Contributions to Discrete Mathematics

Volume 5, Number 1, Pages 34-58 ISSN 1715-0868

ON THE NUMBER OF COMPONENTS OF A GRAPH

HAMZA SI KADDOUR AND ELIAS TAHHAN BITTAR

Abstract

Let $G:=(V, E)$ be a simple graph; for $I \subseteq V$ we denote by $l(I)$ the number of components of $G[I]$, the subgraph of G induced by I. For V_{1}, \ldots, V_{n} finite subsets of V, we define a function $\beta\left(V_{1}, \ldots, V_{n}\right)$ which is expressed in terms of $l\left(\bigcup_{i=1}^{n} V_{i}\right)$ and $l\left(V_{i} \cup V_{j}\right)$ for $i \leq j$. If V_{1}, \ldots, V_{n} are pairwise disjoint finite independent subsets of V, the number $\beta\left(V_{1}, \ldots, V_{n}\right)$ can be computed in terms of the cyclomatic numbers of $G\left[\bigcup_{i=1}^{n} V_{i}\right]$ and $G\left[V_{i} \cup V_{j}\right]$ for $i \neq j$. In the general case, we prove that $\beta\left(V_{1}, \ldots, V_{n}\right) \geq 0$ and characterize when $\beta\left(V_{1}, \ldots, V_{n}\right)=0$. This special case yields a formula expressing the length of members of an interval algebra [6] as well as extensions to pseudo-tree algebras. Other examples are given.

1. Presentation of the Main Result

1.1. Main Result. Let $G:=(V, E)$ be a graph, where V is the vertex set and E is the edge set. We suppose that E is a subset of the set $[V]^{2}$ of unordered pairs of V. Let I be a subset of V, we denote by $G[I]$ the graph $\left(I, E \cap[I]^{2}\right)$ induced by G on I. We denote by $l(G[I])$, or $l_{G}(I)$, or more simply $l(I)$ if there is no ambiguity, the number of components of the graph $G[I]$. As much as possible, we abbreviate component of $G[I]$ by component of I. We assume that $l_{G}(\varnothing)=0$.

Definition 1.1. To an integer n and a family $\left(V_{1}, \ldots, V_{n}\right)$ of finite subsets of V we associate a number, denoted $\beta_{G}\left(V_{1}, \ldots, V_{n}\right)$, or $\beta\left(V_{1}, \ldots, V_{n}\right)$ if there is no ambiguity, and defined as follows:

$$
\beta\left(V_{1}, \ldots, V_{n}\right):=l\left(\bigcup_{i=1}^{n} V_{i}\right)-\sum_{1 \leq i<j \leq n} l\left(V_{i} \cup V_{j}\right)+(n-2) \sum_{i=1}^{n} l\left(V_{i}\right) .
$$

Notice that $\beta_{G}\left(V_{1}\right)=0$. Notice also that $\beta\left(V_{1}, \ldots, V_{n}, \varnothing\right)=\beta\left(V_{1}, \ldots, V_{n}\right)$. So, in the sequel, when we calculate $\beta\left(V_{1}, \ldots, V_{n}\right)$ we may suppose that each V_{i} is nonempty.

Let $n \leq m$ be two nonnegative integers, the set $\{k \in \mathbb{N} \mid n \leq k \leq m\}$ is denoted by $[n, m]$. For $n \in \mathbb{N} \backslash\{0\}$, the successor function modulo n denoted

[^0]by $s_{n}:[0, n-1] \longrightarrow[0, n-1]$ is defined by $s_{n}(n-1):=0$ and if $n \geq 2$ and $i \in[0, n-2]$ then $s_{n}(i):=i+1$.

A path is a sequence of pairwise distinct vertices of $G, v_{0}, \ldots, v_{k-1}$, such that, for each index $i \in[0, k-2]$, the pair $\left\{v_{i}, v_{i+1}\right\}$ is an edge; the length of this path is k. A circuit of G is a sequence $\sigma:=v_{0}, \ldots, v_{k-1}$ of at least three vertices of G such that, for each index $i \in[0, k-1],\left\{v_{i}, v_{s_{k}(i)}\right\}$ is an edge and such that all edges in $\|\sigma\|:=\left\{\left\{v_{i}, v_{s_{k}(i)}\right\} \mid i \in[0, k-1]\right\}$ are pairwise distinct; the set of edges $\|\sigma\|$ is called the support of σ. A path which is also a circuit is called a cycle.

Definition 1.2. Let $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ be a family of subsets of V. A ξ labeled path is a pair (π, i) such that π is a path whose vertices belong to V_{i}. Let (π, i) and $\left(\pi^{\prime}, i^{\prime}\right)$ be two ξ-labeled paths with $\pi:=v_{0}, \ldots, v_{k}$ and $\pi^{\prime}:=v_{0}^{\prime}, \ldots, v_{k^{\prime}}^{\prime}$, we say that (π, i) is joinable to $\left(\pi^{\prime}, i^{\prime}\right)$ if $i \neq i^{\prime}$ and either $v_{k}=v_{0}^{\prime}$ or $\left\{v_{k}, v_{0}^{\prime}\right\}$ is an edge. A ξ-path-cycle is a sequence of ξ-labeled paths $\left(\pi_{0}, i_{0}\right), \ldots,\left(\pi_{k-1}, i_{k-1}\right), k \geq 3$, which satisfies two conditions: (i) for each index $l \in[0, k-1],\left(\pi_{l}, i_{l}\right)$ is joinable to $\left(\pi_{s_{k}(l)}, i_{s_{k}(l)}\right)$ and (ii) if $l \neq l^{\prime}$ and $i_{l}=i_{l^{\prime}}$ then π_{l} and $\pi_{l^{\prime}}$ belong to different components of $V_{i_{l}}$. This ξ-path-cycle is 2 -colored if the set $\left\{i_{0}, \ldots, i_{k-1}\right\}$ has at most two elements.

We notice that if $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ is a family of pairwise disjoint sets of vertices then every ξ-path-cycle $\Pi:=\left(\pi_{0}, i_{0}\right), \ldots,\left(\pi_{k-1}, i_{k-1}\right)$ induces an ordinary cycle $C:=\pi_{0}, \ldots, \pi_{k-1}$ in G; such a ξ-path-cycle is 2 -colored if and only if the vertices of the induced cycle belong to $V_{i} \cup V_{j}$ for some indexes i, j.

Recall that a partition $\kappa:=\left(V_{1}, \ldots, V_{n}\right)$ of the set of vertices of a graph $G:=(V, E)$ into independent subsets is said to be a coloration of G. A cycle $C:=v_{0}, \ldots, v_{k-1}$ is 2-colored by κ if there are two distinct indexes i, j such that for each index $l \in[0, k-1]$, either $v_{l} \in V_{i}$ and $v_{s_{k}(l)} \in V_{j}$ or $v_{l} \in V_{j}$ and $v_{s_{k}(l)} \in V_{i}$. Let $\kappa:=\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of a graph G. A 2-colored κ-path-cycle induces a cycle which is 2 -colored by κ and conversely.

We state next the main result of this paper:
Theorem 1.3. Let $G:=(V, E)$ be a graph and $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ be a family of finite subsets of V. Then
(a) $\beta\left(V_{1}, \ldots, V_{n}\right) \geq 0$;
(b) $\beta\left(V_{1}, \ldots, V_{n}\right)=0$ if and only if every ξ-path-cycle of $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ is 2 -colored.

We give two proofs of Theorem 1.3. The first one (see Section 2) is algebraic. The second one (see Section 5) is purely combinatorial.
1.2. Motivation. These results originate in the study of Boolean algebras. Let C be a chain with a first element. The interval algebra $B(C)$ of C is the subalgebra of the power set $\mathfrak{P}(C)$ of C generated by the collection $I_{h}(C)$ of half-open intervals $[a, b[$ with $a \in C, b \in C \cup\{+\infty\}$ and $a<b$. To each element $x \in B(C)$ we associate an integer, the length of x denoted by
$l_{B(C)}(x)$, or $l(x)$ when there is no ambiguity, and defined as follows: $l(x):=0$ if $x=\varnothing$, otherwise $l(x)$ is the unique integer n such that $x=\bigcup_{i<n}\left[a_{2 i}, a_{2 i+1}[\right.$ and $a_{0}<a_{1}<\cdots<a_{2 n-1} \in C \cup\{+\infty\}$. A formula involving lengths of unions of elements of an interval algebra $B(C)$ appeared in Pouzet and Rival [4]. In order to prove that countable lattices are retracts of products of chains, they proved that for every $x, y \in B(C)$:

$$
\begin{equation*}
l(x \cup y)+l(x \cap y) \leq l(x)+l(y) . \tag{1.1}
\end{equation*}
$$

Later, Bonnet and Si Kaddour [5], in order to prove that interval algebras on a scattered chain have a well-founded set of generators, proved that for every $x, y \in B(C)$:

$$
\begin{equation*}
l(x \cup y)+l(x \cap y)+l(x \backslash y)+l(y \backslash x)=l(x)+l(y)+l(x \Delta y) . \tag{1.2}
\end{equation*}
$$

Note that (1.2) implies (1.1). The proof of (1.2) needed a lengthy case analysis. The last author [6], gave an equivalent formulation of (1.2) by proving that for every pairwise disjoint elements x, y and z of $B(C)$:

$$
\begin{equation*}
l(x \cup y \cup z)=l(x \cup y)+l(x \cup z)+l(y \cup z)-l(x)-l(y)-l(z) . \tag{1.3}
\end{equation*}
$$

He also extended the above formula, proving that for every integer and every family $\left(x_{i}\right)_{1 \leq i \leq n}$ of pairwise disjoint elements of $B(C)$:

$$
\begin{equation*}
l\left(\bigcup_{i=1}^{n} x_{i}\right)=\sum_{1 \leq i<j \leq n} l\left(x_{i} \cup x_{j}\right)-(n-2) \sum_{i=1}^{n} l\left(x_{i}\right) . \tag{1.4}
\end{equation*}
$$

It was natural to ask if formula (1.4) holds in a more general situation. This was the motivation for this research. It led us to the Theorems 1.3 and 2.2.
1.3. Application. To conclude, let us explain how to derive formula (1.4) from Theorem 1.3. Let $G=\left(I_{h}(C), E\right)$ be the graph where $\{x, y\} \in E$ if and only if $x \cup y$ is an interval. Let $\left(x_{i}\right)_{1 \leq i \leq n}$ be a family of pairwise disjoint elements of $B(C)$. Each x_{i} is an union of $l\left(x_{i}\right)$ intervals $x_{i_{j}}$, where $1 \leq j \leq$ $l\left(x_{i}\right)$, such that the union of $x_{i_{j}}$ and $x_{i_{j^{\prime}}}$ for $j \neq j^{\prime}$ is not an interval of C (in particular $x_{i_{j}}$ and $x_{i_{j^{\prime}}}$ are disjoint). For each i set $V_{i}:=\left\{x_{i_{j}} \mid 1 \leq j \leq l\left(x_{i}\right)\right\}$. The V_{i} 's are pairwise disjoint (since the x_{i} 's are pairwise disjoint) contain $l\left(x_{i}\right)$ vertices and are independent. Moreover, $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ contains no cycle at all. Indeed, if it contains a cycle S, let p be the leftmost half-open interval belonging to S. Let q, r be the neighbours of p in S. Since $p \cup q$ and $p \cup r$ are intervals, q and r must be on the right of p and hence they have the same minimum. This contradicts the fact that q and r are disjoint intervals. From (2) of Theorem 1.3 we have $\beta\left(V_{1}, \ldots, V_{n}\right)=0$. Since a set of vertices $\left\{p_{1}, \ldots, p_{l}\right\}$ of $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ is connected if and only if $p_{1} \cup \cdots \cup p_{l}$ is an interval, then $l_{G\left[V_{1} \cup \ldots \cup V_{n}\right]}(U)=l_{B(C)}(\cup U)$ for every subset U of vertices; hence $\beta\left(V_{1}, \ldots, V_{n}\right)=0$ translates to formula (1.4).

This approach generalizes. Consider a set \mathcal{P} of subsets of some set X. Let $\mathcal{F}(\mathcal{P})$ be the set of finite unions of members of \mathcal{P}. The length, l(u), of $u \in \mathcal{F}(\mathcal{P})$ is the least n such that there are $p_{1}, \ldots, p_{n} \in \mathcal{P}$ satisfying
$u=p_{1} \cup \cdots \cup p_{n}$. In Section 6 we give a condition which ensures that formula (1.4) holds for all members of $\mathcal{F}(\mathcal{P})$. In Section 7 we give examples of such \mathcal{P} 's:

- The set of intervals of a chain. (Proposition 7.5).
- The set of connected sets of a forest. (Proposition 7.2).
- The set of truncated cones. (Proposition 7.9). This says that formula (1.4) holds for members of pseudo-tree algebras. These boolean algebras generalize interval algebras $[1,3]$.
An earlier version of this paper was presented to the symposium held in 2000 at Marseille in the honour of Roland Fraïssé.

