Contributions to Discrete Mathematics

Volume 2, Number 2, Pages 205–213 ISSN 1715-0868

REPRESENTATION FOR SOME ALGEBRAS WITH A NEGATION OPERATOR

SERGIO A. CELANI

ABSTRACT. In [1], the variety of \neg -lattices was introduced as a bounded distributive lattices, A, endowed with a unary operation \neg , satisfying the axioms $\neg 0 \approx 1$ and $\neg (a \lor b) \approx \neg a \land \neg b$. In this paper, we apply the representation and the duality developed in [1] to give short representations for semi-De Morgan algebras, demi-*p*-lattices, almost *p*-lattices, and weak Stone algebras.

1. INTRODUCTION AND PRELIMINARIES

In [1], the variety \mathcal{N} of \neg -lattices was introduced as a generalization of some known algebraic structures that have, as a reduct, a bounded distributive lattice, and are endowed with a unary operation \neg . Examples include *p*-algebras [2], semi-De Morgan algebras, demi-*p*-lattices and almost *p*-lattices [9], and quasi-Stone algebras [1].

For all these varieties there are representation theorems and Priestley dualities. In the case of the variety of semi-De Morgan algebras, a duality is given in [5]; for the variety of demi-p-lattices and the variety of almost p-lattices a duality is presented in [3] (see also [7]); for the variety of quasi-Stone algebras, a Priestley duality is developed in [1]. In this note, we use the results rendered in [1] to give alternative and short proofs of the main results on the representation for semi-De Morgan algebras, demi-p-lattices and almost p-lattices. We also give a representation for weak-Stone algebras [9].

An algebra $\mathbf{A} = \langle A, \vee, \wedge, \neg, 0, 1 \rangle$ is a distributive lattice with a *negation* operator \neg (or \neg -lattice), if $\langle A, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice and the unary operation \neg satisfies the identities:

(1) $\neg 0 \approx 1;$

(2) $\neg (x \lor y) \approx \neg x \land \neg y.$

The varieties of semi-De Morgan algebras SDMA, the variety of demip-lattices DMPL, the variety of almost p-lattices ADPL, and the variety

©2007 University of Calgary

Received by the editors April 4, 2006, and in revised form May 5, 2007, August 11, 2007, and September 17, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 06D15, 06D30, 06D39, 08A30.

Key words and phrases. operators on distributive lattices, semi-De Morgan algebras, duality.

 \mathcal{WS} of weak-Stone algebras are important examples of \neg -lattices, and can be axiomatized as follows.

$$\begin{split} \mathcal{SDMA} &= \mathcal{N} + \{ \neg 1 \approx 0, \neg \neg (x \land y) \approx \neg \neg x \land \neg \neg y, \neg \neg \neg x \approx \neg x \} \, . \\ \mathcal{DMPL} &= \mathcal{SDMA} + \{ \neg x \land \neg \neg x \approx 0 \} \, . \\ \mathcal{ADPL} &= \mathcal{SDMA} + \{ \neg x \land x \approx 0 \} \, . \\ \mathcal{WS} &= \mathcal{SDMA} + \{ \neg x \lor \neg \neg x \approx 1 \} \, . \end{split}$$

A characterization of the variety of semi-De Morgan algebras is given in the following result.

Lemma 1.1. Let $A \in \mathcal{N} + \{\neg 1 \approx 0\}$. Then the following conditions are equivalent.

(1)
$$\boldsymbol{A} \in \mathcal{SDMA}.$$

(2) $\boldsymbol{A} \models \neg (a \land b) \approx \neg (a \land \neg \neg b)$

Proof. $(1 \Rightarrow 2)$ Let $a, b \in A$. Then

$$\neg (a \land b) = \neg \neg \neg (a \land b) = \neg (\neg \neg a \land \neg \neg b)$$

= $\neg (\neg \neg a \land \neg \neg \neg b) = \neg \neg \neg (a \land \neg \neg b)$
= $\neg (a \land \neg \neg b).$

