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REPRESENTATION FOR SOME ALGEBRAS WITH A

NEGATION OPERATOR

SERGIO A. CELANI

Abstract. In [1], the variety of ¬-lattices was introduced as a bounded
distributive lattices, A, endowed with a unary operation ¬, satisfying
the axioms ¬0 ≈ 1 and ¬ (a ∨ b) ≈ ¬a∧¬b. In this paper, we apply the
representation and the duality developed in [1] to give short represen-
tations for semi-De Morgan algebras, demi-p-lattices, almost p-lattices,
and weak Stone algebras.

1. Introduction and preliminaries

In [1], the variety N of ¬-lattices was introduced as a generalization of
some known algebraic structures that have, as a reduct, a bounded dis-
tributive lattice, and are endowed with a unary operation ¬. Examples
include p-algebras [2], semi-De Morgan algebras, demi-p-lattices and almost
p-lattices [9], and quasi-Stone algebras [1].

For all these varieties there are representation theorems and Priestley
dualities. In the case of the variety of semi-De Morgan algebras, a duality
is given in [5]; for the variety of demi-p-lattices and the variety of almost
p-lattices a duality is presented in [3] (see also [7]); for the variety of quasi-
Stone algebras, a Priestley duality is developed in [1]. In this note, we use
the results rendered in [1] to give alternative and short proofs of the main
results on the representation for semi-De Morgan algebras, demi-p-lattices
and almost p-lattices. We also give a representation for weak-Stone algebras
[9].

An algebra A = 〈A,∨,∧,¬, 0, 1〉 is a distributive lattice with a negation

operator ¬ (or ¬-lattice), if 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice
and the unary operation ¬ satisfies the identities:

(1) ¬0 ≈ 1;
(2) ¬(x ∨ y) ≈ ¬x ∧ ¬y.

The varieties of semi-De Morgan algebras SDMA, the variety of demi-
p-lattices DMPL, the variety of almost p-lattices ADPL, and the variety
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WS of weak-Stone algebras are important examples of ¬-lattices, and can
be axiomatized as follows.

SDMA = N + {¬1 ≈ 0,¬¬ (x ∧ y) ≈ ¬¬x ∧ ¬¬y, ¬¬¬x ≈ ¬x} .

DMPL = SDMA + {¬x ∧ ¬¬x ≈ 0} .

ADPL = SDMA + {¬x ∧ x ≈ 0} .

WS = SDMA + {¬x ∨ ¬¬x ≈ 1} .

A characterization of the variety of semi-De Morgan algebras is given in
the following result.

Lemma 1.1. Let A ∈ N + {¬1 ≈ 0}. Then the following conditions are

equivalent.

(1) A ∈ SDMA.

(2) A � ¬ (a ∧ b) ≈ ¬ (a ∧ ¬¬b) .

Proof. (1 ⇒ 2) Let a, b ∈ A. Then

¬ (a ∧ b) = ¬¬¬ (a ∧ b) = ¬ (¬¬a ∧ ¬¬b)
= ¬ (¬¬a ∧ ¬¬¬¬b) = ¬¬¬ (a ∧ ¬¬b)
= ¬ (a ∧ ¬¬b) .

(2 ⇒ 1) Let a, b ∈ A. Then

¬a = ¬(1 ∧ a) = ¬(1 ∧ ¬¬a) = ¬¬¬a

On the other hand,

¬¬ (a ∧ b) = ¬(¬(a ∧ b)) = ¬(¬(a ∧ ¬¬b))
= ¬(¬(¬¬a ∧ ¬¬b)) = ¬¬(¬¬a ∧ ¬¬b)
= ¬¬¬(¬a ∨ ¬b) = ¬(1 ∧ ¬¬(¬a ∨ ¬b))
= ¬(1 ∧ (¬a ∨ ¬b)) = ¬(¬a ∨ ¬b)
= ¬¬a ∧ ¬¬b.