2. Algebraic study of β

In this section we prove Theorem 1.3, by algebraic means, for the case of families of disjoint and independent sets of vertices.
2.1. Relation Between β and the Cyclomatic Number. Following [2] we give the definition of the cycle space in a graph. Let G be a finite graph and u_{1}, \ldots, u_{p} be a fixed enumeration of the edge set E of G. Let $\mathbb{F}_{2}:=\{0,1\}$ be the two element field. To each subset C of E, associate the vector $[C]=\left(c_{1}, \ldots, c_{p}\right) \in \mathbb{F}_{2}^{p}$ with $c_{i}=1$ if $u_{i} \in C$, and $c_{i}=0$ otherwise. For each vector $D:=\left(d_{1}, \ldots, d_{p}\right) \in \mathbb{F}_{2}^{p}$, its support is the set $\|D\|:=\left\{u_{i} \mid d_{i}=1\right\}$. Note that, if C is a cycle of $G,\|C\|$ does not mean the support of a vector in \mathbb{F}_{2}^{p} just defined (as a cycle is a sequence of vertices, not a vector in \mathbb{F}_{2}^{p}), but the support of a circuit defined just before Definition 1.2. The cycle space, $\mathcal{S}(G)$, is the \mathbb{F}_{2}-vector space generated by the family of vectors $[\|C\|]$ for C cycle of G. For each cycle C of G, since there is no ambiguity, we will use the notation $[C]$ instead of $[\|C\|]$.

A circuit which visits each edge of G is an Eulerian tour of G. A connected graph is Eulerian if it has a an Eulerian tour. As proved in [2], $\mathcal{S}(G)$ is characterized by the following:

Proposition 2.1. Let $G:=(V, E)$ be a finite graph such that $|E|=p$. A vector $D \in \mathbb{F}_{2}^{p}$ belongs to $\mathcal{S}(G)$ if and only if each component of the graph ($V,\|D\|$) is Eulerian.

The dimension of $\mathcal{S}(G)$, denoted by $\nu(G)$, is called the cyclomatic number of G. We recall the equality-see for example [2] or Corollary 4.7-relating the numbers $v(G)$ of vertices, $e(G)$ of edges, $l(G)$ of components of a graph G and its cyclomatic number $\nu(G)$:

$$
\begin{equation*}
\nu(G)=e(G)-v(G)+l(G) \tag{2.1}
\end{equation*}
$$

It turns out that the numbers β and ν are closely related:
Theorem 2.2. Let $G:=(V, E)$ be a finite graph and $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of G, then:
(a) $\beta\left(V_{1}, \ldots, V_{n}\right)=\nu(G)-\sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right)$;
(b) $\beta\left(V_{1}, \ldots, V_{n}\right)=\nu(G)$ if and only if G contains no cycle that is 2colored by ξ.

Proof. Item (a): By definition of β we have

$$
\begin{aligned}
\beta\left(V_{1}, \ldots, V_{n}\right) & =l\left(\bigcup_{i=1}^{n} V_{i}\right)-\sum_{1 \leq i<j \leq n} l\left(V_{i} \cup V_{j}\right)+(n-2) \sum_{i=1}^{n} l\left(V_{i}\right) \\
& =l(V)+(n-2)|V|-\sum_{1 \leq i<j \leq n} l\left(V_{i} \cup V_{j}\right) .
\end{aligned}
$$

From equation (2.1) we have

$$
\begin{aligned}
=\nu(G) & -e(G)+|V|+(n-2)|V| \\
& -\sum_{1 \leq i<j \leq n}\left[\nu\left(G\left[V_{i} \cup V_{j}\right]\right)-e\left(G\left[V_{i} \cup V_{j}\right]\right)+\left|V_{i} \cup V_{j}\right|\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& =\nu(G)-\sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) \\
& +(n-1)|V|-\sum_{1 \leq i<j \leq n}\left|V_{i} \cup V_{j}\right| \\
& \quad-\left(e(G)-\sum_{1 \leq i<j \leq n} e\left(G\left[V_{i} \cup V_{j}\right]\right)\right) .
\end{aligned}
$$

Since $\left(V_{1}, \ldots, V_{n}\right)$ is a coloration of G, we have

$$
e(G)=\sum_{1 \leq i<j \leq n} e\left(G\left[V_{i} \cup V_{j}\right]\right) \quad \text { and } \sum_{1 \leq i<j \leq n}\left|V_{i} \cup V_{j}\right|=(n-1)|V| .
$$

Consequently:

$$
\beta\left(V_{1}, \ldots, V_{n}\right)=\nu(G)-\sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) .
$$

Item (b): Applying item (a) we have

$$
\begin{aligned}
\beta\left(V_{1}, \ldots, V_{n}\right)=\nu(G) & \Longleftrightarrow \sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right)=0 \\
& \Longleftrightarrow \nu\left(G\left[V_{i} \cup V_{j}\right]\right)=0, \text { for all } i \neq j \\
& \Longleftrightarrow \text { There is no cycle that is 2-colored by } \xi
\end{aligned}
$$

We recall that a graph G is triangulated if each cycle C of length greater than 3 has a chord i.e. an edge joining two non-adjacent vertices of C. A graph G is acyclic or a forest if it has no cycle. An instance of Theorem 2.2 is:

Proposition 2.3. Let $G=(V, E)$ be a finite graph and $\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of G. If G is acyclic then $\beta\left(V_{1}, \ldots, V_{n}\right)=0$. If G has no cycle of even length or is triangulated then $\beta\left(V_{1}, \ldots, V_{n}\right)=\nu(G)$.
2.1.1. A derivation of formula (1.4) from Proposition 2.3. Associate to the chain C the chain C^{\prime} which includes for each element a of C three elements a_{l}, a_{m} and a_{r}. The order on C^{\prime} being defined by: $a_{l}<a_{m}<a_{r}$ and $a_{r}<b_{l}$ for each $a<b$ in C. Let $G^{\prime}=\left(I_{h}\left(C^{\prime}\right), E^{\prime}\right)$ be the graph where $\left\{x^{\prime}, y^{\prime}\right\} \in E^{\prime}$ if and only if $x^{\prime} \cap y^{\prime} \neq \varnothing$. This graph as well as its induced subgraphs are called interval graph. It is well-known that interval graphs are triangulated. ${ }^{1}$ Let $G=\left(I_{h}(C), E\right)$ be the graph defined in Subsection 1.3. For each interval $p:=\left[a, b\left[\right.\right.$ of C we associate the interval $p^{\prime}:=\left[a_{l}, b_{r}\left[\right.\right.$ of C^{\prime}. We remark that $[a, b[\cup[c, d[$ is an interval of C if and only if

$$
\left[a_{l}, b_{r}\left[\cap \left[c_{l}, d_{r}[\neq \varnothing\right.\right.\right.
$$

So, G is isomorphic to an induced subgraph of G^{\prime}. Hence, denoting by U^{\prime} the set of vertices in G^{\prime} associated to a set of vertices U of G, we have $\beta_{G}\left(V_{1}, \ldots, V_{n}\right)=\beta_{G^{\prime}}\left(V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right)$ for any family $\left(V_{1}, \ldots, V_{n}\right)$ of sets of vertices of G. Since G^{\prime} is an interval graph we have by Proposition 2.3, $\beta_{G^{\prime}}\left(V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right)=\nu\left(G^{\prime}\left[V_{1}^{\prime} \cup \cdots \cup V_{n}^{\prime}\right]\right)$ whenever the $V_{i}^{\prime} s$ are pairwise disjoint independent sets. Moreover, in our case $G^{\prime}\left[V_{1}^{\prime} \cup \cdots \cup V_{n}^{\prime}\right]$ has no cycle (see subsection 1.3), hence $\nu\left(G^{\prime}\left[V_{1}^{\prime} \cup \cdots \cup V_{n}^{\prime}\right]\right)=0$. Formula (1.4) follows.
2.2. The Sign of β. For a subset F of the vector space \mathbb{F}_{2}^{p}, we denote by $\langle F\rangle$ the vector subspace generated by F. Let $\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of G. Given $1 \leq i<j \leq n$, a family $B_{i, j} \subseteq \mathcal{S}(G)$ is a cycle basis of $G\left[V_{i} \cup V_{j}\right]$ if $B_{i, j}$ is a basis of $\left\langle\left\{[C] \in \mathcal{S}(G) \mid C\right.\right.$ is a cycle of $\left.\left.G\left[V_{i} \cup V_{j}\right]\right\}\right\rangle$. We notice that $\nu\left(G\left[V_{i} \cup V_{j}\right]\right)=\left|B_{i, j}\right|$.

Lemma 2.4. Let $G=(V, E)$ be a finite graph and $\left\{V_{1}, \ldots, V_{n}\right\}$ be a coloration of G. For each $\{i, j\} \subseteq[1, n]$ such that $i \neq j$, let $B_{i, j}$ be a cycle basis of $G\left[V_{i} \cup V_{j}\right]$. Then $B:=\bigcup_{1 \leq i<j \leq n} B_{i, j}$ is linearly independent.
Proof. For $\{k, l\} \neq\{i, j\}$, the set of edges of $G\left[V_{i} \cup V_{j}\right]$ is disjoint from the set of edges of $G\left[V_{k} \cup V_{l}\right]$. Hence, if $D:=\left(d_{1}, \ldots, d_{|E|}\right) \in\left\langle B_{i, j}\right\rangle$ and $1 \leq q \leq|E|$ such that $d_{q}=1$ then for each vector $D^{\prime}:=\left(d_{1}^{\prime}, \ldots, d_{|E|}^{\prime}\right) \in\left\langle B_{k, l}\right\rangle$ we have $d_{q}^{\prime}=0$. So, $D \notin\left\langle\bigcup\left\{B_{k, l} \mid 1 \leq k<l \leq n,\{k, l\} \neq\{i, j\}\right\}\right\rangle$.
Theorem 2.5. Let G be a finite graph and let $\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of G. Then $\beta\left(V_{1}, \ldots, V_{n}\right) \geq 0$.
Proof. Let $B_{i, j}$ be a cycle basis of $G\left[V_{i} \cup V_{j}\right]$. By Lemma 2.4, $\cup_{1 \leq i<j \leq n} B_{i, j}$ is linearly independent and, since the $B_{i, j}$'s are pairwise disjoint, we have:

$$
\sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) \leq \nu(G)
$$

The conclusion follows from item (a) of Theorem 2.2.

[^1]Theorem 2.6. Let G be a finite graph and $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of G. Then $\beta\left(V_{1}, \ldots, V_{n}\right)=0$ if and only if every cycle of G is 2 -colored by ξ.

Proof. Let $B_{i, j}$ be a cycle basis of $G\left[V_{i} \cup V_{j}\right]$ and let $B:=\bigcup_{1 \leq i<j \leq n} B_{i, j}$.
Assume that $\beta\left(V_{1}, \ldots, V_{n}\right)=0$: Then by item (a) of Theorem 2.2:

$$
\begin{equation*}
\nu(G)=\sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) . \tag{2.2}
\end{equation*}
$$

By Lemma 2.4, the set of vectors B is linearly independent, and by (2.2) and the fact that $B_{i, j} \cap B_{k, l}=\varnothing$ for $\{i, j\} \neq\{k, l\}$, the set B is maximal, hence is a basis of $\mathcal{S}(G)$.

Since B is a basis, if C is a cycle of G, there is a family $\left\{D_{i, j} \in\left\langle B_{i, j}\right\rangle \mid\right.$ $1 \leq i<j \leq n\}$ such that $[C]=\sum_{1 \leq i<j \leq n} D_{i, j}$. Since the sets of edges of $G\left[V_{i} \cup V_{j}\right]$ and of $G\left[V_{k} \cup V_{l}\right]$ are disjoint for $\{i, j\} \neq\{k, l\}$, we have $\|C\|=\bigcup_{1 \leq i<j \leq n}\left\|D_{i, j}\right\|$. This implies that $\|C\|=\left\|D_{i, j}\right\|$ for some i, j proving that C is 2 -colored by ξ. Indeed, since $\{i, j\} \neq\{k, l\}, D_{i, j} \neq \varnothing$ and $D_{k, l} \neq \varnothing$ would imply, by Proposition 2.1, that $\|C\|$ contains the support of two cycles with no common edge.
Assume that every cycle of G is 2-colored by ξ : This means that for every cycle C there are $i \neq j$ such that C is a cycle of $G\left[V_{i} \cup V_{j}\right]$. Hence B is a generating family of $\mathcal{S}(G)$. By Lemma 2.4 we deduce that B is a basis of $\mathcal{S}(G)$. That is

$$
\nu(G)=\sum_{1 \leq i<j \leq n}\left|B_{i, j}\right|=\sum_{1 \leq i<j \leq n} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) .
$$

By item (a) of Theorem 2.2, $\beta\left(V_{1}, \ldots, V_{n}\right)=0$.

3. The Connection Graph

In this section we prove that Theorem 1.3 can be derived from the fact that it holds for the case of families of disjoint and independent sets of vertices.

Given a graph $G:=(V, E)$ and a family $\left(V_{1}, \ldots, V_{n}\right)$ of (nonempty) finite subsets of vertices of G, we show in Theorem 3.6 that $\beta\left(V_{1}, \ldots, V_{n}\right)$ is equal to $\beta\left(V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right)$ for a family $\left(V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right)$ of pairwise disjoint independent sets of vertices in $G\left(V_{1}, \ldots, V_{n}\right)$, the connection graph, we introduce below.