 $(2 \Rightarrow 1)$ Let $a, b \in A$. Then

$$\neg a = \neg (1 \land a) = \neg (1 \land \neg \neg a) = \neg \neg a$$

On the other hand,

$$\begin{array}{rcl} (a \wedge b) &=& \neg(\neg(a \wedge b)) &=& \neg(\neg(a \wedge \neg\neg b)) \\ &=& \neg(\neg(\neg\neg a \wedge \neg\neg b)) &=& \neg(\neg \neg a \wedge \neg\neg b) \\ &=& \neg(\neg(\neg a \vee \neg b)) &=& \neg(1 \wedge \neg \neg(\neg a \vee \neg b)) \\ &=& \neg(1 \wedge (\neg a \vee \neg b)) &=& \neg(\neg a \vee \neg b) \\ &=& \neg \neg a \wedge \neg \neg b. \end{array}$$

Therefore, $A \in SDMA$.

2. Representation

First we describe the representation of \neg -lattices by means of suitable ordered sets equipped with binary relations. Given a poset $\langle X, \leq \rangle$, a set $Y \subseteq X$ is increasing if it closed under \leq , that is, if for every $x \in Y$ and every $y \in X$, if $x \leq y$ then $y \in Y$. The set of all increasing subsets of X will be denoted by $\mathcal{P}_u(X)$, and the power set of X by $\mathcal{P}(X)$. If R is a binary relation on a set X and $x \in X$, we define $R(x) = \{y \in X : xRy\}$. An ordered \neg -frame, or frame for short, is a relational structure $\langle X, \leq, R \rangle$ where $\langle X, \leq \rangle$ is a poset and R is a binary relation on X such that $(\leq \circ R \circ \leq^{-1}) \subseteq R$. In any frame $\langle X, \leq, R \rangle$ the set $\mathcal{P}_u(X)$ is closed under the operation \neg_R defined by:

$$\neg_{R}(U) = \{x \in X : R(x) \cap U = \emptyset\},\$$

for each $U \in \mathcal{P}_u(X)$. It is easy to see that the structure

$$A\left(\mathcal{F}\right) = \left\langle \mathcal{P}_{u}\left(X\right), \cup, \cap, \neg_{R}, \varnothing, X \right\rangle$$

is a \neg -lattice.

Let A be a bounded distributive lattice. The filter (ideal) generated by a set $H \subseteq A$ is denoted by [H) ((H]). The set of all prime filters of a \neg lattice is denoted by X(A). The set of all maximal elements (with respect to \subseteq) of X(A) is denoted by max X(A). For a subset $Y \neq \emptyset$ of X(A), let max $Y = \{x \in Y : x \leq y \text{ and } y \in Y, \text{ implies } x = y\}.$

We define a binary relation R_{\neg} on the set $X(\mathbf{A})$. Let $R_{\neg} \subseteq X(\mathbf{A}) \times X(\mathbf{A})$ given by

$$(P,Q) \in R_{\neg}$$
 if and only if $\neg^{-1}(P) \cap Q = \emptyset$.

We also define a relation $R_m \subseteq X(\mathbf{A}) \times X(\mathbf{A})$ as

(2.1)
$$(P,Q) \in R_m$$
 if and only if $Q \in \max R_{\neg}(P)$.

Lemma 2.1. [1] Let $A \in \mathcal{N}$, and $P \in X(A)$. Then

- (1) $\neg^{-1}(P) = \{a \in A \mid \neg a \in P\}$ is an ideal of A;
- (2) for each $a \in A$, $\neg a \notin P$ if and only if there is $Q \in X(A)$ such that $(P,Q) \in R_m$ and $a \in Q$.

Let us consider the structure $\mathcal{F}(\mathbf{A}) = \langle X(\mathbf{A}), \subseteq, R_{\neg} \rangle$. It is easy to see that $\mathcal{F}(\mathbf{A})$ is a \neg -frame because $(\subseteq \circ R_{\neg} \circ \subseteq^{-1}) \subseteq R_{\neg}$. Then

$$E_{c}(\boldsymbol{A}) = \left\langle \mathcal{P}_{u}(X(\boldsymbol{A})), \cup, \cap, \neg_{R_{-}}, \varnothing, X(\boldsymbol{A}) \right\rangle$$