Therefore, A ∈ SDMA. �

2. Representation

First we describe the representation of ¬-lattices by means of suitable
ordered sets equipped with binary relations. Given a poset 〈X,≤〉, a set
Y ⊆ X is increasing if it closed under ≤, that is, if for every x ∈ Y and
every y ∈ X, if x ≤ y then y ∈ Y . The set of all increasing subsets of X will
be denoted by Pu(X), and the power set of X by P(X). If R is a binary
relation on a set X and x ∈ X, we define R(x) = {y ∈ X : xRy}. An ordered
¬-frame, or frame for short, is a relational structure 〈X,≤, R〉 where 〈X,≤〉
is a poset and R is a binary relation on X such that (≤ ◦R ◦ ≤−1) ⊆ R. In
any frame 〈X,≤, R〉 the set Pu(X) is closed under the operation ¬R defined
by:

¬R (U) = {x ∈ X : R (x) ∩ U = ∅} ,
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for each U ∈ Pu (X) . It is easy to see that the structure

A (F) = 〈Pu (X) ,∪,∩,¬R,∅, X〉

is a ¬-lattice.
Let A be a bounded distributive lattice. The filter (ideal) generated by

a set H ⊆ A is denoted by [H) ((H]). The set of all prime filters of a ¬-
lattice is denoted by X (A). The set of all maximal elements (with respect
to ⊆) of X (A) is denoted by max X (A). For a subset Y 6= ∅ of X (A), let
maxY = {x ∈ Y : x ≤ y and y ∈ Y, implies x = y}.

We define a binary relation R
¬

on the set X (A). Let R
¬
⊆ X(A)×X(A)

given by

(P,Q) ∈ R
¬

if and only if ¬−1(P ) ∩ Q = ∅.

We also define a relation Rm ⊆ X (A) × X (A) as

(2.1) (P,Q) ∈ Rm if and only if Q ∈ maxR
¬
(P ).

Lemma 2.1. [1] Let A ∈ N , and P ∈ X(A). Then

(1) ¬−1(P ) = {a ∈ A | ¬a ∈ P} is an ideal of A;

(2) for each a ∈ A, ¬a /∈ P if and only if there is Q ∈ X(A) such that

(P,Q) ∈ Rm and a ∈ Q.

Let us consider the structure F (A) = 〈X(A),⊆, R
¬
〉. It is easy to see

that F (A) is a ¬-frame because
(

⊆ ◦R
¬
◦ ⊆−1

)

⊆ R
¬
. Then

Ec (A) =
〈

Pu(X(A)),∪,∩,¬
R¬

,∅, X(A)
〉

is a ¬-lattice called the canonical extension of A. As in the case of the
representation for bounded distributive lattices, to obtain a representation
theorem for ¬-lattices, we consider the family of sets σ (A) = {σ (a) : a ∈ A},
where for each a ∈ A, σ (a) = {P ∈ X (A) : a ∈ P}. Then it is easy to see
that the set σ(A) is closed under the operation ¬R¬ defined on Pu(X(A)).
Thus, the algebra

〈σ(A),∪,∩,¬
R¬

,∅, X(A)〉

is a subalgebra of the canonical extension Ec (A) of A. Then we have that
every ¬-lattice A is isomorphic to the ¬-lattice of sets σ(A), that is, σ is an
embedding of A into Ec (A) .

Theorem 2.2. Let A ∈ N . Then

(1) A � ¬a ∧ a ≈ 0 ⇔ R
¬

is reflexive.

(2) A � ¬1 ≈ 0 ⇔ R
¬

is serial i.e., R
¬
(P ) 6= ∅ for any P ∈ X(A).

Proof. We prove only (1). Suppose that ¬a ∧ a ≈ 0 is valid in A. Let
P ∈ X (A). Then for all a ∈ P , ¬a /∈ P . Thus, (P, P ) ∈ R

¬
. Conversely, if

there exists a ∈ A such that ¬a ∧ a 6= 0, then there exists P ∈ X (A) such
that ¬a ∈ P and a ∈ P , which is a contradiction. Thus, ¬a∧a = 0 for every
a ∈ A. �
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Consider the set

(2.2) Xm =
⋃

{maxR
¬
(P ) : P ∈ X (A)} .

