUU

c(G) infinite

vvmmmmmmmmmmmm

UD(G) = 1
OO

��
strongly 0-e.c.

None of the one-way arrows reverse. It can be shown that an infinite one-
way ray is infinite-cop win and has cop density any real number in [0, 1], but
is not strongly 1-e.c. The infinite co-clique G has upper cop density 1, but
D(G,C) = 1 for all full chains C for G. The example G(1) of Theorem 2.7
illustrates that UD(G) may be 1 with c(G) = 1.

We may vary the problem by considering the active version of the game,
where cops and robber must always change vertices at each time step. Define
c′(G) for the cop number of this active version. It is straightforward to see
that c′(G) ≤ b|V (G)|/2c. However, nothing new is gained for us in this
direction. To see this, consider a full chain

C = (Gn : n ∈ N)

in G. As proved in [18],

c(G) − 1 ≤ c′(G) ≤ c(G).

Hence,

lim
n→∞

c′(Gn)

|V (Gn)|
= lim

n→∞

c(Gn)

|V (Gn)|
.

3. The cop density of connected graphs

A natural variation of the cop density parameter is to only consider full
chains where Gn is connected for all n ∈ N. In the case when G is connected,
c(G) ≤ b|V (G)|/2c , so Dc(G), D(G,C) ≤ 1/2. The domination number

γ(G) of G is the order of a dominating set of smallest cardinality. It is
clear that c(G) ≤ γ(G). Few known general upper bounds exist for the
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density c(G)/|V (G)| (we repeat that this only applies if G is connected,
since disconnected finite graphs may have density 1). For example, an open
problem is to find integers k > 2, constants ck, and provide infinitely many
examples of connected graphs G of order k where Dc(G) = ck/k . If the
minimum degree δ(G) of the graph is fairly large, then upper bounds exist.
By [5, 20], if G is connected, then

γ(G) ≤
|V (G)|(1 + ln(δ(G) + 1))

δ(G) + 1
,

and so this supplies an upper bound for the cop number. The smallest value
of δ(G) is 5 where this gives an upper bound for Dc better than 1/2.

Lemma 3.1. If G is connected with δ(G) = k ≥ 5, then

Dc(G) ≤
(1 + ln(k + 1))

k + 1
.

The main result of this section is that random graphs have cop density in
Θ((lnn)/n). For this, we note that Dreyer [10] proves the following result.

Theorem 3.2. Let 0 < p < 1 be fixed, and let q = 1/(1 − p). For any

real ε > 0, with probability 1 as n → ∞, there exists a set of vertices of

cardinality at most (1 + ε) logq n in G ∈ G(n, p) which is a dominating set.

By Theorem 3.2 we have the following.

Corollary 3.3. Let 0 < p < 1 be fixed and q = 1/(1 − p). For any real

ε > 0,with probability 1 as n → ∞, for G ∈ G(n, p),

c(G) ≤ (1 + ε) logq n.

We will prove the following result for the cop number of a finite random
graph.

Theorem 3.4. Let 0 < p < 1 be fixed and q = 1/(1 − p). For every real

ε > 0, with probability 1 as n → ∞, for G ∈ G(n, p)

(1 − ε) logq n ≤ c(G) ≤ (1 + ε) logq n.

The proof will follow by establishing the lower bound for the cop number of
G(n, p). We need the following lemma.

Lemma 3.5. Let 0 < p < 1 and r > 0 be fixed. For any fixed 0 < ε < 1, if

(ln 1/(1 − p)) d = 1 − ε, then

(3.1) lim
n→∞

nbd lnnc+1
(

1 − r(1 − p)bd lnnc
)n−bd lnnc−1

= 0.

Proof. As

nbd lnnc+1(1−r(1−p)bd ln nc)n−bd lnnc−1 ≤ nd lnn+1(1−r(1−p)d lnn)n−d ln n−1,

it is enough to prove that

(3.2) lim
n→∞

nd ln n+1
(

1 − r(1 − p)d lnn
)n−d lnn−1

= 0.
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If q = 1 − p and c = ln(1/q), then c, d > 0 and 0 < cd < 1. Now

nd lnn+1(1 − r(1 − p)d lnn)n−d ln n−1 = nd lnn+1(1 − rqd lnn)n−d ln n−1

= nd lnn+1
(

1 −
r

ncd

)n−d lnn−1

= exp (f(n)) ,(3.3)

where

f(n) = (d ln n + 1) ln(n) + (n − d lnn − 1) ln
(

1 −
r

ncd

)

.

For a sufficiently large n, ln
(

1 − r/ncd
)

< 0, we have that

(3.4) lim
n→∞

f(n) = −∞.

By (3.3) and (3.4), (3.2) follows. �

For k a positive integer, a graph is (1, k)-e.c. if for each k-element subset
S of vertices of G and vertex u, there is a vertex z /∈ S not joined to any
vertex in S and joined to u.

Proof of Theorem 3.4. It is easy to see that if G is (1, k)-e.c., then c(G) ≥ k.
Let 0 < p < 1, and 0 < ε < 1 be fixed, and let k = b(1 − ε) logq nc, where
q = 1/(1 − p). The probability that G is not (1, k)-e.c. is at most

f(n) = nk+1(1 − p(1 − p)k)n−k−1.

Setting r = p in (3.1), we have that

lim
n→∞

f(n) = 0,

by Lemma 3.5. Hence, with probability 1 as n → ∞,

c(G) ≥ (1 − ε) logq n.

�

If Qk is the hypercube of dimension k, then Theorem 2.4 of [18] proves
that c(Qk) ∈ Θ(k). Hence, the cop density of Qk is in Θ((ln n)/n), where n =
2k. As almost all finite graphs have diameter 2, almost all finite connected
graphs have density around (lnn)/n, as the following result demonstrates.

Corollary 3.6. Fix p and ε in (0, 1). Then with probability 1 as n → ∞,

for G ∈ G(n, p),

(1 − ε) logq n

n
≤ Dc(G) ≤

(1 + ε) logq n

n

An open problem is to determine the cop number of the random graph
G(n, p) when p is a function of n.
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