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ASPECTS OF SINGULAR COFINALITY

ASSAF RINOT

Abstract. We study properties of closure operators of singular cofi-
nality, and introduce several ZFC sufficient and equivalent conditions
for the existence of antichain sequences in posets of singular cofinality.
We also notice that the Proper Forcing Axiom implies the Milner-Sauer
conjecture.

1. Introduction

1.1. Background. Assume 〈P,≤〉 is a poset. We say that C ⊆ P is cofinal
in P iff P = C, where C := {x ∈ P | ∃y ∈ C(x ≤ y)}. Define the cofinality of
〈P,≤〉 to be cf(P ) = cf(P,≤) := min{|C| | C is cofinal in P}. For x, y ∈ P ,
we say that x and y are incomparable iff x 6≤ y and y 6≤ x. A ⊆ P is said to
be an antichain iff x, y are incomparable for all distinct x, y ∈ A.

In [10], Pouzet proved his celebrated theorem stating that any updirected
poset with no infinite antichain contains a cofinal subset which is isomorphic
to a product of finitely many regular cardinals (for a proof, see, for instance,
§4.13, and in particular §4.13.5, of [2]). Since any poset with no infinite
antichain is the union of finitely many updirected subposets, we have:

Theorem 1.1 ([10]). Assume 〈P,≤〉 is a poset. If cf(P,≤) is a singular
cardinal, then P contains an infinite antichain.

This lead to the formulation of a very natural conjecture, first appearing
implicitly in [10], and then explicitly in a paper by Milner and Sauer.

Conjecture ([9]). Assume 〈P,≤〉 is a poset. If cf(P,≤) = λ > cf(λ) = κ,
then P contains an antichain of size κ.

For C, a class of posets, denote by MS(C) the statement: for all 〈P,≤〉 ∈ C,
P contains an antichain of size cf(cf(P )). For a cardinal λ, denote by MSλ

the statement MS({〈P,≤〉 | 〈P,≤〉 is a poset of cofinality λ}).
Thus, the Milner-Sauer conjecture is the statement ∀λ(λ > cf(λ) → MSλ),

and Suslin’s hypothesis is the statement MS(T ), where T denotes the class
of all ever-branching ℵ1-trees.

For a set A and a cardinal µ, let [A]<µ := {X ⊆ A | |A| < µ}, [A]≤µ :=
{X ⊆ A | |A| ≤ µ}, and [A]µ := {X ⊆ A | |A| = µ}.
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The current state of the conjecture is the following:

Theorem 1.2 ([6],[12]). Let λ be a singular cardinal. If cf([λ]<cf(λ),⊆) = λ,
then MSλ.

This result was obtained independently by Magidor and by the author,
using completely different arguments.

1.2. Supplemental axioms for set theory. Our paper is dedicated to the
research of the combinatorial aspects of singular cofinality, and is carried out
purely within ZFC, the usual axioms of set theory. However, the hypothesis
“cf([λ]<λ,⊆) = λ”, for a singular cardinal λ, is independent of ZFC.

Naturally, assuming supplemental axioms for set theory, more can be said
on the Milner-Sauer conjecture, thus, in this small subsection, we briefly
discuss results obtained in this direction.

The most famous supplemental axiom for set theory is probably the Gen-
eralized Continuum Hypothesis (GCH) stating that 2λ = λ+ for any infinite
cardinal λ. A weakening of the GCH is Shelah’s Strong Hypothesis (SSH)
from [14]. Fix a singular cardinal λ, and let κ := cf(λ). To define the SSH,
let us say that 〈λ,a,F〉 is an appropriate triplet iff a ⊆ λ is a set of κ
many regular cardinals satisfying sup(a) = λ, and F is an ultrafilter over a
containing no bounded subsets. Consider the ultraproduct

∏

a/F . It is a
linearly ordered set and cf(

∏

a/F) ≥ λ+. Finally, define the pseudopower

pp(λ) = sup
{

cf
(

∏

a/F
)

∣

∣ 〈λ,a,F〉 is an appropriate triplet
}

.

The SSH states that pp(λ) is just λ+ for any singular cardinal λ.
It is well known that the hypothesis of Theorem 1.2 is a consequence of

the SSH (for a proof, see [12]). Recently, Viale proved in [15] that the SSH
is a consequence of the Proper Forcing Axiom (PFA), and hence:

Corollary 1.3. PFA implies the Milner-Sauer conjecture.