Definition 3.1. The connection graph of G, denoted by $G\left(V_{1}, \ldots, V_{n}\right)$, is defined as follows:

- The vertices of $G\left(V_{1}, \ldots, V_{n}\right)$ are pairs (p, i) where p is a component of $G\left[V_{i}\right]$.
- The edges of $G\left(V_{1}, \ldots, V_{n}\right)$ are pairs of distinct vertices $(p, i),(q, j)$ such that $p \cup q$ is connected.

To each set q^{\prime} of vertices of $G\left(V_{1}, \ldots, V_{n}\right)$ we associate the set $\psi\left(q^{\prime}\right)$ of vertices of $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ defined as follows:

$$
\psi\left(q^{\prime}\right):=\bigcup\left\{p \mid(p, i) \in q^{\prime} \text { for some } i, 1 \leq i \leq n\right\}
$$

Lemma 3.2. A set q^{\prime} of vertices of $G\left(V_{1}, \ldots, V_{n}\right)$ is connected if and only if $\psi\left(q^{\prime}\right)$ is connected.
Proof. Suppose that $\psi\left(q^{\prime}\right)$ is connected. Let (p, i) and (p^{\prime}, i^{\prime}) be elements of q^{\prime}. Pick $v \in p$ and $v^{\prime} \in p^{\prime}$. Since $\psi\left(q^{\prime}\right)$ is connected and contains $p \cup p^{\prime}$, there is a sequence v_{0}, \ldots, v_{k} of vertices of $\psi\left(q^{\prime}\right)$ such that $v_{0}=v, v_{k}=v^{\prime}$ and $\left\{v_{j}, v_{j+1}\right\} \in E$ for every j such that $0 \leq j \leq k-1$. For each one of these j 's choose $\left(p_{j}, i_{j}\right)$ in q^{\prime} such that $v_{j} \in p_{j},\left(p_{1}, i_{1}\right)=(p, i)$ and $\left(p_{k}, i_{k}\right)=\left(p^{\prime}, i^{\prime}\right)$. Then there is a subsequence of $\left(p_{1}, i_{1}\right), \ldots,\left(p_{k}, i_{k}\right)$ that is a path in q^{\prime} containing $\left(p_{1}, i_{1}\right)$ and (p_{k}, i_{k}). Hence q^{\prime} is connected.

Conversely, suppose that q^{\prime} is connected. Assume first that q^{\prime} is finite. We prove by induction on the size $k:=\left|q^{\prime}\right|$ of q^{\prime} that $\psi\left(q^{\prime}\right)$ is connected.
Assume $k=1$: We have $q^{\prime}=\{(p, i)\}$ and $\psi\left(q^{\prime}\right)=p$ which is connected.
Assume $k>1$: Since q^{\prime} is connected, there is some $(p, i) \in q^{\prime}$ such that $q^{\prime \prime}:=q^{\prime} \backslash\{(p, i)\}$ is connected. Since q^{\prime} is connected there is some $\left(p^{\prime}, i^{\prime}\right) \in q^{\prime},\left(p^{\prime}, i^{\prime}\right) \neq(p, i)$ such that $p \cup p^{\prime}$ is connected. Since $p^{\prime} \subseteq \psi\left(q^{\prime \prime}\right)$ and by inductive hypothesis $\psi\left(q^{\prime \prime}\right)$ is connected, then $\psi\left(q^{\prime}\right)=p \cup \psi\left(q^{\prime \prime}\right)$ is connected.
If q^{\prime} is infinite, let $\left\{v, v^{\prime}\right\} \subseteq \psi\left(q^{\prime}\right)$. Take $\left\{(p, i),\left(p^{\prime}, i^{\prime}\right)\right\} \subseteq q^{\prime}$ such that $v \in p$ and $v^{\prime} \in p^{\prime}$. There is a finite connected set $q^{\prime \prime}$ such that $\left\{(p, i),\left(p^{\prime}, i^{\prime}\right)\right\} \subseteq$ $q^{\prime \prime} \subseteq q^{\prime}$. Hence, v and v^{\prime} belong to $\psi\left(q^{\prime \prime}\right)$ which is connected. So, there is a path between v and v^{\prime} which lies in $\psi\left(q^{\prime \prime}\right)$ and a fortiori in $\psi\left(q^{\prime}\right)$.
Remark 3.3: If q is a component of $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ and p is a component of $G\left[V_{i}\right]$ for some $i \in[1, n]$, then either $p \subseteq q$ or $p \cap q=\varnothing$.

If q^{\prime} is a component of $G\left(V_{1}, \ldots, V_{n}\right)$ and $(p, i) \notin q^{\prime}$, then not only is $p \cap \psi\left(q^{\prime}\right)=\varnothing$, but p also does not contain a neighbour of a vertex in $\psi\left(q^{\prime}\right)$. (Otherwise, there is some $\left(p^{\prime}, i^{\prime}\right) \in q^{\prime}$ such that $p \cap p^{\prime} \neq \varnothing$; since q^{\prime} is a component, $(p, i) \in q^{\prime}$.)
Lemma 3.4. A set q^{\prime} of vertices of $G\left(V_{1}, \ldots, V_{n}\right)$ is a component if and only if $\psi\left(q^{\prime}\right)$ is a component of $G\left[V_{1} \cup \cdots \cup V_{n}\right]$.
Proof. We abbreviate $H:=G\left[V_{1} \cup \cdots \cup V_{n}\right]$ and $H^{\prime}:=G\left(V_{1}, \ldots, V_{n}\right)$. Assume that $\psi\left(q^{\prime}\right)$ is a component of H. According to Lemma 3.2, q^{\prime} is connected. Let $q^{\prime \prime}$ be the component containing q^{\prime}. Then $\psi\left(q^{\prime}\right) \subset \psi\left(q^{\prime \prime}\right)$. By Lemma 3.2, $\psi\left(q^{\prime \prime}\right)$ is connected. If $q^{\prime \prime} \neq q^{\prime}$, take $(p, i) \in q^{\prime \prime} \backslash q^{\prime}$. Then, by Remark 3.3, $p \subseteq \psi\left(q^{\prime \prime}\right) \backslash \psi\left(q^{\prime}\right)$. Thus $\psi\left(q^{\prime}\right) \varsubsetneqq \psi\left(q^{\prime \prime}\right)$. This contradicts the fact that $\psi\left(q^{\prime}\right)$ is a component of H.

Conversely, assume that q^{\prime} is a component of H^{\prime} but that $\psi\left(q^{\prime}\right)$ is not a component of H. There is $v \in H \backslash \psi\left(q^{\prime}\right)$ such that v is connected to some $v^{\prime} \in \psi\left(q^{\prime}\right)$. Take $(p, i),\left(p^{\prime}, i^{\prime}\right)$ such that $v \in p$ and $v^{\prime} \in p^{\prime}$. Hence,
$(p, i) \notin q^{\prime}$ and $\left(p^{\prime}, i^{\prime}\right) \in q^{\prime}$ are connected which contradicts the fact that q^{\prime} is a component of H^{\prime}.

Moreover, we have:
Lemma 3.5. Let $G:=(V, E)$ be a graph and $\left(V_{1}, \ldots, V_{n}\right)$ be a family of nonempty finite subsets of V. For each i, let P_{i} be the set of components of $G\left[V_{i}\right]$. Then

$$
l_{G}\left(V_{1} \cup \cdots \cup V_{n}\right)=l_{G\left(V_{1}, \ldots, V_{n}\right)}\left(P_{1} \times\{1\} \cup \cdots \cup P_{n} \times\{n\}\right) .
$$

Proof. It suffices to prove that ψ induces a bijection ψ^{\prime} from the set of components of $H^{\prime}:=G\left(V_{1}, \ldots, V_{n}\right)$ onto the set of components of $H:=$ $G\left[V_{1} \cup \cdots \cup V_{n}\right]$.
ψ^{\prime} is one to one: Suppose that $\psi^{\prime}(q)=\psi^{\prime}\left(q^{\prime}\right)$ and that $(p, i) \in q \backslash q^{\prime}$. Since q^{\prime} is a component, by Remark $3.3, p \cap \psi^{\prime}\left(q^{\prime}\right)=\varnothing$, but $p \subseteq \psi^{\prime}(q)$, which contradicts the fact that $\psi^{\prime}(q)=\psi^{\prime}\left(q^{\prime}\right)$.
ψ^{\prime} is onto: For any component π of H, by Remark 3.3 we have:

$$
\pi=\bigcup\left\{p \subseteq \pi \mid \exists i \in[1, n] \text { such that } p \text { is a component of } G\left[V_{i}\right]\right\} .
$$

Set

$$
q^{\prime}:=\left\{(p, i) \mid p \subseteq \pi, p \text { is a component of } G\left[V_{i}\right](i \in[1, n])\right\} .
$$

We have $\pi=\psi\left(q^{\prime}\right)$. By Lemma 3.4, q^{\prime} is a component of H^{\prime} and $\pi=$ $\psi^{\prime}\left(q^{\prime}\right)$.

A consequence of the previous lemma is the following result:
Theorem 3.6. Let $G:=(V, E)$ be a graph and $\left(V_{1}, \ldots, V_{n}\right)$ be a family of finite subsets of V. For each i, let P_{i} be the set of components of $G\left[V_{i}\right]$. Then:

$$
\beta_{G}\left(V_{1}, \ldots, V_{n}\right)=\beta_{G\left(V_{1}, \ldots, V_{n}\right)}\left(P_{1} \times\{1\}, \ldots, P_{n} \times\{n\}\right)
$$

Proof. We set $H^{\prime}:=G\left(V_{1}, \ldots, V_{n}\right)$. We notice first that for every subfamily $\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)$, the connection graph $G\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)$ is an induced subgraph of H^{\prime}. Hence, if U is a set of vertices of $G\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)$ we have $l_{G\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)}(U)=l_{H^{\prime}}(U)$. Then, applying Lemma 3.5 to $G\left[V_{1} \cup \cdots \cup V_{n}\right]$, $G\left[V_{i} \cup V_{j}\right]$ and $G\left[V_{i}\right]$ for all i, j 's we have:

$$
\begin{aligned}
\beta_{G}\left(V_{1}, \ldots, V_{n}\right)= & l_{G}\left(\bigcup_{i=1}^{n} V_{i}\right)-\sum_{1 \leq i<j \leq n} l_{G}\left(V_{i} \cup V_{j}\right)+(n-2) \sum_{i=1}^{n} l_{G}\left(V_{i}\right) \\
=l_{H^{\prime}} & \left(\bigcup_{i=1}^{n} P_{i} \times\{i\}\right)-\sum_{1 \leq i<j \leq n} l_{H^{\prime}}\left(P_{i} \times\{i\} \cup P_{j} \times\{j\}\right) \\
& +(n-2) \sum_{i=1}^{n} l_{H^{\prime}}\left(P_{i} \times\{i\}\right),
\end{aligned}
$$

and so,

$$
\beta_{G}\left(V_{1}, \ldots, V_{n}\right)=\beta_{G\left(V_{1}, \ldots, V_{n}\right)}\left(P_{1} \times\{1\}, \ldots, P_{n} \times\{n\}\right)
$$

Lemma 3.7. Let $G:=(V, E)$ be a graph and $\xi=\left(V_{1}, \ldots, V_{n}\right)$ be a family of subsets of V. For each index i let P_{i} be the set of components of $G\left[V_{i}\right]$ and let $\xi^{\prime}:=\left(P_{1} \times\{1\}, \ldots, P_{n} \times\{n\}\right)$. The following statements are equivalent:
(i) Every ξ-path-cycle of $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ is 2 -colored.
(ii) Every cycle of the connection graph $G\left(V_{1}, \ldots, V_{n}\right)$ is 2 -colored by ξ^{\prime}.

Proof. Let $H:=G\left[V_{1} \cup \cdots \cup V_{n}\right]$ and $H^{\prime}:=G\left(V_{1}, \ldots, V_{n}\right)$.
(i) implies (ii): Let $C:=\left(p_{0}, i_{0}\right), \ldots,\left(p_{k-1}, i_{k-1}\right)$ be a cycle of H^{\prime}. For each index $l \in[0, k-1]$, we have $i_{l} \neq i_{s_{k}(l)}$ and we construct a ξ-pathcycle $\Pi:=\left(\pi_{0}, i_{0}\right), \ldots,\left(\pi_{k-1}, i_{k-1}\right)$ such that the vertices of π_{l} belong to p_{l}. For this, for each index l we select a pair $\left\{x_{l}, y_{l}\right\} \subseteq p_{l}$ such that $\left\{y_{l}, x_{l+1}\right\}$ is an edge or $y_{l}=x_{l+1}$. For each index l we select a path $\pi_{l}:=v_{l, 0}, \ldots, v_{l, j_{l}} \subseteq p_{l}$ such that $x_{l}=v_{l, 0}$ and $y_{l}=v_{l, j_{l}}$. Since the ξ-path-cycle Π is 2 -colored then C is 2 -colored by ξ^{\prime}.
(ii) implies (i): Let $\Pi:=\left(\pi_{0}, i_{0}\right), \ldots,\left(\pi_{k-1}, i_{k-1}\right)$ be a ξ-path-cycle of H and, for each $l \in[0, k-1]$, let p_{l} be the component of $V_{i_{l}}$ which contains π_{l}. Then $C:=\left(p_{0}, i_{0}\right), \ldots,\left(p_{k-1}, i_{k-1}\right)$ is a cycle of H^{\prime}. Since C is 2 -colored by ξ^{\prime}, Π is 2 -colored.