For each P ∈ X (A), define the set

g (P ) = {a ∈ A : ¬a /∈ P} .

Now we give the characterization of semi-De Morgan algebras in terms of
the relation Rm.

Theorem 2.3. Let A ∈ N . Then the following conditions are equivalent.

(1) A ∈ SDMA.

(2) For any Q ∈ Xm, g2(Q) = Q, g (Q) ∈ Xm, Rm (Q) = {g (Q)}, and

Rm(g(Q)) = {Q} . Thus, g is an involution on Xm.
(3) The relation Rm is serial, and for any Q,D,Z ∈ Xm, if (Q,D) ∈ Rm

and (D,Z) ∈ Rm, then Q = Z.

Proof. (1 ⇒ 2) Let Q ∈ Xm. We prove that a ∈ Q if and only if ¬¬a ∈ Q.
Suppose that a ∈ Q, and ¬¬a /∈ Q. Then there exists P ∈ X (A) such that
(P,Q) ∈ Rm, and

¬−1 (P ) ∩ [Q ∪ {¬¬a}) 6= ∅,

i.e., there exists q ∈ Q such that ¬ (q ∧ ¬¬a) ∈ P. From Lemma 1.1,
¬ (q ∧ ¬¬a) = ¬ (q ∧ a), so

q ∧ a ∈ ¬−1 (P ) ∩ Q,

a contradiction, because (P,Q) ∈ R
¬
. Thus, ¬¬a ∈ Q. Similarly we can

prove that if ¬¬a ∈ Q, then a ∈ Q. Thus, g2(Q) = Q.
We prove that g (Q) is a prime filter. It is clear that g (Q) is increasing,

1 ∈ g (Q), and that if a ∨ b ∈ g (Q), then a ∈ g (Q) or b ∈ g (Q).
We prove that g (Q) is closed under ∧. Let a, b ∈ g (Q), i.e., ¬a, ¬b /∈ Q.

Let P ∈ X (A) such that (P,Q) ∈ Rm. Then,

¬−1 (P ) ∩ [Q ∪ {¬a}) 6= ∅ and ¬−1 (P ) ∩ [Q ∪ {¬b}) 6= ∅,

and there exist q1, q2 ∈ Q such that

¬ (q1 ∧ ¬a) ∈ P and ¬ (q2 ∧ ¬b) ∈ P.

Let q = q1 ∧ q2. Then

¬ (q ∧ ¬a) ∧ ¬ (q ∧ ¬b) = ¬ ((q ∧ ¬a) ∨ (q ∧ ¬b))

= ¬ (q ∧ (¬a ∨ ¬b))

= ¬ (q ∧ ¬¬ (¬a ∨ ¬b)) (by Lemma 1.1)

= ¬ (q ∧ ¬ (¬¬a ∧ ¬¬b))

= ¬ (q ∧ ¬¬¬ (a ∧ b))

= ¬ (q ∧ ¬ (a ∧ b)) ∈ P .

Since ¬−1 (P ) ∩ Q = ∅, and q ∈ Q, we get ¬ (a ∧ b) /∈ Q. Thus,

a ∧ b ∈ g (Q) ,
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and g (Q) is a prime filter.
It is clear that (Q, g (Q)) ∈ R

¬
, and as g2(Q) = Q, we have that (g (Q) , Q)

∈ R
¬
.We prove that g (Q) ∈ Rm (Q). Suppose that there exists D ∈ R

¬
(Q)

such that g(Q) ⊆ D. Then D ⊆ g(Q) and g(Q) ⊆ D, i.e., D = g(Q). Thus,
g (Q) ∈ Rm (Q).

Similarly we can prove that Q ∈ Rm (g(Q)).
We prove that Rm(Q) = {g(Q)}. Suppose that there exists D ∈ Rm(Q).