is a \neg -lattice called the *canonical extension* of A. As in the case of the representation for bounded distributive lattices, to obtain a representation theorem for \neg -lattices, we consider the family of sets $\sigma(A) = \{\sigma(a) : a \in A\}$, where for each $a \in A$, $\sigma(a) = \{P \in X(A) : a \in P\}$. Then it is easy to see that the set $\sigma(A)$ is closed under the operation $\neg_{R_{\neg}}$ defined on $\mathcal{P}_u(X(A))$. Thus, the algebra

$$\langle \sigma(\boldsymbol{A}), \cup, \cap, \neg_{R_{\neg}}, \varnothing, X(\boldsymbol{A}) \rangle$$

is a subalgebra of the canonical extension $E_c(\mathbf{A})$ of \mathbf{A} . Then we have that every \neg -lattice \mathbf{A} is isomorphic to the \neg -lattice of sets $\sigma(\mathbf{A})$, that is, σ is an embedding of \mathbf{A} into $E_c(\mathbf{A})$.

Theorem 2.2. Let $A \in \mathcal{N}$. Then

- (1) $\mathbf{A} \models \neg a \land a \approx 0 \Leftrightarrow R_{\neg}$ is reflexive.
- (2) $\mathbf{A} \models \neg 1 \approx 0 \Leftrightarrow R_{\neg}$ is serial i.e., $R_{\neg}(P) \neq \emptyset$ for any $P \in X(\mathbf{A})$.

Proof. We prove only (1). Suppose that $\neg a \land a \approx 0$ is valid in A. Let $P \in X(A)$. Then for all $a \in P$, $\neg a \notin P$. Thus, $(P, P) \in R_{\neg}$. Conversely, if there exists $a \in A$ such that $\neg a \land a \neq 0$, then there exists $P \in X(A)$ such that $\neg a \in P$ and $a \in P$, which is a contradiction. Thus, $\neg a \land a = 0$ for every $a \in A$.

Consider the set

(2.2)
$$X_m = \bigcup \left\{ \max R_{\neg}(P) : P \in X\left(\boldsymbol{A}\right) \right\}$$

For each $P \in X(\mathbf{A})$, define the set

$$g(P) = \{a \in A : \neg a \notin P\}.$$

Now we give the characterization of semi-De Morgan algebras in terms of the relation R_m .

Theorem 2.3. Let $A \in \mathcal{N}$. Then the following conditions are equivalent.

- (1) $\boldsymbol{A} \in \mathcal{SDMA}$.
- (2) For any $Q \in X_m$, $g^2(Q) = Q$, $g(Q) \in X_m$, $R_m(Q) = \{g(Q)\}$, and $R_m(g(Q)) = \{Q\}$. Thus, g is an involution on X_m .
- (3) The relation R_m is serial, and for any $Q, D, Z \in X_m$, if $(Q, D) \in R_m$ and $(D, Z) \in R_m$, then Q = Z.

Proof. $(1 \Rightarrow 2)$ Let $Q \in X_m$. We prove that $a \in Q$ if and only if $\neg \neg a \in Q$. Suppose that $a \in Q$, and $\neg \neg a \notin Q$. Then there exists $P \in X(A)$ such that $(P,Q) \in R_m$, and

$$\neg^{-1}(P) \cap [Q \cup \{\neg \neg a\}) \neq \emptyset,$$

i.e., there exists $q \in Q$ such that $\neg (q \land \neg \neg a) \in P$. From Lemma 1.1, $\neg (q \land \neg \neg a) = \neg (q \land a)$, so

$$q \wedge a \in \neg^{-1}(P) \cap Q,$$

a contradiction, because $(P,Q) \in R_{\neg}$. Thus, $\neg \neg a \in Q$. Similarly we can prove that if $\neg \neg a \in Q$, then $a \in Q$. Thus, $g^2(Q) = Q$.

We prove that g(Q) is a prime filter. It is clear that g(Q) is increasing, $1 \in g(Q)$, and that if $a \lor b \in g(Q)$, then $a \in g(Q)$ or $b \in g(Q)$.