Proof of Theorem 1.3. In Theorem 3.6, $\left(P_{1} \times\{1\}, \ldots, P_{n} \times\{n\}\right)$ is a family of pairwise disjoint independent sets of vertices of $G\left(V_{1}, \ldots, V_{n}\right)$. Hence, item (a) is a consequence of Theorem 2.5 ; and item (b) is a consequence of Lemma 3.7 and Theorem 2.6.

4. Recursive Properties of β and ν

In this section we give recursive definitions of β and ν. These definitions allow us to give an inductive proof of Theorem 2.2 and a derivation of equation (2.1).

Given a family $\left(V_{1}, \ldots, V_{n}\right)$, where $n \geq 2$, of finite sets of vertices of a graph G, we will define $\beta\left(V_{1}, \ldots, V_{n}\right)$ recursively on ($n,\left|V_{n}\right|$) lexicographically ordered. We notice first that $\beta\left(V_{1}, V_{2}\right)=0$ and $\beta\left(V_{1}, \ldots, V_{n}, \varnothing\right)=$ $\beta\left(V_{1}, \ldots, V_{n}\right)$. Hence, in order to complete a recursive definition of β we require to evaluate $\beta\left(V_{1}, \ldots, V_{n} \cup\{v\}\right)-\beta\left(V_{1}, \ldots, V_{n}\right)$. For this we define the connection degree:

Definition 4.1. Let $G:=(V, E)$ be a graph. Given $u \in V$ and $U \subseteq V, U$ finite. The set of neighbors of u in U is $N_{G}(U, u):=\{v \in U \mid\{u, v\} \in E\}$. We say that u is connected with U if $u \in U$ or $N_{G}(U, u) \neq \varnothing$. We denote by $d(U, u):=\left|N_{G}(U, u)\right|$. We denote by $K(U, u)$ or $K(U,\{u\})$ the set of components of U which are connected to u. The connection degree of the
vertex u with the set of vertices U, denoted by $\kappa(U, u)$ or $\kappa(U,\{u\})$, is the cardinality of $K(U, u)$.

Note that $\kappa(U, u)=1$ if $u \in U$. The connection degree satisfies the following lemma which is easy to prove:

Lemma 4.2. Let $G:=(V, E)$ be a graph. Let u be a vertex and let U be a set of finite vertices, we have $l(U \cup\{u\})=l(U)-\kappa(U, u)+1$.
Lemma 4.3. Let $G:=(V, E)$ be a graph. Let v be a vertex and let $\left(V_{1}, \ldots, V_{n}\right)$, where $n \geq 2$, be a family of finite subsets of V, the following equation holds:

$$
\begin{aligned}
\beta\left(V_{1}, \ldots,\right. & \left.V_{n} \cup\{v\}\right)-\beta\left(V_{1}, \ldots, V_{n}\right) \\
& =\left(\sum_{i=1}^{n-1} \kappa\left(V_{i} \cup V_{n}, v\right)\right)-\kappa\left(V_{1} \cup \cdots \cup V_{n}, v\right)-(n-2) \kappa\left(V_{n}, v\right)
\end{aligned}
$$

Proof. By application of Definition 1.1 and Lemma 4.2 we have

$$
\begin{aligned}
& \beta\left(V_{1}, \ldots, V_{n} \cup\{v\}\right)-\beta\left(V_{1}, \ldots, V_{n}\right) \\
& =l\left(V_{1} \cup \cdots \cup V_{n} \cup\{v\}\right)-l\left(V_{1} \cup \cdots \cup V_{n}\right) \\
& +(n-2)\left[l\left(V_{n} \cup\{v\}\right)-l\left(V_{n}\right)\right] \\
& \quad+\sum_{i=1}^{n-1} l\left(V_{i} \cup V_{n}\right)-l\left(V_{i} \cup V_{n} \cup\{v\}\right) \\
& =1-\kappa\left(V_{1} \cup \cdots \cup V_{n}, v\right) \\
& -(n-2)\left(\kappa\left(V_{n}, v\right)-1\right) \\
& \quad+\sum_{i=1}^{n-1}\left(\kappa\left(V_{i} \cup V_{n}, v\right)-1\right)
\end{aligned}
$$

Definition 4.4. Let $G:=(V, E)$ be a graph. Let $U \subseteq V$ and a vertex $u \notin U$. We define $\nu(U, u):=\nu(G[U \cup\{u\}])-\nu(G[U])$.

We will prove Theorem 2.2 using the recursive definition of β and a recursive property of the cyclomatic number given by the following lemma:

Lemma 4.5. Let $G:=(V, E)$ be a graph. Given a finite set of vertices U and a vertex $u \notin U$ then:

$$
\nu(G[U \cup\{u\}])-\nu(G[U])=d(U, u)-\kappa(U, u)
$$

Proof. Let U_{1}, \ldots, U_{k} be the components of U. For each $i \in[1, k]$ let B_{i} and B_{i}^{\prime} be subsets of $\mathcal{S}(G)$ such that B_{i} is a cycle basis of $G\left[U_{i}\right]$ and $B_{i} \cup B_{i}^{\prime}$ is a cycle basis of $G\left[U_{i} \cup\{u\}\right]$. Then, $B:=\bigcup_{i=1}^{i=k} B_{i}$ is a cycle basis of $G[U]$ and, if $B^{\prime}:=\bigcup_{i=1}^{i=k} B_{i}^{\prime}$, then $B \cup B^{\prime}$ is a cycle basis of $G[U i \cup\{u\}]$. Therefore, $\nu(U, u)=\sum_{i=1}^{k} \nu\left(U_{i}, u\right)$.

In order to conclude, it is sufficient to show that $\nu\left(U_{i}, u\right)=d\left(U_{i}, u\right)-1$ for each index i. In fact, if a vertex u is connected with a connected set of vertices W, such that $u \notin W$, then $\nu(W, u)=d(W, u)-1$. Indeed, suppose that W is a connected subset of V. Let $v_{1}, \ldots v_{d(W, u)}$ be an enumeration of the set of neighbors of u in W. For each $l \in[1, d(W, u)-1]$, we choose a path $\pi_{l}:=v_{l}, x_{0}, \ldots, x_{j_{l}}, v_{l+1}$ in W. Thus, $C_{l}:=u, v_{l}, x_{0}, \ldots, x_{j_{l}}, v_{l+1}$ is a cycle. It is straightforward to show that if B is a cycle basis of $G[W]$ then $B \cup\left\{C_{1}, \ldots, C_{d(W, u)-1}\right\}$ is a cycle basis of $G[W \cup\{u\}]$.

Proposition 4.6. Let $G=(V, E)$ be a graph. If $\left(V_{1}, \ldots, V_{n-1}, V_{n} \cup\{v\}\right)$ is a family of pairwise disjoint finite independent subsets of V, with $v \in V \backslash V_{n}$, then:

$$
\beta\left(V_{1}, \ldots, V_{n-1}, V_{n} \cup\{v\}\right)-\beta\left(V_{1}, \ldots, V_{n}\right)
$$

$$
=\nu\left(V_{1} \cup \cdots \cup V_{n}, v\right)-\sum_{i=1}^{n-1} \nu\left(V_{i} \cup V_{n}, v\right)
$$

Proof. Since $\left(V_{1}, \ldots, V_{n-1}, V_{n-1}, V_{n} \cup\{v\}\right)$ is a family of pairwise disjoint independent subsets of V, then:

$$
\left(\sum_{i=1}^{n-1} d\left(V_{i}, v\right)\right)-d\left(V_{1} \cup \cdots \cup V_{n}, v\right)=0
$$

Since $V_{n} \cup\{v\}$ is independent, $\kappa\left(V_{n}, v\right)=0$. By lemmas 4.3 and 4.5 , we have:

$$
\begin{aligned}
\beta\left(V_{1}, \ldots, V_{n} \cup\{ \right. & \{v\})-\beta\left(V_{1}, \ldots, V_{n}\right) \\
= & \left(\sum_{i=1}^{n-1} \kappa\left(V_{i} \cup V_{n}, v\right)\right)-\kappa\left(V_{1} \cup \cdots \cup V_{n}, v\right) \\
= & \sum_{i=1}^{n-1}\left[d\left(V_{i} \cup V_{n}, v\right)-\nu\left(V_{i} \cup V_{n}, v\right)\right] \\
& +\nu\left(V_{1} \cup \cdots \cup V_{n}, v\right)-d\left(V_{1} \cup \cdots \cup V_{n}, v\right) \\
= & \nu\left(V_{1} \cup \cdots \cup V_{n}, v\right)-\sum_{i=1}^{n-1} \nu\left(V_{i} \cup V_{n}, v\right) \\
& +\left(\sum_{i=1}^{n-1} d\left(V_{i}, v\right)\right)-d\left(V_{1} \cup \cdots \cup V_{n}, v\right) \\
= & \nu\left(V_{1} \cup \cdots \cup V_{n}, v\right)-\sum_{i=1}^{n-1} \nu\left(V_{i} \cup V_{n}, v\right)
\end{aligned}
$$

Now, we are able to give an inductive proof of Theorem 2.2.

Proof of Theorem 2.2. We prove item (a) only, from which item (b) is a direct consequence. Let $G=(V, E)$ be a graph and $\left(V_{1}, \ldots, V_{n}\right)$ be a coloration of G. We give a proof by induction on ($n,\left|V_{n}\right|$) lexicographically ordered.

Initial step: If $n=2$ then $G=G\left[V_{1} \cup V_{2}\right]$, and $\nu(G)=\nu\left(G\left[V_{1} \cup V_{2}\right]\right)$, on the other hand $\beta\left(V_{1}, V_{2}\right)=0$, so item (a) holds.

Inductive step: Suppose that $\left\{V_{1}, \ldots, V_{n-1}, V_{n} \cup\{v\}\right\}$ is a family of pairwise disjoint independent subsets of V and that, by inductive hypothesis (I.H.), item (a) of Theorem 2.2 holds for the family $\left(V_{1}, \ldots, V_{n}\right)$. Then by Proposition 4.6:

$$
\begin{aligned}
& \beta\left(V_{1}, \ldots, V_{n-1}, V_{n} \cup\{v\}\right) \\
& =\beta\left(V_{1}, \ldots, V_{n}\right)+\nu\left(V_{1} \cup \cdots \cup V_{n}, v\right)-\sum_{i=1}^{n-1} \nu\left(V_{i} \cup V_{n}, v\right) \\
& \stackrel{I . H .}{=} \nu\left(G\left[V_{1} \cup \cdots \cup V_{n}\right]\right)-\sum_{i=1}^{n-1} \nu\left(G\left[V_{i} \cup V_{n}\right]\right) \\
& \quad-\sum_{1 \leq i<j \leq n-1} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) \\
& \quad+\nu\left(V_{1} \cup \cdots \cup V_{n}, v\right)-\sum_{i=1}^{n-1} \nu\left(V_{i} \cup V_{n}, v\right) \\
& =\nu\left(G\left[V_{1} \cup \cdots \cup V_{n} \cup\{v\}\right]\right)-\sum_{i=1}^{n-1} \nu\left(G\left[V_{i} \cup V_{n} \cup\{v\}\right]\right) \\
& \quad-\sum_{1 \leq i<j \leq n-1} \nu\left(G\left[V_{i} \cup V_{j}\right]\right) .
\end{aligned}
$$

As a corollary of Theorem 2.2, and using the notations of Section 2, we have the classical result:

Corollary 4.7. The cyclomatic number $\nu(G)$ of G, is given by the formula:

$$
\nu(G)=e(G)-v(G)+l(G)
$$

Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an enumeration of the vertices of G. For each index i, let $V_{i}:=\left\{v_{i}\right\}$. Thus, $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ is a coloration of G and we have:

$$
\sum_{1 \leq i<j \leq v(G)} l\left(\left\{v_{i}, v_{j}\right\}\right)=v(G)^{2}-v(G)-e(G) .
$$

Since each V_{i} is a singleton, there is no cycle that is 2 -colored by ξ. Hence, by item (b) of Theorem 2.2 we have that $\beta\left(\left\{v_{1}\right\}, \ldots,\left\{v_{v(G)}\right\}\right)=\nu(G)$. Thus

$$
\begin{aligned}
\nu(G) & =l(G)-\sum_{1 \leq i<j \leq v(G)} l\left(\left\{v_{i}, v_{j}\right\}\right)+(v(G)-2) \sum_{i=1}^{v(G)} l\left(\left\{v_{i}\right\}\right) \\
& =l(G)-\left(v(G)^{2}-v(G)-e(G)\right)+(v(G)-2) v(G) \\
& =l(G)-v(G)+e(G)
\end{aligned}
$$

5. A Combinatorial Proof of Theorems 2.5 and 2.6

In this section we prove Theorems 2.5 and 2.6 by recursive and combinatorial means. For, we need to define an auxiliary function.