Then D ∈ R
¬
(Q), i.e., D ⊆ g(Q). As D is maximal in R

¬
(Q), and

(Q, g (Q)) ∈ R
¬
, we have that D = g(Q). Similarly we can prove that

Rm (g(Q)) = {Q}.
(2 ⇒ 3) As g(Q) ∈ Rm(Q) for any Q ∈ Xm, Rm is serial. Let Q,D,Z ∈

Xm such that (Q,D) ∈ Rm and (D,Z) ∈ Rm. As Rm(Q) = {g(Q)} and
Rm(D) = {g(D)}, D = g(Q) and g(D) = Z. Thus Q = g2(Q) = g(D) = Z.

(3 ⇒ 1) We prove that for every Q,D ∈ Xm ,

(2.3) if (Q,D) ∈ Rm, then (D,Q) ∈ Rm.

Let Q,D ∈ Xm be such that (Q,D) ∈ Rm. As Rm is serial, there exists
Z ∈ Xm such that (D,Z) ∈ Rm. From hypothesis, we get Q = Z, i.e.,
(D,Q) ∈ Rm. Thus (2.3) is valid.

Since the operation ¬ is anti-monotonic, we have that

¬¬ (a ∧ b) ≤ ¬¬a ∧ ¬¬b,

for all a, b ∈ A. Suppose that there exists a, b ∈ A such that

¬¬a ∧ ¬¬b � ¬¬ (a ∧ b) .

Then there exists P ∈ X (A) such that ¬¬a ∧ ¬¬b ∈ P , and ¬¬ (a ∧ b) /∈
P. From Lemma 2.1, there exists Q ∈ Xm such that (P,Q) ∈ Rm and
¬ (a ∧ b) ∈ Q. As Rm is serial, there exists D ∈ Xm such that (Q,D) ∈ Rm,
and thus

a ∧ b /∈ D.

By (2.3) we get (D,Q) ∈ Rm. On the other hand, as ¬¬a ∧ ¬¬b ∈ P , ¬a,
¬b /∈ Q. So there exist D1, D2 ∈ Xm such that

(Q,D1) ∈ Rm, (Q,D2) ∈ Rm, a ∈ D1, and b ∈ D2.

From (2.3) we have (D1, Q) ∈ Rm, and as (Q,D) ∈ Rm, D = D1. Similarly
we can see that D = D2. Thus, a, b ∈ D, which is a contradiction.

Let a ∈ A. We prove that ¬a ≤ ¬¬¬a. If there exists P ∈ X (A) such that
¬a ∈ P and ¬¬¬a /∈ P , then there exists Q ∈ Xm such that (P,Q) ∈ Rm,
¬¬a ∈ Q, and a /∈ Q. Since Rm is serial, there exists D ∈ Xm such that
(Q,D) ∈ Rm, and by (2.3) (D,Q) ∈ Rm. Since ¬¬a ∈ Q, ¬a /∈ D. Then
there exists Z ∈ Xm such that (D,Z) ∈ Rm and a ∈ Z. By hypothesis we
get Q = Z, i.e., a ∈ Q, which is a contradiction.

We prove that ¬¬¬a ≤ ¬a. Suppose that ¬¬¬a � ¬a. Then there exists
P ∈ X(A), and there exists Q ∈ Xm such that

¬¬¬a ∈ P, (P,Q) ∈ Rm, and a ∈ Q.
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As ¬¬a /∈ Q, there exists D ∈ Xm such that (Q,D) ∈ Rm and ¬a ∈
D. From (2.3), (D,Q) ∈ Rm. Thus, ¬a /∈ D, because a ∈ Q, which is a
contradiction. �

Theorem 2.4. Let A ∈ SDMA. Then

(1) A ∈ DMPL if and only if (Q,Q) ∈ Rm, for any Q ∈ Xm;

(2) A ∈ ADPL if and only if Xm = max X (A) and (Q,Q) ∈ Rm, for

any Q ∈ Xm.

Proof. (1) We note that for any Q ∈ Xm,

(Q,Q) ∈ Rm if and only if g (Q) = Q,

so, we will prove that g (Q) = Q. Let a ∈ Q. Since g2(Q) = Q, ¬¬a ∈ Q,
and as ¬a ∧ ¬¬a = 0, ¬a /∈ Q, i.e., a ∈ g (Q) . Thus, Q ⊆ g(Q).