For completeness, we mention that a poset 〈P,≤〉 is proper iff for any
regular uncountable cardinal µ, 〈P,≤〉 preserves stationary subsets of [µ]ω.
Thus, PFA is the assertion that for any proper poset 〈P,≤〉 and all sequences
〈Dα | α < ω1〉 of cofinal subsets of P , there is an updirected G ⊆ P such
that G∩Dα 6= ∅ for all α < ω1 (see further [1]). It is also worth mentioning
that Suslin’s hypothesis is, as well, a consequence of PFA.

We conclude this subsection with the following two additional results.

Theorem 1.4 ([3]). Assuming GCH and the existence of a cardinal θ being
θ+ω1+1-strong, it is possible to obtain a model of ZFC with cf([λ]<cf(λ),⊆) >
λ > cf(λ) + MSλ

Theorem 1.5. Let λ be a singular cardinal. If cf([λ]<cf(λ),⊆) = λ, then
any poset of cofinality λ contains an antichain sequence of size λ and length
cf(λ).
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Thus, Theorem 1.4 shows that Theorem 1.2 cannot be improved to an
“iff” theorem, and Theorem 1.5 shows that the hypothesis of Theorem 1.2
will not only imply the existence of an antichain, but also the existence of
an antichain sequence (see Definition 3.2).

The proof of Theorem 1.5 involves an inner-model argument combining
Corollary 2.3 from [12] together with Theorem 1.2 from [8]. We shall not
include the proof, but only mention that it is a straight-forward modification
to the proof of Theorem 2.8 from [12].1

1.3. Organization of this paper. In Section 2, we study the abstract
notion of cofinality in the general context of closure operators and derive
basic properties of singular cofinality, most of them were already known in
the private case of partial orders. One advantage of this approach is that it
allows us to study posets of singular cofinality which are embedded in other
posets, not necessarily of the same cofinality.

We also introduce the notion of exact spectrum of cofinalities which is be-
ing used extensively throughout this paper, and conclude this section, reveal-
ing a restriction on the spectrum induced by a potential counter-example.

In Section 3, we present a linear hierarchy of sequences (normal, one-
sided, upwards-extendible) approximating Hajnal-Sauer’s original definition
of antichain sequences from [5], and prove that the existence of an upwards-
extendible sequence is equivalent to the existence of an antichain sequence.

We also establish that in the context of the Milner-Sauer conjecture, it
suffices to restrict our research to explore properties of externally homoge-
neous posets and principal one-sided sequences.

In Section 4, we prove MS(C) for several classes C. We show that normal
sequences with untight mutual relations between their components can be
refined into antichain sequences, and also notice that a counter-example to
the Milner-Sauer conjecture cannot embed a tree (or even a pseudotree) of
the same cofinality.

The section is concluded with the formulation of an equivalent condition
for the existence of antichain sequences in terms of boundness by ideals.

2. Closure operators

Definition 2.1. Assume X is a set and ϕ : P(X) → P(X) is a function.
ϕ is a closure operator over X iff

(a) A ⊆ B ⊆ X =⇒ A ⊆ ϕ(A) ⊆ ϕ(B) ⊆ X and
(b) for all A ⊆ X, ϕ(ϕ(A)) = ϕ(A).

ϕ is a topological closure operator over X if, additionally

(c) ϕ(∅) = ∅ and
(d) A,B ⊆ X =⇒ ϕ(A) ∪ ϕ(B) = ϕ(A ∪ B).

Note that by property (a), A,B ⊆ X implies ϕ(A) ∪ ϕ(B) ⊆ ϕ(A ∪ B).

1Added in proof: a major improvement to both Theorems 1.4 and 1.5 has recently been
established. See [13].
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Closure operators are common objects in mathematics. Except the obvi-
ous example of topological closure, the operator A 7→ Span(A) for a subset
A of a vector space V is a closure operator, as well. The operation A 7→ 〈A〉
(the subgroup generated by A) for a subset A of a group G is a closure
operator. Another important example is described in the following.

Definition 2.2. Assume 〈P,≤〉 is a binary structure, and fix A ⊆ P .
The downward closure of A, is A := {x ∈ P | ∃y ∈ A(x ≤ y)}.
The upward closure of A, is A := {x ∈ P | ∃y ∈ A(y ≤ x)}.