Definition 5.1. Let G be a graph. The function δ is defined for any family of finite sets of vertices $\left(V_{1}, \ldots, V_{n}\right)$, where $n \geq 2$, and any vertex v by:

$$
\delta\left(V_{1}, \ldots, V_{n}, v\right):=\left(\sum_{i=1}^{n-1} \kappa\left(V_{i} \cup V_{n}, v\right)\right)-\kappa\left(V_{1} \cup \cdots \cup V_{n}, v\right) .
$$

Remark 5.2: Let $G=(V, E)$ be a graph. Let $\left(V_{1}, \ldots, V_{n-1}, V_{n}\right)$ be a family of pairwise disjoint finite independent subsets of V. Let $V_{n}^{\prime}:=V_{n} \backslash\{v\}$ with $v \in V_{n}$. By hypothesis V_{n} is independent, hence $\kappa\left(V_{n}^{\prime}, v\right)=0$. Thus, by Lemma 4.3 we have that

$$
\begin{aligned}
\beta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right. & \cup\{v\})-\beta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right) \\
& =\left(\sum_{i=1}^{n-1} \kappa\left(V_{i} \cup V_{n}^{\prime}, v\right)\right)-\kappa\left(V_{1} \cup \cdots \cup V_{n-1} \cup V_{n}^{\prime}, v\right) \\
& =\delta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}, v\right) .
\end{aligned}
$$

Lemma 5.3. Let $G:=(V, E)$ be a graph. For any family $\left(V_{1}, \ldots, V_{n}\right)$, where $n \geq 2$, of finite sets of vertices and for any vertex v we have:
(a) $\delta\left(V_{1}, \ldots, V_{n}, v\right) \geq 0$.
(b) $\delta\left(V_{1}, \ldots, V_{n}, v\right)=0$ if and only if for each $p \in K\left(V_{1} \cup \cdots \cup V_{n}, v\right)$ there is a unique pair (q, i) such that $i \in[1, n-1], q \in K\left(V_{i} \cup V_{n}, v\right)$ and $q \subseteq p$.

Proof. Let ϕ be the function which maps $\left(U^{\prime}, j\right) \in \bigcup_{i=1, \ldots, n-1} K\left(V_{i} \cup V_{n}, v\right) \times$ $\{i\}$ to $\phi\left(\left(U^{\prime}, j\right)\right) \in K\left(V_{1} \cup \cdots \cup V_{n}, v\right)$ such that $U^{\prime} \subseteq \phi\left(\left(U^{\prime}, j\right)\right)$.

This map is onto: let $U \in K\left(V_{1} \cup \cdots \cup V_{n}, v\right)$, and $u \in N_{G}(U, v)$; if $u \in V_{i} \cup V_{n}$ let $U^{\prime} \in K\left(V_{i} \cup V_{n}, v\right)$ such that $u \in U^{\prime}$, then $U=\phi\left(\left(U^{\prime}, i\right)\right)$. Thus, $\sum_{i=1}^{n-1} \kappa\left(V_{i} \cup V_{n}, v\right) \geq \kappa\left(V_{1} \cup \cdots \cup V_{n}, v\right)$. Hence $\delta\left(V_{1}, \ldots, V_{n}, v\right) \geq 0$.

Moreover, $\delta\left(V_{1}, \ldots, V_{n}, v\right)=0$ if and only if ϕ is one-to-one. This amounts to the conclusion of (b).

Corollary 5.4. Let $G:=(V, E)$ be a graph. Let $\left(V_{1}, \ldots, V_{n}\right)$ be a family of disjoint finite independent subsets of V. Let $\left(V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right)$ be a family of subsets of V satisfying $V_{i}^{\prime} \subseteq V_{i}$ for all $i \in[1, n]$. Then $\beta\left(V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right) \leq$ $\beta\left(V_{1}, \ldots, V_{n}\right)$.

Proof. By induction on $\sum_{i=1}^{n-1}\left|V_{i}\right|$, using Remark 5.2 and Lemma 5.3 (a).
Proof of Theorem 2.5. By lexicographic induction on $\left(n,\left|V_{n}\right|\right)$.
Initial step: For $n \in\{1,2\}$ we have $\beta\left(V_{1}, V_{n}\right)=0$.
Inductive step: Let $v \in V_{n}$ and $V_{n}^{\prime}=V_{n} \backslash\{v\}$. Either $V_{n}^{\prime}=\varnothing$ and then $\left(n-1,\left|V_{n-1}\right|\right)<(n, 0)$, or $V_{n}^{\prime} \neq \varnothing$ and then $\left(n,\left|V_{n}^{\prime}\right|\right)<\left(n, \mid V_{n}^{\prime} \cup\right.$ $\{v\} \mid)$. In both cases we may apply the inductive hypothesis. Hence, $\beta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right) \geq 0$. On the other hand, $\delta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}, v\right) \geq 0$ by Lemma 5.3. We conclude, by Remark 5.2, that $\beta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime} \cup\right.$ $\{v\}) \geq 0$.

Lemma 5.5. Let $G=(V, E)$ be a graph and $\xi:=\left(V_{1}, \ldots, V_{n-1}, V_{n}\right)$ be a family of pairwise disjoint finite independent subsets of V. Let $V_{n}^{\prime}:=V_{n} \backslash\{v\}$ with $v \in V_{n}$. If every cycle in $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ is 2-colored by ξ, then $\delta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}, v\right)=0$.

Proof. By instantiating Lemma 5.3 with the family $\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right)$ and with the vertex v, we see that it suffices to prove that, for each $p \in K\left(V_{1} \cup\right.$ $\left.\cdots \cup V_{n-2} \cup V_{n-1} \cup V_{n}^{\prime}, v\right)$ there is a unique pair (q, i) such that $i \in[1, n-1]$, $q \in K\left(V_{i} \cup V_{n}^{\prime}, v\right)$ and $q \subseteq p$. We distinguish two cases, both of which will lead to a contradiction.

- If there are $i \neq j$ such that p contains a component of $V_{i} \cup V_{n}^{\prime}$ connected with v and a component of $V_{j} \cup V_{n}^{\prime}$ connected with v, then, there are $v_{i} \in\left(V_{i} \cup V_{n}^{\prime}\right) \cap p$ and $v_{j} \in\left(V_{j} \cup V_{n}^{\prime}\right) \cap p$ such that v is connected with v_{i} and v_{j}. Since $V_{n}=V_{n}^{\prime} \cup\{v\}$ is independent, necessarily $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$. Hence, there is a cycle in $G\left[V_{1} \cup\right.$ $\cdots \cup V_{n}$] containing v, v_{i}, v_{j}, this cycle is not 2 -colored by ξ.
- If p contains two components, p_{1} and p_{2}, of some $V_{i} \cup V_{n}^{\prime}$ connected with v, then there are two vertices $v_{1} \in V_{i} \cap p_{1}$ and $v_{2} \in V_{i} \cap p_{2}$ both connected with v. But, since v_{1} and v_{2} belong to p there is in p a path $\pi:=v_{1}, u_{0}, \ldots, u_{k-1}, v_{2}$ in $G\left[V_{1} \cup \cdots \cup V_{n-1} \cup V_{n}^{\prime}\right]$. Since p_{1} and p_{2} are two different components of $V_{i} \cup V_{n}^{\prime}$, the path π is not contained in $V_{i} \cup V_{n}^{\prime}$. Necessarily π contains a vertex which belongs to V_{j} for some $j \notin\{i, n\}$. Then the cycle $v, v_{1}, u_{0}, \ldots, u_{k-1}, v_{2}$, in $G\left[V_{1} \cup \cdots \cup V_{n}\right]$, is not 2 -colored by ξ.

We denote by S_{n} the set of permutations of $[1, n]$.

Lemma 5.6. Let $G=(V, E)$ be a graph and $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ be a family of pairwise disjoint finite independent subsets of V. The following statements are equivalent:
(i) For every $\sigma \in S_{n}$ and every $v \in V_{\sigma(n)}$,

$$
\delta\left(V_{\sigma(1)}, \ldots, V_{\sigma(n-1)}, V_{\sigma(n)} \backslash\{v\}, v\right)=0
$$

(ii) Every cycle in $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ is 2-colored by ξ.

Proof.
(i) implies (ii): Let C be a cycle in $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ not 2 -colored by ξ. Necessarily C contains a path v_{1}, v, v_{2} such that $\left(v_{1}, v, v_{2}\right) \in V_{\sigma(1)} \times$ $V_{\sigma(n)} \times V_{\sigma(2)}$ for some permutation $\sigma \in S_{n}$. Let $V_{\sigma(n)}^{\prime}:=V_{\sigma(n)} \backslash\{v\}$. Thus, v_{1} and v_{2} belong to the same component in $V_{\sigma(1)} \cup \cdots \cup V_{\sigma(n-1)} \cup$ $V_{\sigma(n)}^{\prime}$, but v_{1} belongs to a component of $V_{\sigma(1)} \cup V_{\sigma(n)}^{\prime}$ which is different from the component of $V_{\sigma(2)} \cup V_{\sigma(n)}^{\prime}$ containing v_{2}. So, by Lemma 5.3, $\delta\left(V_{\sigma(1)}, \ldots, V_{\sigma(n-1)}, V_{\sigma(n)} \backslash\{v\}, v\right)>0$.
(ii) implies (i): We instantiate Lemma 5.5 with $\left(V_{\sigma(1)}, \ldots, V_{\sigma(n-1)}, V_{\sigma(n)}\right)$ and with the vertex v.

Proof of Theorem 2.6. Assume that $\beta\left(V_{1}, \ldots, V_{n}\right)=0$. By symmetry of the function β with respect to its arguments, for each $\sigma \in S_{n}$ we have $\beta\left(V_{\sigma(1)}, \ldots, V_{\sigma(n)}\right)=\beta\left(V_{1}, \ldots, V_{n}\right)=0$. Moreover, by Theorem 2.5 and Corollary 5.4, for each $v \in V_{\sigma(n)}$ we have $\beta\left(V_{\sigma(1)}, \ldots, V_{\sigma(n-1)}, V_{\sigma(n)} \backslash\{v\}\right)=$ 0 ; thus, by Remark 5.2 the equality $\delta\left(V_{\sigma(1)}, \ldots, V_{\sigma(n-1)}, V_{\sigma(n)} \backslash\{v\}, v\right)=0$. We conclude, by Lemma 5.6, that every cycle in $G\left[V_{1} \cup \cdots \cup V_{n}\right]$ is 2 -colored by ξ.

Conversely, we prove by lexicographic induction on $\left(n,\left|V_{n}\right|\right)$ that, for each graph G and coloration $\xi:=\left(V_{1}, \ldots, V_{n}\right)$ of G, if all cycles of G are 2-colored by ξ then $\beta\left(V_{1}, \ldots, V_{n}\right)=0$.

Initial step: For $n \in\{1,2\}$ we have $\beta\left(V_{1}, V_{n}\right)=0$.
Inductive step: Let $v \in V_{n}$ and $V_{n}^{\prime}:=V_{n} \backslash\{v\}$. Then, we have all cycles of the graph $G^{\prime}:=G\left[V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right]$ are 2 -colored by the coloration $\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right)$. Either $V_{n}^{\prime}=\varnothing$ and then $\left(n-1,\left|V_{n-1}\right|\right)<(n, 0)$, or $V_{n}^{\prime} \neq \varnothing$ and then $\left(n,\left|V_{n}^{\prime}\right|\right)<\left(n,\left|V_{n}^{\prime} \cup\{v\}\right|\right)$. By inductive hypothesis, $\beta_{G^{\prime}}\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right)=0$. Therefore, we have $\beta_{G}\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right)=$ $\beta_{G^{\prime}}\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}\right)=0$ since the graph G^{\prime} is induced from the graph G. On the other hand, by Lemma 5.5 , the equality $\delta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime}, v\right)=0$ holds. We conclude, by Remark 5.2, that $\beta\left(V_{1}, \ldots, V_{n-1}, V_{n}^{\prime} \cup\{v\}\right)=0$.

6. Representable Properties

In this section we give a characterization of a family of properties for which we can apply equation (1.4).

Let X be a set, we say that \mathcal{P} is a property on subsets of X if $\mathcal{P} \subseteq \mathcal{P}(X)$. We set $\mathcal{P}^{*}=\mathcal{P} \backslash\{\varnothing\}$ and we define the graph $G_{\mathcal{P}}=\left(\mathcal{P}^{*}, E\right)$ by:

$$
\left\{p_{1}, p_{2}\right\} \in E \Longleftrightarrow\left(p_{1} \cup p_{2} \in \mathcal{P} \text { and } p_{1} \neq p_{2}\right) .
$$

We denote by $\mathcal{F}(\mathcal{P})$ the set of finite unions of elements of \mathcal{P}. A nonempty element q of \mathcal{P} is a \mathcal{P}-component of $A \subseteq X$ if $q \subseteq A$ and if for every $p \in \mathcal{P}$ such that $p \subseteq A$ and $p \cap q \neq \varnothing$ we have $p \subseteq q$.
Remark 6.1: Let \mathcal{P} be a property on subsets of X. Let p and q be \mathcal{P} components of $A \subseteq X$; then, either $p=q$ or $p \cap q=\varnothing$. Hence, for every $u \in \mathcal{F}(\mathcal{P}) \backslash\{\varnothing\}$, the set of \mathcal{P}-components of u, denoted by $K(u)$, satisfies that its elements are pairwise disjoint. The cardinality of $K(u)$ is called the length of u and is denoted by $l_{\mathcal{P}}(u)$ or $l(u)$. We assume that $K(\varnothing)=\varnothing$ and $l_{\mathcal{P}}(\varnothing)=0$.