If a ∈ g (Q), then ¬a /∈ Q. Suppose that a /∈ Q. Then, ¬a ∨ a /∈ Q, and
since Q ∈ Rm (g (Q)), we get

¬−1 (g (Q)) ∩ [Q ∪ {¬a ∨ a}) 6= ∅.

So there exists q ∈ Q such that

¬ (q ∧ (¬a ∨ a)) = ¬ (q ∧ ¬¬ (¬a ∨ a)) (by Lemma 1.1)
= ¬ (¬¬q ∧ ¬ (¬¬a ∧ ¬a))
= ¬ (¬¬q ∧ ¬0)
= ¬ (¬¬q ∧ 1)
= ¬¬¬q = ¬q ∈ g (Q) ,

But ¬q ∈ g (Q) if and only if ¬¬q /∈ Q if and only if q /∈ Q, a contradiction.
Thus g(Q) ⊆ Q, and hence g (Q) = Q.

Assume that (Q,Q) ∈ Rm, for any Q ∈ Xm. Suppose that there exists
a ∈ A such that

¬a ∧ ¬¬a 6= 0.

Then there exists P ∈ X (A) such that ¬a ∈ P and ¬¬a ∈ P . As R
¬

(P ) 6=
∅, because ¬1 = 0, there exists Q ∈ Xm such that

(P,Q) ∈ Rm, a /∈ Q and ¬a /∈ Q.

This implies, a ∈ g (Q) = Q, which is absurd. Thus, ¬a ∧ ¬¬a = 0 for any
a ∈ A.

(2). If A is an almost p-demi lattice, then ¬a∧¬¬a = 0. Thus, g (Q) = Q
for any Q ∈ Xm.

Let Q ∈ Xm. We prove that Q is maximal. Let a /∈ Q. Then a /∈ g (Q) ,
i.e., ¬a ∈ Q. Thu we have to proved that for any a /∈ Q, there exists
b = ¬a ∈ Q such that a ∧ b = 0, i.e., Q is maximal.

Suppose that Q is maximal. We prove that Q ∈ Xm. From 2.2 it follows
that (Q,Q) ∈ R

¬
. Moreover, if Q ⊆ D ∈ X (A) and (Q,D) ∈ R

¬
, then

Q = D, because Q is maximal. Thus, (Q,Q) ∈ Rm and consequently
Q ∈ Xm.

Suppose that Xm = maxX (A) . Let Q ∈ Xm. Then, g (Q) = Q ∈ Xm

because A ∈ SDMA.
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Suppose that there exists a ∈ A such that ¬a ∧ a 6= 0. Then there exists
P ∈ X (A) such that ¬a ∈ P and a ∈ P . Let Q ∈ maxX (A) such that
P ⊆ Q. Since Q ∈ Xm = max X (A), (Q,Q) ∈ Rm. Since ¬a ∈ P ⊆ Q,
a /∈ Q, a contradiction. Thus, ¬a ∧ a = 0. �

It is known that a bounded distributive pseudocomplement lattice A is a
Stone algebra if and only if for each prime filter P there exists at most an
maximal filter U such that P ⊆ U (see [2]). For weak-Stone algebras we can
give the following result.

Theorem 2.5. Let A ∈ SDMA. Then the following conditions are equiv-

alent

(1) The relation R
¬

is euclidean, i.e., R−1
¬

◦ R
¬
⊆ R

¬
.

(2) A ∈ WS.
(3) A ∈ DMPL, and for any P ∈ X (A) there exists a unique Q ∈ Xm

such that (P,Q) ∈ Rm.

Proof. (1 ⇒ 2) Assume that R
¬

is euclidean and suppose that there exists
a ∈ A such that ¬a∨¬¬a 6= 1. Then there exists P,Q,D ∈ X(A) such that

¬a,¬¬a /∈ P, (P,Q) ∈ R
¬
, a ∈ Q, (P,D) ∈ R

¬
and ¬a ∈ D.