Notice that if 〈P,≤〉 is reflexive and transitive, then the map A 7→ A (for
all A ⊆ P ) defines a topological closure operator over P .

We now define the analogue of dimension.

Definition 2.3. Suppose ϕ is a closure operator over some set P .
For a subset A ⊆ P , denote cfϕ(A) := min{|B| | B ⊆ P,A ⊆ ϕ(B)}.

The spectrum of cofinalities of ϕ is Spec(ϕ) := {cfϕ(A) | A ∈ [P ]<cfϕ(P )}.
The exact spectrum is ESpec(ϕ) := {cfϕ(A) | A ⊆ P, |A| = cfϕ(A)}.
For a cardinal µ ≤ cfϕ(P ), let ESpecµ(ϕ) := {A ⊆ P | |A| = cfϕ(A) = µ}.

Lemma 2.4. Suppose ϕ is a closure operator over a set P , then

(a) for A ⊆ P , cfϕ(ϕ(A)) = cfϕ(A) ≤ |A|;
(b) for A ⊆ B ⊆ P , cfϕ(A) ≤ cfϕ(B); and
(c) for an indexed family 〈Ai ⊆ P | i ∈ I〉,

cfϕ

(

⋃

i∈I

Ai

)

≤
∑

i∈I

cfϕ(Ai).

Proof. Easy. �

Corollary 2.5. ESpec(ϕ) = Spec(ϕ) ∪ {cfϕ(P )}. In particular, if λ =
cfϕ(P ), then ESpecλ(ϕ) 6= ∅.

Proof. (⊆) By definition, we can choose A ∈ [P ]cfϕ(P ) such that P ⊆ ϕ(A).
By the preceding lemma, cfϕ(P ) ≤ cfϕ(A) ≤ |A| = cfϕ(P ), hence, A is a
witness that cfϕ(P ) ∈ ESpec(ϕ). Since ESpec(ϕ) \ {cfϕ(P )} ⊆ Spec(ϕ), we
conclude that ESpec(ϕ) ⊆ Spec(ϕ) ∪ {cfϕ(P )}.

The proof of the other inclusion (⊇) is similar. �

We now introduce an essential property of singular cofinality.

Lemma 2.6 ([5],[8],[4]). Suppose ϕ is a closure operator over a set P , and
λ ∈ ESpec(ϕ) is a singular cardinal, then

(a) Specϕ(P ) ∩ λ is unbounded in λ and
(b) T := {µ ∈ ESpec(ϕ) | cf(µ) = µ < λ} is unbounded in λ.

If cf(λ) > ℵ0, then, also

(c) ESpec(ϕ) ∩ λ is a club in λ and
(d) S := {µ ∈ ESpec(ϕ) | cf(µ) < µ < λ} is stationary in λ.
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Proof. (a) Pick P ′ ∈ ESpecλ(ϕ) and let κ := cf(λ). By κ < λ, there exists
a sequence 〈Aα ∈ [P ′]<λ | α < κ〉 with

⋃

α<κ Aα = P ′. It follows that

λ = cfϕ(P ′) = cfϕ

(

⋃

α<κ

Aα

)

≤
∑

α<κ

cfϕ(Aα),

and by κ = cf(λ), we must conclude that sup{cfϕ(Aα) | α < κ} = λ.
(b) Put δ := otp(ESpec(ϕ)) and let σ : δ ↔ ESpec(ϕ) be the order-

preserving bijection. For β < δ, we have sup(Specϕ(P ) ∩ σ(β + 1)) =
σ(β), thus, by applying the previous item to σ(β + 1) ∈ ESpec(ϕ), we
must conclude that σ(β + 1) is regular.

(c) ESpec(ϕ) is clearly closed. To see unboundness, pick µ < λ. By
induction on n < ω, use item (a) to pick A0 ∈ [P ]<λ with cfϕ(A0) > µ,

and An+1 ∈ [P ]<λ with cfϕ(An+1) > |An| for all n < ω. Finally, put
A :=

⋃

n<ω An and notice that µ < cfϕ(A0) < cfϕ(A) = |A| < λ.
(d) Because S contains the intersection of the club, ESpec(ϕ) ∩ λ, with

the stationary set S1 := {µ < λ | ℵ0 = cf(µ) < µ}. �

Definition 2.7. Suppose ϕ is a closure operator over a set P . For a cardinal
µ, we define a cf(µ)-complete ideal

Iµ(ϕ) := {A ⊆ P | cfϕ(A) < µ}.