We prove that g(Q) is closed under \wedge . Let $a, b \in g(Q)$, i.e., $\neg a, \neg b \notin Q$. Let $P \in X(\mathbf{A})$ such that $(P,Q) \in R_m$. Then,

$$\neg^{-1}(P) \cap [Q \cup \{\neg a\}) \neq \emptyset \text{ and } \neg^{-1}(P) \cap [Q \cup \{\neg b\}) \neq \emptyset,$$

and there exist $q_1, q_2 \in Q$ such that

$$\neg (q_1 \land \neg a) \in P \text{ and } \neg (q_2 \land \neg b) \in P.$$

Let $q = q_1 \wedge q_2$. Then

$$\neg (q \land \neg a) \land \neg (q \land \neg b) = \neg ((q \land \neg a) \lor (q \land \neg b))$$

= $\neg (q \land (\neg a \lor \neg b))$
= $\neg (q \land \neg \neg (\neg a \lor \neg b))$ (by Lemma 1.1)
= $\neg (q \land \neg (\neg \neg a \land \neg \neg b))$
= $\neg (q \land \neg \neg \neg (a \land b))$
= $\neg (q \land \neg (a \land b)) \in P.$

Since $\neg^{-1}(P) \cap Q = \emptyset$, and $q \in Q$, we get $\neg (a \land b) \notin Q$. Thus,

$$a \wedge b \in g\left(Q\right)$$

and g(Q) is a prime filter.

It is clear that $(Q, g(Q)) \in R_{\neg}$, and as $g^2(Q) = Q$, we have that $(g(Q), Q) \in R_{\neg}$. We prove that $g(Q) \in R_m(Q)$. Suppose that there exists $D \in R_{\neg}(Q)$ such that $g(Q) \subseteq D$. Then $D \subseteq g(Q)$ and $g(Q) \subseteq D$, i.e., D = g(Q). Thus, $g(Q) \in R_m(Q)$.

Similarly we can prove that $Q \in R_m(g(Q))$.

We prove that $R_m(Q) = \{g(Q)\}$. Suppose that there exists $D \in R_m(Q)$. Then $D \in R_{\neg}(Q)$, i.e., $D \subseteq g(Q)$. As D is maximal in $R_{\neg}(Q)$, and $(Q, g(Q)) \in R_{\neg}$, we have that D = g(Q). Similarly we can prove that $R_m(g(Q)) = \{Q\}$.

 $(2 \Rightarrow 3)$ As $g(Q) \in R_m(Q)$ for any $Q \in X_m$, R_m is serial. Let $Q, D, Z \in X_m$ such that $(Q, D) \in R_m$ and $(D, Z) \in R_m$. As $R_m(Q) = \{g(Q)\}$ and $R_m(D) = \{g(D)\}, D = g(Q)$ and g(D) = Z. Thus $Q = g^2(Q) = g(D) = Z$. (3 \Rightarrow 1) We prove that for every $Q, D \in X_m$,

(2.3) if
$$(Q,D) \in R_m$$
, then $(D,Q) \in R_m$

Let $Q, D \in X_m$ be such that $(Q, D) \in R_m$. As R_m is serial, there exists $Z \in X_m$ such that $(D, Z) \in R_m$. From hypothesis, we get Q = Z, i.e., $(D, Q) \in R_m$. Thus (2.3) is valid.

Since the operation \neg is anti-monotonic, we have that

$$\neg\neg (a \land b) \le \neg\neg a \land \neg\neg b,$$

for all $a, b \in A$. Suppose that there exists $a, b \in A$ such that

$$\neg \neg a \land \neg \neg b \nleq \neg \neg (a \land b)$$

Then there exists $P \in X(\mathbf{A})$ such that $\neg \neg a \land \neg \neg b \in P$, and $\neg \neg (a \land b) \notin P$. From Lemma 2.1, there exists $Q \in X_m$ such that $(P,Q) \in R_m$ and $\neg (a \land b) \in Q$. As R_m is serial, there exists $D \in X_m$ such that $(Q,D) \in R_m$, and thus

$$a \wedge b \notin D$$
.

By (2.3) we get $(D,Q) \in R_m$. On the other hand, as $\neg \neg a \land \neg \neg b \in P$, $\neg a$, $\neg b \notin Q$. So there exist $D_1, D_2 \in X_m$ such that

$$(Q, D_1) \in R_m, (Q, D_2) \in R_m, a \in D_1, \text{ and } b \in D_2.$$

From (2.3) we have $(D_1, Q) \in R_m$, and as $(Q, D) \in R_m$, $D = D_1$. Similarly we can see that $D = D_2$. Thus, $a, b \in D$, which is a contradiction.