Since R
¬

is euclidean, (D,Q) ∈ R
¬
. Since a ∈ Q, we have ¬a /∈ D, a

contradiction.
(2 ⇒ 3) As ¬a ∨ ¬¬a = 1, for any a ∈ A, we have

¬1 = 0 = ¬ (¬a ∨ ¬¬a)

= ¬¬a ∧ ¬¬¬a = ¬¬a ∧ ¬a.

Thus, A ∈ DMPL.
Let P ∈ X (A), and suppose that there exists Q1, Q2 ∈ Xm such that

(P,Q1) ∈ Rm and (P,Q2) ∈ Rm.

If Q1  Q2, there exists a ∈ A such that a ∈ Q1 and a /∈ Q2. So, ¬a /∈ P,
and consequently ¬¬a ∈ P . It follows that ¬a /∈ Q2 and ¬¬a ∈ Q2. As
Q2 ∈ Xm, from (2) of Theorem 2.3, we have that Q2 = g2 (Q2). So a ∈ Q2,
which is a contradiction. Thus Q1 ⊆ Q2. Similarly we can prove that Q2 ⊆
Q1.

(3 ⇒ 1) Let P,Z,D ∈ X(A) be such that (P,Z) ∈ R
¬

and (P,D) ∈ R
¬
.

By hypothesis, there exists a unique Q ∈ Xm such that (P,Q) ∈ Rm, so
Z ⊆ Q and D ⊆ Q. Suppose that (D,Z) /∈ R

¬
. Then there exists a ∈ A

such that ¬a ∈ D and a ∈ Z. Thus, ¬a, a ∈ Q. Since Q ∈ Xm, by (2) of
Theorem 2.3, Q = g2 (Q), and thus ¬¬a ∈ Q. Consequently,

¬a ∧ ¬¬a = 0 ∈ Q,

a contradiction. Thus, (D,Z) ∈ R
¬
, i.e., R

¬
is euclidean. �

Let A be a bounded distributive lattice. The Priestley space [8] of A

is the set X (A), partially ordered by set inclusion, with the topology τ
generated by the collection of all σ (a), σ (a)c. It is well known that X (A)
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is compact, Hausdorff, and has as basis of clopen sets, namely the family
σ (A) = {σ (a) : a ∈ A}. The key fact is that the map σ is an isomorphism
from A onto the lattice of clopen increasing subsets of X (A).

A Priestley duality for ¬-lattices is given in [1] in terms of the ¬-spaces.
Let us recall that a ¬-space is a pair X = 〈X,R〉 such that:

(1) X is a Priestley space;
(2) R is a binary relation defined on X such that for each x ∈ X, R(x)

is a closed and decreasing subset of X;
(3) ¬R(U) = {x ∈ X : R (x) ∩ U = ∅} is a clopen increasing for each

clopen increasing U .

Let X be a ¬-space. Consider the relation Rm defined by Rm(x) =

maxR(x), for each x ∈ X. Consider the set Xm =
⋃

{maxR(x) : x ∈ X}.

Definition 2.6. Let 〈X,R〉 be a ¬-space. We say that

(1) X is a semi-De Morgan space if the relation Rm is serial, and for

every x, y, z ∈ Xm, if (x, y) ∈ Rm and (y, z) ∈ Rm, then x = y.
(2) X is a demi-p-space if it is a semi-De Morgan space, and (x, x) ∈ Rm

for any x ∈ Xm.

(3) X is an almost p-space if it is a demi-p-space and X = maxX.
(4) X is a weak Stone space if it is a demi-p-space and the relation R

is euclidean.

By Theorem 2.3, Theorem 2.4, Theorem 2.5, and the results given in [1]
for ¬-spaces we formulate the following theorem.

Theorem 2.7. The ¬-spaces of semi-De Morgan algebras, demi-p-lattices,

almost p-lattices, and weak Stone algebras are semi-De Morgan spaces, demi-

p-spaces, almost p-spaces and weak Stone spaces, respectively.
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