Definition 6.2. Let X be a set, and \mathcal{P} be a property on subsets of X. We say that \mathcal{P} is representable by $G_{\mathcal{P}}$ (or \mathcal{P} is representable) if it satisfies the following properties:
(a) For every $u \in \mathcal{F}(\mathcal{P}) \backslash\{\varnothing\}, K(u)$ is a partition of u.
(b) For every $p_{1}, \ldots, p_{k} \in \mathcal{P}$, we have $p_{1} \cup \cdots \cup p_{k} \in \mathcal{P}$ if and only if $G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right]$ is connected.

Example 6.3. The two properties of representability are independent. Indeed,
(b) does not imply (a): Take

$$
X:=\{a, b, c, d\} \text { and } \mathcal{P}:=\{\{a, b\},\{c, d\},\{b, c\}\} .
$$

The set of vertices of $G_{\mathcal{P}}$ is independent, Property (b) is satisfied, but $K(\{a, b\} \cup\{b, c\})=\varnothing$.
(a) does not imply (b): Take $X:=\{a, b, c\}$ and $\mathcal{P}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$, with $p_{1}=\{a\}, p_{2}=\{b\}, p_{3}=\{c\}$ and $p_{4}=\{a, b, c\}$. For each $u \in \mathcal{F}(\mathcal{P}) \backslash$ $\left\{p_{4}\right\}, K(u)=\{\{x\} \mid x \in u\} ; K\left(p_{4}\right)=\left\{p_{4}\right\}$. Thus Property (a) holds. But Property (b) does not hold since $G_{\mathcal{P}}\left[\left\{p_{1}, p_{2}, p_{3}\right\}\right]$ is not connected although $p_{1} \cup p_{2} \cup p_{3} \in \mathcal{P}$. Note that $l_{\mathcal{P}}(u)=l_{G_{\mathcal{P}}}(K(u))$ for all $u \in \mathcal{F}(\mathcal{P})$.

Remark 6.4: Let \mathcal{P} be a property. For all $u \in \mathcal{F}(\mathcal{P})$, the set $K(u)$ of \mathcal{P} components of u is independent, this follows directly from Remark 6.1 and the definition of the edges in $G_{\mathcal{P}}$. Therefore, $l_{\mathcal{P}}(u)=l_{G_{\mathcal{P}}}(K(u))$.

Theorem 6.5. Let \mathcal{P} be a representable property. For all $u_{1}, \ldots, u_{n} \in$ $\mathcal{F}(\mathcal{P})$:

$$
l_{\mathcal{P}}\left(\bigcup_{i=1}^{n} u_{i}\right)=l_{G_{\mathcal{P}}}\left(\bigcup_{i=1}^{n} K\left(u_{i}\right)\right) .
$$

Proof. For each $q \in K\left(u_{1} \cup \cdots \cup u_{n}\right)$ we set

$$
\phi(q):=\left\{q^{\prime} \in K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right) \mid q^{\prime} \subset q\right\} .
$$

By Remark 6.4, it is sufficient to prove that ϕ is a bijection from $K\left(u_{1} \cup \cdots \cup\right.$ $\left.u_{n}\right)$ onto $K_{G_{\mathcal{P}}}\left(K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right)\right)$ which denotes the set of components in $G_{\mathcal{P}}$ of $K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right)$. We prove the following statements.
$\cup \phi(q)=q$: It is clear that $\cup \phi(q) \subseteq q$. Let $x \in q$, there is i such that $x \in u_{i}$, let $q_{i, x} \in K\left(u_{i}\right)$ such that $x \in q_{i, x}$. Since $q_{i, x} \cap q \neq \varnothing, q_{i, x} \in \mathcal{P}$, $q_{i, x} \subseteq u_{1} \cup \cdots \cup u_{n}$ and $q \in K\left(u_{1} \cup \cdots \cup u_{n}\right)$ we have that $q_{i, x} \subseteq q$. Hence, $q_{i, x} \in \phi(q)$ which implies that $x \in \cup \phi(q)$, and thus $q \subseteq \cup \phi(q)$.
$\phi(q)$ is connected: Since $\cup \phi(q)=q \in \mathcal{P}$, by Property (b) of representability $\phi(q)$ is connected.
$\phi(q)$ is a component in $G_{\mathcal{P}}$ of $K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right)$: Let $g \subseteq K\left(u_{1}\right) \cup \cdots \cup$ $K\left(u_{n}\right)$ be a connected set of $G_{\mathcal{P}}$ such that $g \cap \phi(q) \neq \varnothing$. Hence, $g \cup \phi(q)$ is $G_{\mathcal{P}}$-connected. By Property (b) of representability $(\cup g) \cup(\cup \phi(q)) \in \mathcal{P}$. So $(\cup g) \cup q \in \mathcal{P}$. But $\cup g \subseteq\left(\cup K\left(u_{1}\right)\right) \cup \cdots \cup\left(\cup K\left(u_{n}\right)\right)$. By Property (a) of representability, for each $i, \cup K\left(u_{i}\right)=u_{i}$. Then $\cup g \subseteq u_{1} \cup \cdots \cup u_{n}$. Since $q \in K\left(u_{1} \cup \cdots \cup u_{n}\right)$ and $(\cup g) \cup q \in \mathcal{P}$, we have $(\cup g) \cup q \subseteq q$. Hence, $\cup g \subseteq q$ and so, for each $q^{\prime} \in g, q^{\prime} \subseteq q$ and $q^{\prime} \in K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right)$. So, for each $q^{\prime} \in g, q^{\prime} \in \phi(q)$. Thus $g \subseteq \phi(q)$.
ϕ is one to one: Indeed if $\phi(q)=\phi\left(q^{\prime}\right)$ then $\cup(\phi(q))=\cup\left(\phi\left(q^{\prime}\right)\right)$, hence $q=q^{\prime}$.
ϕ is onto: Let $g \in K_{G_{\mathcal{P}}}\left(K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right)\right)$. Pick $q^{\prime} \in g$. Since $q^{\prime} \in K\left(u_{1}\right) \cup$ $\cdots \cup K\left(u_{n}\right)$, there is i such that $q^{\prime} \in K\left(u_{i}\right)$. Let $q \in K\left(u_{1} \cup \cdots \cup u_{n}\right)$ such that $q^{\prime} \subseteq q$. Hence $q^{\prime} \in \phi(q) \cap g$, so $\phi(q) \cap g \neq \varnothing$. But g and $\phi(q)$ are components, hence $\phi(q)=g$.

Proposition 6.6. Let \mathcal{P} be a representable property. For all $u_{1}, \ldots, u_{n} \in$ $\mathcal{F}(\mathcal{P})$:
$l_{\mathcal{P}}\left(\bigcup_{i=1}^{n} u_{i}\right)=\sum_{1 \leq i<j \leq n} l_{\mathcal{P}}\left(u_{i} \cup u_{j}\right)-(n-2) \sum_{i=1}^{n} l_{\mathcal{P}}\left(u_{i}\right)+\beta\left(K\left(u_{1}\right), \ldots, K\left(u_{n}\right)\right)$.
Proof. By Definition 1.1 we have
$l_{G_{\mathcal{P}}}\left(\bigcup_{i=1}^{n} K\left(u_{i}\right)\right)=\sum_{1 \leq i<j \leq n} l_{G_{\mathcal{P}}}\left(K\left(u_{i}\right) \cup K\left(u_{j}\right)\right)-(n-2) \sum_{i=1}^{n} l_{G_{\mathcal{P}}}\left(K\left(u_{i}\right)\right)+\gamma$.
where $\gamma:=\beta\left(K\left(u_{1}\right), \ldots, K\left(u_{n}\right)\right)$. We conclude by Theorem 6.5.
Definition 6.7. Let X be a set. A property \mathcal{P} on subsets of X is called a connection property if and only if:

$$
p_{1} \in \mathcal{P}, p_{2} \in \mathcal{P}, p_{1} \cap p_{2} \neq \varnothing \Longrightarrow p_{1} \cup p_{2} \in \mathcal{P} .
$$

The connection property is equivalent to Property (a) of representability:

Proposition 6.8. A property \mathcal{P} is a connection property if and only if for every $u \in \mathcal{F}(\mathcal{P}) \backslash\{\varnothing\}, K(u)$ is a partition of u.

Proof. Let \mathcal{P} be a connection property. Let $u \in \mathcal{F}(\mathcal{P}) \backslash\{\varnothing\}$. Let $M:=$ $\left\{q_{1}, \ldots, q_{n}\right\} \subseteq \mathcal{P}$ of minimum cardinality such that $u=\cup M$. Let $p \in \mathcal{P}$ such that $p \subseteq u$. Necessarily, there is one and only one index i such that $p \cap q_{i} \neq \varnothing$, otherwise, there are $i \neq j$ such that $p \cap q_{i} \neq \varnothing$ and $p \cap q_{j} \neq \varnothing$. By the connection property $p \cup q_{i} \in \mathcal{P}$ and $p \cup q_{j} \in \mathcal{P}$. Hence, by the connection property again, $p \cup q_{i} \cup q_{j} \in \mathcal{P}$. Let $M^{\prime}:=\left(M \backslash\left\{q_{i}, q_{j}\right\}\right) \cup\left\{p \cup q_{i} \cup q_{j}\right\}$. Thus $u=\cup M^{\prime}$ which contradicts the minimality of the size of M. Hence, M is a partition of u and each element of M is a \mathcal{P}-component of u. So, $M=K(u)$.

Conversely, suppose that for every $u \in \mathcal{F}(\mathcal{P}) \backslash\{\varnothing\}, K(u)$ is a partition of u. Then $K(u) \neq \varnothing$, let $p_{1}, p_{2} \in \mathcal{P}$ such that $p_{1} \cap p_{2} \neq \varnothing$. Let $q \in K\left(p_{1} \cup p_{2}\right)$. There is $i \in\{1,2\}$ such that $p_{i} \cap q \neq \varnothing$, we can assume $i=1$. Then $p_{1} \subseteq q$. But $p_{2} \cap p_{1} \neq \varnothing$ implies that $p_{2} \cap q \neq \varnothing$. So, $p_{2} \subseteq q$ and thus $p_{1} \cup p_{2}=q \in \mathcal{P}$.

Even though, as seen in Example 6.3, Property (a) of representability does not imply Property (b) of representability, we have:

Lemma 6.9. Let \mathcal{P} be a connection property. For every finite subset $q:=$ $\left\{p_{1}, \ldots, p_{k}\right\}$ of \mathcal{P}, if $G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right]$ is connected then $p_{1} \cup \cdots \cup p_{k} \in \mathcal{P}$.
Proof. Suppose that \mathcal{P} is a connection property. We prove the conclusion of the lemma by induction on k.
Initial step: If $k \in\{1,2\}$, the property is true by the definition of $G_{\mathcal{P}}$.
Inductive step: We have $p_{i} \neq \varnothing$, for all i. Since $G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right]$ has a spanning tree, we may suppose w.l.o.g. that, p_{1} is connected in $G_{\mathcal{P}}\left[\left\{p_{1}\right.\right.$, $\left.\left.\ldots, p_{k}\right\}\right]$ with $c:=\left\{p_{2}, \ldots, p_{k}\right\}$, where c is connected in $G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right]$. Thus, by inductive hypothesis $u:=p_{2} \cup \cdots \cup p_{k} \in \mathcal{P}$. Because p_{1} is connected with c, we may suppose w.l.o.g. that p_{1} is connected with p_{2} and thus $p_{1} \cup p_{2} \in \mathcal{P}$. From $u \cap\left(p_{1} \cup p_{2}\right) \neq \varnothing$, we have by the connection property that $p_{1} \cup u \in \mathcal{P}$.

Proposition 6.10. A property \mathcal{P} is representable if and only if
(a) \mathcal{P} is a connection property.
(b) If $p_{1}, \ldots, p_{k} \in \mathcal{P}$ and $p_{1} \cup \cdots \cup p_{k} \in \mathcal{P}$ then $G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right]$ is connected.

Proof. By Proposition 6.8 and Lemma 6.9.
Definition 6.11. A property \mathcal{P} is weak-Helly if there is no cycle of pairwise disjoint sets in $G_{\mathcal{P}}$.

Lemma 6.12. A representable property \mathcal{P} is weak-Helly if and only if there is no triangle of pairwise disjoint sets in $G_{\mathcal{P}}$.

Proof. The first implication is obvious by definition of weak-Helly property. Conversely if $p_{1}, p_{2}, p_{3}, \ldots, p_{k}$ is a cycle of disjoint sets in $G_{\mathcal{P}}$, then by representability, $p_{3} \cup \cdots \cup p_{k} \in \mathcal{P}, p_{2} \cup p_{3} \cup \cdots \cup p_{k} \in \mathcal{P}$ and $p_{3} \cup \cdots \cup p_{k} \cup p_{1} \in \mathcal{P}$. Then $p_{1}, p_{2}, p_{3} \cup \cdots \cup p_{k}$ is a triangle in $G_{\mathcal{P}}$ of pairwise disjoint sets.