Let $a \in A$. We prove that $\neg a \leq \neg \neg \neg a$. If there exists $P \in X(A)$ such that $\neg a \in P$ and $\neg \neg \neg a \notin P$, then there exists $Q \in X_m$ such that $(P,Q) \in R_m$, $\neg \neg a \in Q$, and $a \notin Q$. Since R_m is serial, there exists $D \in X_m$ such that $(Q,D) \in R_m$, and by (2.3) $(D,Q) \in R_m$. Since $\neg \neg a \in Q$, $\neg a \notin D$. Then there exists $Z \in X_m$ such that $(D,Z) \in R_m$ and $a \in Z$. By hypothesis we get Q = Z, i.e., $a \in Q$, which is a contradiction.

We prove that $\neg \neg \neg a \leq \neg a$. Suppose that $\neg \neg \neg a \nleq \neg a$. Then there exists $P \in X(\mathbf{A})$, and there exists $Q \in X_m$ such that

$$\neg \neg \neg a \in P, (P,Q) \in R_m, \text{ and } a \in Q.$$

As $\neg \neg a \notin Q$, there exists $D \in X_m$ such that $(Q, D) \in R_m$ and $\neg a \in D$. From (2.3), $(D, Q) \in R_m$. Thus, $\neg a \notin D$, because $a \in Q$, which is a contradiction.

Theorem 2.4. Let $A \in SDMA$. Then

- (1) $\mathbf{A} \in \mathcal{DMPL}$ if and only if $(Q, Q) \in R_m$, for any $Q \in X_m$;
- (2) $A \in ADPL$ if and only if $X_m = \max X(A)$ and $(Q,Q) \in R_m$, for any $Q \in X_m$.

Proof. (1) We note that for any $Q \in X_m$,

 $(Q,Q) \in R_m$ if and only if g(Q) = Q,

so, we will prove that g(Q) = Q. Let $a \in Q$. Since $g^2(Q) = Q$, $\neg \neg a \in Q$, and as $\neg a \land \neg \neg a = 0$, $\neg a \notin Q$, i.e., $a \in g(Q)$. Thus, $Q \subseteq g(Q)$.

If $a \in g(Q)$, then $\neg a \notin Q$. Suppose that $a \notin Q$. Then, $\neg a \lor a \notin Q$, and since $Q \in R_m(g(Q))$, we get

$$\neg^{-1} \left(g\left(Q\right) \right) \cap \left[Q \cup \{ \neg a \lor a \} \right) \neq \varnothing.$$

So there exists $q \in Q$ such that

$$\neg (q \land (\neg a \lor a)) = \neg (q \land \neg \neg (\neg a \lor a))$$
 (by Lemma 1.1)
$$= \neg (\neg \neg q \land \neg (\neg \neg a \land \neg a))$$

$$= \neg (\neg \neg q \land \neg 0)$$

$$= \neg (\neg \neg q \land 1)$$

$$= \neg \neg \neg q = \neg q \in g(Q),$$

But $\neg q \in g(Q)$ if and only if $\neg \neg q \notin Q$ if and only if $q \notin Q$, a contradiction. Thus $g(Q) \subseteq Q$, and hence g(Q) = Q.

Assume that $(Q, Q) \in R_m$, for any $Q \in X_m$. Suppose that there exists $a \in A$ such that

 $\neg a \land \neg \neg a \neq 0.$

Then there exists $P \in X(\mathbf{A})$ such that $\neg a \in P$ and $\neg \neg a \in P$. As $R_{\neg}(P) \neq \emptyset$, because $\neg 1 = 0$, there exists $Q \in X_m$ such that

$$(P,Q) \in R_m, a \notin Q \text{ and } \neg a \notin Q.$$

This implies, $a \in g(Q) = Q$, which is absurd. Thus, $\neg a \land \neg \neg a = 0$ for any $a \in A$.

(2). If A is an almost p-demi lattice, then $\neg a \land \neg \neg a = 0$. Thus, g(Q) = Q for any $Q \in X_m$.