Notice that always [P ]<µ ⊆ Iµ(ϕ) and cf(Iµ(ϕ),⊆) ≤ cf([P ]<µ,⊆).

Lemma 2.8. If ϕ is a closure operator over a set P , and cfϕ(P ) = λ is a
singular cardinal, then Iµ(ϕ) 6= Iλ(ϕ) for all µ < λ.

Proof. Assume the existence of µ < λ with Iµ(ϕ) = Iλ(ϕ), then in particular

[P ]<λ ⊆ Iµ(ϕ) and sup(Spec(ϕ)) = sup{cfϕ(A) | A ∈ [P ]<λ} ≤ µ < λ,
contradicting Lemma 2.6. �

Thus, for instance, if 〈X,O〉 is a topological space and d(X) = λ is a
singular cardinal, then for any cardinal µ < λ, there exists a subspace Y ∈
[X]<λ such that d(Y ) > µ. (Recall that d(X) := min{|D| | D ⊆ X,D = X},
e.g., 〈X,O〉 is separable if d(X) = ℵ0.)

Definition 2.9 (folklore). Suppose I is a non-trivial proper ideal over a set
P , that is

{

{x} | x ∈ P
}

⊆ I and P 6∈ I. Let cov(I) := min{|A| | A ⊆
I,
⋃

A = P}, non(I) = min{|A| | A ⊆ P,A 6∈ I}.

It is easy to see that cov(I) ≤ cf(I,⊆). Note also that for a closure
operator ϕ, an infinite cardinal µ ∈ ESpec(ϕ) iff non(Iµ(ϕ)) = µ.

Lemma 2.10. Assume I is a non-trivial proper ideal over a set P . Suppose
C ⊆ I and a cardinal λ satisfying |C| ≤ λ ≤ cov(I). Then, there exists

X ∈ [P ]cf(λ) such that |A∩X| < |X| for each A ∈ C. In particular, X 6⊆
⋃

B

for all B ∈ [C]<cf(λ).
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Proof. Let {Ai | i < λ} be an enumeration of C. Put κ := cf(λ) and fix an
increasing sequence of ordinals {λα | α < κ} converging to λ. We build a
kind of Luzin set X = {xα | α < κ} for C, by induction on α < κ.

Suppose {xβ | β < α} have already been defined and let Yα := {Ai | i <

λα} ∪ {{xβ} | β < α}. Since Yα ∈ [I]<cov(I), we have that X \
⋃

Yα 6= ∅, so
we may pick xα ∈ X \

⋃

Yα. This completes the construction. �

Corollary 2.11. Suppose I is a non-trivial proper ideal over a set P . If
cov(I) = cf(I,⊆), then non(I) ≤ cf(cf(I,⊆)).

Proof. Pick C ∈ [I]cf(I,⊆) such that for each A ∈ I, there exists B ∈ C with
A ⊆ B. Now, since |C| = cov(I), we may appeal to the preceding lemma

and find a Luzin set X ∈ [P ]cf(cov(I)) for C. Clearly, |X| = cf(cf(I,⊆)).
Since X 6⊆ B for all B ∈ C, we conclude that X 6∈ I. �

It is possible to weaken the hypothesis of the preceding corollary, obtain-
ing the following convergence theorem.

Lemma 2.12. Assume I is a non-trivial proper ideal over a set P . Suppose
also that θ, λ are cardinals, and for each α < θ, Iα is a non-trivial proper
ideal over P satisfying cov(Iα) ≥ λ ≥ cf(I,⊆).

If I =
⋃

α<θ Iα, then non(I) ≤ θ + cf(λ).

Proof. Fix a cofinal subset C ⊆ I with |C| ≤ λ. For α < θ, put Cα := C ∩Iα.