Proposition 6.13. Let \mathcal{P} be a weak-Helly representable property and let $u_{1}, \ldots, u_{n} \in \mathcal{F}(\mathcal{P})$ be pairwise disjoint. Then:

$$
l_{\mathcal{P}}\left(\bigcup_{i=1}^{n} u_{i}\right)=\sum_{1 \leq i<j \leq n} l_{\mathcal{P}}\left(u_{i} \cup u_{j}\right)-(n-2) \sum_{i=1}^{n} l_{\mathcal{P}}\left(u_{i}\right) .
$$

Proof. From Lemma 6.12, $G_{\mathcal{P}}\left[K\left(u_{1}\right) \cup \cdots \cup K\left(u_{n}\right)\right]$ is acyclic, hence we have by Theorem 2.6 that $\beta_{G_{\mathcal{P}}}\left(K\left(u_{1}\right), \ldots, K\left(u_{n}\right)\right)=0$. Then we get the equality by Proposition 6.6.

7. Examples of Representable Properties

Example 7.1. We give two examples of representable non weak-Helly properties. The proofs of representability for both examples are straightforward.
(1) The set \mathcal{P} of connected sets of a topology on a set X is a representable property. Note that, in the general case, \mathcal{P} is not weak-Helly; for instance if we consider the set \mathcal{P} of connected sets of \mathbb{R}^{2} and take a triangle $A B C$ in \mathbb{R}^{2} then the three segments $[A B[,[B C[$, and $[C A[$ are pairwise disjoint but $\left\{\left[A B\left[,\left[B C\left[,\left[C A[\}\right.\right.\right.\right.\right.\right.$ is a triangle in $G_{\mathcal{P}}$.
(2) The set of connected sets of vertices of a graph is a representable property. Clearly, for some graphs this property is not weak-Helly as soon as the graph contains a cycle.

Proposition 7.2. The set of connected sets of vertices of a forest is a weakHelly representable property.

Proof. By item (2) of Example 7.1, we have to prove only the Weak-Helly property. For contradiction, let C_{1}, C_{2}, C_{3}, be pairwise disjoint nonempty connected sets of vertices in a forest F, with $C_{i} \cup C_{j}$ connected in F for every $i, j \in\{1,2,3\}$. Let $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$ such that $\left\{c_{1}, c_{2}\right\}$ is an edge of F. Similarly let $c_{2}^{\prime} \in C_{2}, c_{3} \in C_{3}, c_{1}^{\prime} \in C_{1}$ and $c_{3}^{\prime} \in C_{3}$ such that $\left\{c_{2}^{\prime}, c_{3}\right\}$ and $\left\{c_{1}^{\prime}, c_{3}^{\prime}\right\}$ are edges of F. Let $x_{0}:=c_{2}, x_{1}, \ldots, x_{k}:=c_{2}^{\prime}$ be a path in $C_{2} ; y_{0}:=c_{3}, y_{1}, \ldots, y_{l}:=c_{3}^{\prime}$ be a path in $C_{3} ; z_{0}:=c_{1}^{\prime}, z_{1}, \ldots, z_{m}:=$ c_{1} be a path in C_{1}. Note that these paths are pairwise disjoint. Now, $x_{0}, x_{1}, \ldots, x_{k}, y_{0}, y_{1}, \ldots, y_{l}, z_{0}, z_{1}, \ldots, z_{m}$ is a cycle of F, this contradicts the fact that F is a forest.

An ordered set T is a pseudo-tree (resp. a tree) if for every $u \in T$, the set $\{t \in T: t \leq u\}$ is a chain (resp. a well-ordered chain). Let O be an order. An interval of O is any subset I of O such that if $x, y \in I, z \in O$ and $x \leq z \leq y$ then $z \in I$.

Example 7.3. The set of intervals of a tree is not necessary representable. Consider the tree $T=\left\{r, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}\right\}$ where the only comparabilities are: $r<a_{1}<c_{1}<b_{1}, r<b_{2}<a_{2}<c_{2}$ and $r<a_{3}<b_{3}<c_{3}$. Put $a:=\left\{a_{1}, a_{2}, a_{3}\right\}, b:=\left\{b_{1}, b_{2}, b_{3}\right\}$ and $c:=\left\{c_{1}, c_{2}, c_{3}\right\}$. Let \mathcal{P} be the set of intervals of T. We have that $a, b, c, a \cup b \cup c \in \mathcal{P}$, but $G_{\mathcal{P}}[\{a, b, c\}]$ is not connected. Nevertheless, we show in Proposition 7.5 that the set of intervals of a chain is representable and weak-Helly.

The notation $A<B$ (resp. $A \leq B$) for subsets of a chain means $a<b$ (resp. $a \leq b$) for all $a \in A$ and $b \in B$. The Boolean algebra consisting of finite unions of intervals of C is denoted by $\widehat{B}(C)$. Elements of $\widehat{B}(C)$ satisfy the following property:

Lemma 7.4. For all elements u and u^{\prime} of $\widehat{B}(C)$, if $u \cup u^{\prime}$ is an interval, then there are intervals $p \subseteq u$ and $p^{\prime} \subseteq u^{\prime}$ such that $p \cup p^{\prime}$ is an interval.
Proof. Each $u \in \widehat{B}(C)$ is a finite union of maximal disjoint intervals, called the components of u. Let p (resp. p^{\prime}) be the rightmost component of u (resp. of u^{\prime}). Then $p \cup p^{\prime}$ is an interval. Otherwise, w.l.o.g. we may suppose that there is $x \in C$ such that $p<\{x\}<p^{\prime}$ which implies that $u<\{x\}<p^{\prime}$. Since $u \cup u^{\prime}$ is an interval, there is a component $p^{\prime \prime}$ of u^{\prime} such that $x \in p^{\prime \prime}$, in this case there is $y \in C \backslash u^{\prime}$ such that $p^{\prime \prime}<\{y\}<p^{\prime}$; this contradicts the fact that $u \cup u^{\prime}$ is an interval.

For $a \in \widehat{B}(C) \backslash\{\varnothing\}$, define the length of a, denoted by $l(a)$, as the least integer n such that a is the union of n intervals. If a is the empty interval, we set $l(a):=0$. In [6], it was proved that formula (1.3) holds for any family, $\left(x_{i}\right)_{1 \leq i \leq n}$, of pairwise disjoint elements of $\widehat{B}(C)$. Actually this result is a direct consequence of:

Proposition 7.5. The set of intervals of a chain is a representable weakHelly property.

Proof. Let C be a chain and \mathcal{P} be the set of intervals of C. The connection property is trivially satisfied.
Representability: By Proposition 6.10, it remains to prove that for all $p_{1}, \ldots, p_{k} \in \mathcal{P}$,

$$
p_{1} \cup \cdots \cup p_{k} \in \mathcal{P} \Longrightarrow G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right] \text { is connected. }
$$

For contradiction, assume that C_{1}, \ldots, C_{n}, where $n \geq 2$, are the components of $G_{\mathcal{P}}\left[\left\{p_{1}, \ldots, p_{k}\right\}\right]$. W.l.o.g. we assume that

$$
\begin{aligned}
C_{1} & =\left\{p_{r_{0}}, p_{r_{0}+1}, \ldots, p_{r_{1}}\right\} \\
C_{2} & =\left\{p_{r_{1}+1}, p_{r_{1}+2}, \ldots, p_{r_{2}}\right\} \\
& \vdots \\
C_{n} & =\left\{p_{r_{n-1}+1}, p_{r_{n-1}+2}, \ldots, p_{r_{n}}\right\},
\end{aligned}
$$

with $r_{0}=1, r_{n}=k, r_{0} \leq r_{1}<\cdots<r_{n}$. For each i, let q_{i} be the union of the elements of C_{i}. By Lemma 6.9, each q_{i} is an interval and for all $i \neq j$, $q_{i} \cap q_{j}=\varnothing$ and, by Lemma 7.4, $q_{i} \cup q_{j}$ is not an interval. Then, since C is a chain, w.l.o.g. we can assume that $q_{1}<q_{2}<\cdots<q_{n}$. Thus, by Lemma 7.4, $q_{1} \cup \cdots \cup q_{n}$ is not an interval. But $p_{1} \cup \cdots \cup p_{k}=q_{1} \cup \cdots \cup q_{n}$, therefore $p_{1} \cup \cdots \cup p_{k}$ is not an interval. This is a contradiction.

Weak-Helly: Let I_{1}, I_{2}, I_{3} be pairwise disjoint nonempty intervals of C. W.l.o.g. we assume that $I_{1}<I_{2}<I_{3}$. Thus $I_{1} \cup I_{3}$ is not an interval since $I_{2} \neq \varnothing$.

Let T be a pseudo-tree, the pseudo-tree algebra of T is the subalgebra $B[T]$ of the power set $\mathcal{P}(T)$ generated by the family $\left\{b_{t}: t \in T\right\}$, where $b_{t}:=\{u \in T: t \leq u\}$. For each $i \in T$ and I finite antichain of T above i (that means $i<i^{\prime}$ for all $i^{\prime} \in I$), $e_{i, I}:=b_{i} \backslash \bigcup_{u \in I} b_{u}$. The set $e_{i, I}$ is called a truncated cone. Let \mathcal{E} be the set of truncated cones: $\mathcal{E}:=\left\{e_{i, I} \mid\right.$ $i \in T, I$ is a finite antichain in T and $\{i\}<I\}$, then $B[T]=\mathcal{F}(\mathcal{E})$. For a basic exposition of this notion see [1] and [3]. If T is a chain with a first element, the pseudo-tree algebra $B[T]$ coincides with the interval algebra $B(T)$.

Lemma 7.6. Let $e_{i_{1}, I_{1}} \in \mathcal{E}$ and $e_{i_{2}, I_{2}} \in \mathcal{E}$. The following statements are equivalent:
(i) $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$.
(ii) Either ($i_{1} \leq i_{2}$ and $\forall j \in I_{1}, j \nless i_{2}$) or ($i_{2} \leq i_{1}$ and $\forall j \in I_{2}, j \nless i_{1}$).
(iii) i_{1} and i_{2} are comparable and

$$
e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}}=e_{\min \left\{i_{1}, i_{2}\right\},\left(I_{1} \backslash e_{i_{2}, I_{2}}\right) \cup\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)}
$$

Proof. Each one of statements (i), (ii) and (iii) implies that i_{1} and i_{2} are comparable; by symmetry, we may assume that $i_{1} \leq i_{2}$.
(i) implies (ii): Suppose that $j \in I_{1}$ with $j<i_{2}$. Then, $i_{1}<j<i_{2}$ and $j \notin\left(e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}}\right)$ which contradicts the fact that $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$.
(ii) implies (iii): We prove, in the first place, that $\left(I_{1} \backslash e_{i_{2}, I_{2}}\right) \cup\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)$ is an antichain. Let $j_{1} \in I_{1} \backslash e_{i_{2}, I_{2}}$ and $j_{2} \in I_{2} \backslash e_{i_{1}, I_{1}}$. Suppose that $j_{1}<j_{2}$. Since $i_{2}<j_{2}$, hence j_{1} and i_{2} are comparable. By (ii) we have $j_{1} \nless i_{2}$. Hence, $i_{2} \leq j_{1}$. Therefore, $j_{1} \in e_{i_{2}, I_{2}}$. That contradicts the hypothesis $j_{1} \in I_{1} \backslash e_{i_{2}, I_{2}}$. Suppose that $j_{2}<j_{1}$. Hence, $i_{1} \leq i_{2}<j_{2}<j_{1}$. Therefore, $j_{2} \in e_{i_{1}, I_{1}}$. That contradicts the hypothesis $j_{2} \in\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)$.
We prove, in the second place, that

$$
e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \subseteq e_{i_{1},\left(I_{1} \backslash e_{i_{2}, I_{2}}\right) \cup\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)}
$$