Let $Q \in X_m$. We prove that Q is maximal. Let $a \notin Q$. Then $a \notin g(Q)$, i.e., $\neg a \in Q$. Thu we have to proved that for any $a \notin Q$, there exists $b = \neg a \in Q$ such that $a \wedge b = 0$, i.e., Q is maximal.

Suppose that Q is maximal. We prove that $Q \in X_m$. From 2.2 it follows that $(Q,Q) \in R_{\neg}$. Moreover, if $Q \subseteq D \in X(\mathbf{A})$ and $(Q,D) \in R_{\neg}$, then Q = D, because Q is maximal. Thus, $(Q,Q) \in R_m$ and consequently $Q \in X_m$.

Suppose that $X_m = \max X(\mathbf{A})$. Let $Q \in X_m$. Then, $g(Q) = Q \in X_m$ because $\mathbf{A} \in SDMA$.

Suppose that there exists $a \in A$ such that $\neg a \land a \neq 0$. Then there exists $P \in X(\mathbf{A})$ such that $\neg a \in P$ and $a \in P$. Let $Q \in \max X(\mathbf{A})$ such that $P \subseteq Q$. Since $Q \in X_m = \max X(\mathbf{A})$, $(Q,Q) \in R_m$. Since $\neg a \in P \subseteq Q$, $a \notin Q$, a contradiction. Thus, $\neg a \land a = 0$.

It is known that a bounded distributive pseudocomplement lattice A is a Stone algebra if and only if for each prime filter P there exists at most an maximal filter U such that $P \subseteq U$ (see [2]). For weak-Stone algebras we can give the following result.

Theorem 2.5. Let $A \in SDMA$. Then the following conditions are equivalent

- (1) The relation R_{\neg} is euclidean, i.e., $R_{\neg}^{-1} \circ R_{\neg} \subseteq R_{\neg}$.
- (2) $\boldsymbol{A} \in \mathcal{WS}$.
- (3) $A \in \mathcal{DMPL}$, and for any $P \in X(A)$ there exists a unique $Q \in X_m$ such that $(P,Q) \in R_m$.

Proof. $(1 \Rightarrow 2)$ Assume that R_{\neg} is euclidean and suppose that there exists $a \in A$ such that $\neg a \lor \neg \neg a \neq 1$. Then there exists $P, Q, D \in X(A)$ such that

$$\neg a, \neg \neg a \notin P, (P,Q) \in R_{\neg}, a \in Q, (P,D) \in R_{\neg} \text{ and } \neg a \in D.$$

Since R_{\neg} is euclidean, $(D,Q) \in R_{\neg}$. Since $a \in Q$, we have $\neg a \notin D$, a contradiction.

 $(2 \Rightarrow 3)$ As $\neg a \lor \neg \neg a = 1$, for any $a \in A$, we have $\neg 1 = 0 = \neg (\neg a \lor \neg \neg a)$ $= \neg \neg a \land \neg \neg \neg a = \neg \neg a \land \neg a.$

Thus, $A \in \mathcal{DMPL}$.

Let $P \in X(\mathbf{A})$, and suppose that there exists $Q_1, Q_2 \in X_m$ such that

 $(P,Q_1) \in R_m$ and $(P,Q_2) \in R_m$.

If $Q_1 \subsetneq Q_2$, there exists $a \in A$ such that $a \in Q_1$ and $a \notin Q_2$. So, $\neg a \notin P$, and consequently $\neg \neg a \in P$. It follows that $\neg a \notin Q_2$ and $\neg \neg a \in Q_2$. As $Q_2 \in X_m$, from (2) of Theorem 2.3, we have that $Q_2 = g^2(Q_2)$. So $a \in Q_2$, which is a contradiction. Thus $Q_1 \subseteq Q_2$. Similarly we can prove that $Q_2 \subseteq Q_1$.