By |Cα| ≤ λ ≤ cov(Iα) and Lemma 2.10, we may pick Xα ∈ [P ]cf(λ) such
that Xα 6⊆ A for all A ∈ Cα. Let X :=

⋃

α<θ Xα. Then |X| ≤ θ + cf(λ).
Finally, if X ∈ I, then by the choice of C, there exists some A ∈ C with
X ⊆ A, and in particular, there exists some α < θ with A ∈ Cα. It follows
that Xα 6⊆ A, contradicting Xα ⊆ X ⊆ A. �

Corollary 2.13 ([7]). Assume ϕ is a closure operator over a set P , and
cfϕ(P ) = λ > cf(λ) = κ. If µ is a cardinal satisfying κ < µ ≤ λ, then
cf(Iµ(ϕ),⊆) > λ.

Proof. For notational simplicity, put Iµ := Iµ(ϕ). Assume first κ < µ < λ.
By cfϕ(P ) = λ and Lemma 2.4.c it is clear that cov(Iµ) = λ. It follows
from Corollary 2.11 that if cf(Iµ,⊆) = λ, then non(Iµ) ≤ κ, contradicting
the fact that [P ]κ ⊆ [P ]<µ ⊆ Iµ.

Consider now Iλ. Let 〈λα | α < κ〉 be a strictly increasing sequence of
cardinals converging to λ. Then Iλ =

⋃

α<κ Iλα
.

Finally, if cf(Iλ,⊆) ≤ λ, then by Lemma 2.12, non(Iλ) ≤ κ, contradicting
the fact that [P ]κ ⊆ Iλ. �

Thus, for instance, if 〈G, ·, 1〉 is a group, and |G| = λ is a singular cardinal,
then G has more than λ many subgroups. To be more concrete, if |G| = ℵω,
then the set {H < G | H is countable} is of cardinality > ℵω.

Corollary 2.14. If ϕ is a closure operator over a set P , and cfϕ(P ) = λ >
cf(λ) = κ, then Iκ+(ϕ) 6= Iω(ϕ).
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It follows that if 〈P,C〉 is a µ-updirected poset for some cardinal µ, then
either cf〈P,C〉 ≤ 1 or cf(cf(P,C)) ≥ µ.

We shall now revisit Definition 2.3 for the special case of partial orders.

Definition 2.15. Assume 〈P,≤〉 is poset, and A ⊆ P ′ ⊆ P . Let cfP ′(A) :=
min{|B| | B ⊆ P ′, A ⊆ B}, and cf(P ′) := cfP ′(P ′).

Let ϕ denote the corresponding (topological) closure operator A 7→ A (for
all A ⊆ P ), then denote Spec(P ) := Spec(ϕ),ESpec(P ) := ESpec(ϕ), and
Iµ(P ) := Iµ(ϕ) for any cardinal µ.

Finally, for P ′ ⊆ P and a cardinal µ ≤ cfP (P ′), we define

ESpecµ(P ′) := {A ⊆ P ′ | 〈A,≤〉 is well-founded and |A| = cfP (A) = µ}.

To help our reader get used to the definition, let us take a look at the sets
Γ1 := {cfP (A) | A ⊆ P} and Γ2 := {cf(A) | A ⊆ P} for some poset 〈P,≤〉.
By Corollary 2.5, we have Γ1 = ESpec(P ) and by Lemma 2.4, we know that
Γ1 is closed (i.e.

⋃

A ∈ Γ1 for all A ⊆ Γ1). Also, it is proved in [8] that
Γ2 ⊇ {µ < cf(P ) | µ = cf(µ)}.

Now, consider the case 〈P,≤〉 = 〈ℵω,∈〉. Since it is linearly ordered, we
have Γ1 = {0, 1, cf(P )}. However, Γ2 = {µ < ℵω | µ = cf(µ)}. In particular,
Γ2 is not closed, and Γ1 6⊇ {µ < cf(P ) | µ = cf(µ)}.

The essence of being exact is the following.

Lemma 2.16. Suppose 〈P,≤〉 is a poset, and A ∈ ESpecµ(P ) for some µ.
Then, whenever A ⊆ Q ⊆ P , we have, cf(A) = cfQ(A) = cfP (A).

Lemma 2.17 ([10]). For a poset 〈P,≤〉, ESpec(P ) = {µ | ESpecµ(P ) 6= ∅}.