Let $s \in e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}}$.
Assume that $s \in e_{i_{1}, I_{1}}$: We have that $i_{1} \leq s$ and, for all $j \in I_{1}, j \not z s$. It remains to show that for every $j_{2} \in I_{2} \backslash e_{i_{1}, I_{1}}$ we have $j_{2} \not \leq s$. Let
$j_{2} \in I_{2} \backslash e_{i_{1}, I_{1}}$. Then $i_{1} \leq i_{2}<j_{2}$. Since $i_{1}<j_{2}$ and $j_{2} \notin e_{i_{1}, I_{1}}$, there is $j_{i} \in e_{i_{1}, I_{1}}$ such that $j_{1} \leq j_{2}$. But $j_{1} \not \leq s$, then $j_{2} \not \leq s$.
Assume that $s \in e_{i_{2}, I_{2}}$: We have that $i_{1} \leq i_{2} \leq s$ and, for all $j \in I_{2}$,
$j \not \leq s$. It remains to prove that for every $j_{1} \in I_{1} \backslash e_{i_{2}, I_{2}}$ we have $j_{1} \not \leq s$. Let $j_{1} \in I_{1} \backslash e_{i_{2}, I_{2}}$. If $j_{1} \in I_{2}$, since $s \in e_{i_{2}, I_{2}}$ then $j_{1} \not \leq s$. If $j_{1} \notin I_{2}$, we study two cases.
Case 1: $i_{2} \leq j_{1}$: Then $j_{1} \in b_{i_{2}}$. Since $j_{1} \in I_{1} \backslash e_{i_{2}, I_{2}}$, there is $j_{2} \in I_{2}$ such that $j_{2}<j_{1}$. Then $j_{1} \notin s$.
Case 2: $i_{2} \not \leq j_{1}$: By (ii), $j_{1} \nless i_{2}$. Hence i_{2} and j_{1} are incomparable. Since $i_{2} \leq s$ then $j_{1} \not \leq s$.
We prove, at the last, that $e_{i_{1},\left(I_{1} \backslash e_{i_{2}, I_{2}}\right) \cup\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)} \subseteq e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}}$. Let $s \in e_{i_{1},\left(I_{1} \backslash e_{i_{2}}, I_{2}\right) \cup\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)}$. Then $i_{1} \leq s$. Assume that $s \notin e_{i_{2}, I_{2}}$, we have two cases.
Case 1: $i_{2} \not \subset s$: By definition, $j \not \leq s$ for all $j \in I_{1} \backslash e_{i_{2}, I_{2}}$. Moreover, $j \not \leq s$ for all $j \in I_{1} \cap e_{i_{2}, I_{2}}$ since $i_{2} \not \leq s$. From $s \in e_{i_{1},\left(I_{1} \backslash e_{i_{2}, I_{2}}\right) \cup\left(I_{2} \backslash e_{\left.i_{1}, I_{1}\right)}\right)}$, we have that $s \in e_{i_{1}, I_{1}}$.
Case 2: $i_{2} \leq s$: Since $s \notin e_{i_{2}, I_{2}}$, there is $j_{2} \in I_{2}$ such that $j_{2} \leq s$. But $j \nexists s$ for every $j \in I_{2} \backslash e_{i_{1}, I_{1}}$. Therefore $j_{2} \in e_{i_{1}, I_{1}}$. For contradiction suppose that $s \notin e_{i_{1}, I_{1}}$, then $j_{1} \leq s$ for some $j_{1} \in I_{1}$. Since $j_{2} \leq s$ then j_{1} and j_{2} are comparable. Necessarily $j_{2}<j_{1}$ since $j_{2} \in e_{i_{1}, I_{1}}$. Hence $j_{1} \in I_{1} \backslash e_{i_{2}, I_{2}}$. This implies that $s \notin e_{i_{1},\left(I_{1} \backslash e_{i_{2}, I_{2}}\right) \cup\left(I_{2} \backslash e_{i_{1}, I_{1}}\right)}$. That contradicts our hypothesis.
(iii) implies (i): This is immediate.

Proposition 7.7. The set of truncated cones of a pseudo-tree is a connection property.

Proof. Let T be a pseudo-tree and \mathcal{E} be the set of truncated cones of T. Let $e_{i_{1}, I_{1}}, e_{i_{2}, I_{2}} \in \mathcal{E}$ such that $e_{i_{1}, I_{1}} \cap e_{i_{2}, I_{2}} \neq \varnothing$. We may assume, w.l.o.g. that $i_{1} \leq i_{2}$. Let $j_{1} \in I_{1}$ and $s \in e_{i_{1}, I_{1}} \cap e_{i_{2}, I_{2}}$. Suppose that $j_{1}<i_{2}$ then j_{1} and s are comparable. We would have $s<j_{1}$ since $s \in e_{i_{1}, I_{1}}$, and $j_{1}<s$ since $s \in e_{i_{2}, I_{2}}$. Hence, for all $j_{1} \in I_{1}, j_{1} \nless i_{2}$. We conclude by Lemma 7.6 that $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$.
Lemma 7.8. Let $e_{i_{1}, I_{1}}, e_{i_{2}, I_{2}} \in \mathcal{E}$. Then $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$ if and only if $e_{i_{1}, I_{1}} \cap e_{i_{2}, I_{2}} \neq \varnothing$ or $i_{1} \in I_{2}$ or $i_{2} \in I_{1}$.
Proof. By symmetry we may suppose that $i_{1} \leq i_{2}$.
If $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$ and $e_{i_{1}, I_{1}} \cap e_{i_{2}, I_{2}}=\varnothing$ then there is $j_{1} \in I_{1}$ such that $j_{1} \leq i_{2}$. By Lemma 7.6, $j \nless i_{2}$ for all $j \in I_{1}$. Hence $j_{1}=i_{2}$, so $i_{2} \in I_{1}$.

Conversely, if $e_{i_{1}, I_{1}} \cap e_{i_{2}, I_{2}} \neq \varnothing$ then, by Proposition 7.7, $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$. On the other hand, if $e_{i_{1}, I_{1}} \cap e_{i_{2}, I_{2}}=\varnothing$ and $i_{2} \in I_{1}$, then $j \nless i_{2}$ for all $j \in I_{1}$ since I_{1} is an antichain. Thus, Lemma 7.6, $e_{i_{1}, I_{1}} \cup e_{i_{2}, I_{2}} \in \mathcal{E}$.

Proposition 7.9. The set of truncated cones of a pseudo-tree is a weakHelly representable property.

Proof. Let T be a pseudo-tree and \mathcal{E} be the set of truncated cones of T.
Representability: By Propositions 6.10 and 7.7, it remains to prove that for all $p_{1}, \ldots, p_{n} \in \mathcal{E}$

$$
p_{1} \cup \cdots \cup p_{n} \in \mathcal{E} \Longrightarrow G_{\mathcal{E}}\left[\left\{p_{1}, \ldots, p_{n}\right\}\right] \text { is connected. }
$$

We shall prove the implication by induction on n. The property is trivially true for $n \in\{1,2\}$. Assume that it is true for all $k<n$. Let $A:=\left\{e_{i_{1}, I_{1}}, \ldots, e_{i_{n}, I_{n}}\right\} \subseteq \mathcal{E}$ and let $u:=\cup_{p \in A} p$. Suppose that $u \in \mathcal{E}$, we shall prove that $G_{\mathcal{E}}[A]$ is connected.

Since $u \in \mathcal{E}$, we may suppose, w.l.o.g. that $i_{1} \leq i_{k}$ for all $k \in[1, n]$. If $i_{1}=i_{k}$ for all $k \in[1, n]$ then, by Lemma $7.8, G_{\mathcal{E}}[A]$ is connected. Assume that i_{m} is a maximal element in $\left\{i_{1}, \ldots, i_{n}\right\}$ and that $i_{1}<i_{m}$. Necessarily there is $l \in[1, n]$ such that $i_{l}<i_{m}$ and $e_{i_{l}, I_{l}} \cup e_{i_{m}, I_{m}} \in \mathcal{E}$, otherwise, by Lemma 7.6 , for all $i_{l}<i_{m}$, there is $j_{l} \in I_{l}$ such that $j_{l}<i_{m}$. Note that the set consisting of such i_{l} 's and j_{l} 's is a chain. Let j_{h} be the maximum of such j_{l} 's. Hence $j_{h} \notin u$ and $i_{1}<j_{h}<i_{m}$, this contradicts the fact that $u \in \mathcal{E}$. Let $l \in[1, n]$ such that $i_{l}<i_{m}$ and $e_{i_{l}, I_{l}} \cup e_{i_{m}, I_{m}} \in \mathcal{E}$. Then by Lemma 7.6 we have $e_{i_{l}, I_{l}} \cup e_{i_{m}, I_{m}}=e_{i_{l},\left(I_{l} \backslash e_{i_{m}, I_{m}}\right) \cup\left(I_{m} \backslash e_{i_{l}, I_{l}}\right) \text {. Let }}$ $A^{\prime}:=\left(A \backslash\left\{e_{i_{l}, I_{l}}, e_{i_{m}, I_{m}}\right\}\right) \cup\left\{e_{i_{l}, I_{l}} \cup e_{i_{m}, I_{m}}\right\}$. Since $u=\cup_{p \in A^{\prime}} p \in \mathcal{E}$, we have by inductive hypothesis that $G_{\mathcal{E}}\left[A^{\prime}\right]$ is connected.

It remains to prove that for each $k \in[1, n] \backslash\{l, m\}$ if $e_{i_{k}, I_{k}} \cup\left(e_{i_{l}, I_{l}} \cup\right.$ $\left.e_{i_{m}, I_{m}}\right) \in \mathcal{E}$ then $e_{i_{k}, I_{k}} \cup e_{i_{l}, I_{l}} \in \mathcal{E}$ or $e_{i_{k}, I_{k}} \cup e_{i_{m}, I_{m}} \in \mathcal{E}$. If $e_{i_{k}, I_{k}} \cap$ $\left(e_{i_{l}, I_{l}} \cup e_{i_{m}, I_{m}}\right) \neq \varnothing$ then $e_{i_{k}, I_{k}} \cap e_{i_{l}, I_{l}} \neq \varnothing$ or $e_{i_{k}, I_{k}} \cap e_{i_{m}, I_{m}} \neq \varnothing$ and we conclude by Proposition 7.7. If $e_{i_{k}, I_{k}} \cap\left(e_{i_{l}, I_{l}} \cup e_{i_{m}, I_{m}}\right)=\varnothing$ then $e_{i_{k}, I_{k}} \cap e_{i_{l},\left(I_{l} \backslash e_{i_{m}, I_{m}}\right) \cup\left(I_{m} \backslash e_{\left.i_{l}, I_{l}\right)}\right.}=\varnothing$. Since $e_{i_{k}, I_{k}} \cup e_{i_{l},\left(I_{l} \backslash e_{i_{m}, I_{m}}\right) \cup\left(I_{m} \backslash e_{\left.i_{l}, I_{l}\right)}\right)} \in$ \mathcal{E}, then by Lemma 7.6 we have two alternatives: either there is $j_{k} \in$ I_{k} such that $j_{k}=i_{l}$, which implies that $e_{i_{k}, I_{k}} \cup e_{i_{l}, I_{l}} \in \mathcal{E}$; or there is $j_{r} \in\left(I_{l} \backslash e_{i_{m}, I_{m}}\right) \cup\left(I_{m} \backslash e_{i_{l}, I_{l}}\right)$ such that $j_{r}=i_{k}$, which implies that $e_{i_{k}, I_{k}} \cup e_{i_{l}, I_{l}} \in \mathcal{E}$ or $e_{i_{k}, I_{k}} \cup e_{i_{m}, I_{m}} \in \mathcal{E}$.
Weak-Helly: Let $e_{r, R}, e_{s, S}$ and $e_{t, T}$ be pairwise disjoint elements of \mathcal{E}. Assume that $e_{i, I} \cup e_{j, J} \in \mathcal{E}$ for every $i \neq j$. By Lemma 7.6, for all $i, j \in\{r, s, t\}, i$ and j are comparable, so w.l.o.g. we can assume that $r<s<t$. Again by Lemma 7.8, we have that $t \in R$ since $r<t$, $e_{r, R} \cap e_{t, T}=\varnothing$ and $e_{r, R} \cup e_{t, T} \in \mathcal{E}$. Similarly we have that $s \in R$. But R is an antichain, so s and t are incomparable, thus $e_{s, S} \cup e_{t, T} \notin \mathcal{E}$. A contradiction.

By Propositions 6.13, 7.2, 7.5 and 7.9 we obtain the main application of representability:
Theorem 7.10. Let \mathcal{P} be either the set of intervals of a chain, or the family of connected sets of a forest, or the set of truncated cones of a pseudo-tree.

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a family of pairwise disjoint elements of $\mathcal{F}(\mathcal{P})$, then:

$$
l_{\mathcal{P}}\left(\bigcup_{i=1}^{n} x_{i}\right)=\sum_{1 \leq i<j \leq n} l_{\mathcal{P}}\left(x_{i} \cup x_{j}\right)-(n-2) \sum_{i=1}^{n} l_{\mathcal{P}}\left(x_{i}\right)
$$

Acknowledgements

We would like to thank Maurice Pouzet for his helpful comments and reading of this work.

References

[1] M. Bekkali, On superatomic boolean algebras, Ph.D. thesis, University of Colorado, 1991.
[2] R. Diestel, Graph Theory, second ed., Springer, 2000.
[3] S. Koppelberg and J. D. Monk, Pseudo-trees and boolean algebras, Order 8 (1992), 359-374.
[4] M. Pouzet and I. Rival, Every countable lattice is a retract of a direct product of chains, Algebra universalis 18 (1984), 295-307.
[5] H. Si Kaddour, Ensembles de générateurs d'une algèbre de Boole, Diplôme de doctorat, Université Claude Bernard Lyon 1, 1988.
[6] , A note on the length of members of an interval algebra, Algebra universalis 44 (2000), 195-198.
[7] D. B. West, Introduction to Graph Theory, Prentice-Hall, 1996.
ICJ, Université de Lyon,
Université Claude Bernard Lyon 1, France E-mail address: sikaddour@univ-lyon1.fr

Dpto. de Matemáticas Puras y Aplicadas. Univ. Simón Bolívar, Venezuela
E-mail address: etahhan@usb.ve

[^0]: Received by the editors February 2, 2008, and in revised form August 20, 2009.
 2000 Mathematics Subject Classification. 05C20; 05C38; 05C40; 06E05.
 Key words and phrases. Boolean algebra, cycle, graph, independent, induced subgraph, length, ordered set, vertex-coloring.

[^1]: ${ }^{1}$ The converse of this theorem is false; see for example [7].