 $(3 \Rightarrow 1)$ Let $P, Z, D \in X(A)$ be such that $(P, Z) \in R_{\neg}$ and $(P, D) \in R_{\neg}$. By hypothesis, there exists a unique $Q \in X_m$ such that $(P, Q) \in R_m$, so $Z \subseteq Q$ and $D \subseteq Q$. Suppose that $(D, Z) \notin R_{\neg}$. Then there exists $a \in A$ such that $\neg a \in D$ and $a \in Z$. Thus, $\neg a, a \in Q$. Since $Q \in X_m$, by (2) of Theorem 2.3, $Q = g^2(Q)$, and thus $\neg \neg a \in Q$. Consequently,

$$\neg a \land \neg \neg a = 0 \in Q,$$

a contradiction. Thus, $(D, Z) \in R_{\neg}$, i.e., R_{\neg} is euclidean.

Let A be a bounded distributive lattice. The *Priestley space* [8] of A is the set X(A), partially ordered by set inclusion, with the topology τ generated by the collection of all $\sigma(a)$, $\sigma(a)^c$. It is well known that X(A)

is compact, Hausdorff, and has as basis of clopen sets, namely the family $\sigma(\mathbf{A}) = \{\sigma(a) : a \in A\}$. The key fact is that the map σ is an isomorphism from \mathbf{A} onto the lattice of clopen increasing subsets of $X(\mathbf{A})$.

A Priestley duality for \neg -lattices is given in [1] in terms of the \neg -spaces. Let us recall that a \neg -space is a pair $\mathcal{X} = \langle X, R \rangle$ such that:

- (1) X is a Priestley space;
- (2) R is a binary relation defined on X such that for each $x \in X$, R(x) is a closed and decreasing subset of X;
- (3) $\neg_R(U) = \{x \in X : R(x) \cap U = \emptyset\}$ is a clopen increasing for each clopen increasing U.

Let \mathcal{X} be a \neg -space. Consider the relation R_m defined by $R_m(x) = \max R(x)$, for each $x \in X$. Consider the set $X_m = \bigcup \{\max R(x) : x \in X\}$.

Definition 2.6. Let $\langle X, R \rangle$ be a \neg -space. We say that

- (1) \mathcal{X} is a semi-De Morgan space if the relation R_m is serial, and for every $x, y, z \in X_m$, if $(x, y) \in R_m$ and $(y, z) \in R_m$, then x = y.
- (2) \mathcal{X} is a demi-p-space if it is a semi-De Morgan space, and $(x, x) \in R_m$ for any $x \in X_m$.
- (3) \mathcal{X} is an almost p-space if it is a demi-p-space and $X = \max X$.
- (4) \mathcal{X} is a weak Stone space if it is a demi-p-space and the relation R is euclidean.

By Theorem 2.3, Theorem 2.4, Theorem 2.5, and the results given in [1] for \neg -spaces we formulate the following theorem.

Theorem 2.7. The \neg -spaces of semi-De Morgan algebras, demi-p-lattices, almost p-lattices, and weak Stone algebras are semi-De Morgan spaces, demip-spaces, almost p-spaces and weak Stone spaces, respectively.

Acknowledgements

I would like to the thank the referee for the comments and suggestions on the paper.

References

- 1. S. Celani, *Distributive lattices with a negation operator*, Math. Logic Quarterly **45** (1999), 207–218.
- R. Dwinger and PH. Balbes, *Distributive lattices*, University of Missouri Press, Columbia, MO, 1974.
- 3. H. Gaitán, Priestley duality for demi-p-lattices, Algebra Universalis 37 (1997), 277–295.
- 4. _____, Priestley duality for quasi-Stone algebras, Studia Logica 64 (2000), 83–92.
- 5. D. Hobby, Semi-De Morgan algebras, Studia Logica 56 (1996), 151-183.
- C. Palma and R. Santos, On the subdirectly irreducible semi-De Morgan algebras, Publ. Math. Debrecen 49 (1996), 39–45.
- 7. ____, Principal congruences on semi-De Morgan algebras, Studia Logica 67 (2001), 75–88.
- H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507–530.

REPRESENTATION FOR SOME ALGEBRAS WITH A NEGATION OPERATOR 213

9. H. P. Sankappanavar, Semi-De Morgan algebras, J. of Symbolic Logic **52** (1987), no. 3, 712–724.

CONICET AND UNIVERSIDAD NACIONAL DEL CENTRO, DEPARTAMENTO DE MATEMÁTICAS, PINTO 399, 7000 TANDIL, ARGENTINA *E-mail address*: scelani@exa.unicen.edu.ar