Proof. Let ϕ be the corresponding operator. To see the non-trivial direction
(⊆), fix µ ∈ ESpec(P ). Pick {xα | α < µ} ∈ ESpecµ(ϕ), and let A := {xα |
∀β < α(xβ 6≥ xα)}. Evidently, A ∈ ESpecµ(P ), thus, ESpecµ(P ) 6= ∅. �

Lemma 2.18. Assume 〈P,≤〉 is a poset and P ′ ⊆ P is a cofinal subset
(i.e., P ⊆ P ′), then

(a) for A ⊆ P ′, cfP ′(A) = cfP (A) and
(b) cf(Iµ(P ),⊆) = cf(Iµ(P ′),⊆) for any cardinal µ.

Proof. (a) Let A ⊆ P ′. Clearly cfP (A) ≤ cfP ′(A). To see the other inequal-
ity, pick X ∈ P of minimal cardinality such that A ⊆ X . For σ := |X|,
fix an enumeration X = {xα | α < σ}. By P ⊆ P ′, for all α < σ we
may pick yα ∈ P ′ such that xα ≤ yα, then, Y = {yα | α < σ} witnesses
cfP ′(A) ≤ cfP (A).

(b) Recall that Iµ(P ′) := {A ⊆ P ′ | cfP ′(A) < µ}. Let f : Iµ(P ) →
[P ′]<µ be a function such that X ⊆ f(X) for all X ∈ Iµ(P ). To see that such

a function exists, fix X ∈ Iµ(P ) and repeat the arguments of the preceding
item: by definition, there exists Y ∈ [P ]<µ with X ⊆ Y . Since P ⊆ P ′, for
all y ∈ Y , we may find y′ ∈ P ′ with y ≤ y′, so let f(X) := {y′ | y ∈ Y }.

Put θ := cf(Iµ(P ),⊆) and θ′ := cf(Iµ(P ′),⊆). Pick C ∈ [Iµ(P )]θ and

C′ ∈ [Iµ(P ′)]θ
′
witnessing the cofinalities.
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To prove θ ≤ θ′, we show that {f(B) | B ∈ C ′} is cofinal in Iµ(P ).

Assume A ∈ Iµ(P ). By f(A) ∈ [P ′]<µ ⊆ Iµ(P ′), there exists B ∈ C ′ such
that f(A) ⊆ B. It follows that A ⊆ f(A) ⊆ B ⊆ f(B).

To prove θ′ ≤ θ, we show that {P ′ ∩ f(B) | B ∈ C} is cofinal in Iµ(P ′).

Assume A ∈ Iµ(P ′). By f(A) ∈ [P ′]<µ ⊆ Iµ(P ), there exists B ∈ C such
that f(A) ⊆ B ∩ P ′. By A ⊆ f(A) ⊆ B and B ⊆ f(B), we conclude that

A ⊆ P ′ ∩ f(B). �

The proof of the following lemma can essentially be found in [7].

Lemma 2.19. Assume 〈P,≤〉 is a well-founded poset, and let κ denote the
minimal cardinality such that P does not contain an antichain of size κ.
For any ideal I ⊆ P(P ) satisfying (A ∈ I → A ∈ I), there exists a family
S ⊆ [P ]<κ such that cf(I,⊆) ≤ cf(S,⊇).

Proof. Consider the function µ : P(P ) → [P ]<κ defined by letting µ(X) :=
{x ∈ X | ∀y ∈ X(y 6< x)} for all X ⊆ P . The definition is good because
µ(X) is an antichain for all X ⊆ P . Denote φ(X) := µ(P \X) for all X ⊆ P .

Put S := {φ(X) | X ∈ I}. We claim that cf(I,⊆) ≤ cf(S,⊇). To see
this, fix C ′ ⊆ S witnessing the value of cf(S,⊇) and let C := {P \Y | Y ∈ C ′}.

Fix A ∈ I, we shall find B ∈ C with A ⊆ B. Put A′ := A. By the
hypothesis, A′ ∈ I, and clearly A ⊆ A′. Since A′ = A′, we have P \ A′ =

P \ A′. By well-foundedness, P \ A′ = φ(A′). Find B′ ∈ C′ such that

B′ ⊆ φ(A′), then φ(A′) ⊇ B′ and A ⊆ A′ = P \ φ(A′) ⊆ P \ B′.
The same argument also shows that C ⊆ I. �

Corollary 2.20. If there exists a poset 〈P,≤〉, cf(P ) = λ > cf(λ) with no
antichains of size κ, then there exists S ⊆ [λ]<κ such that cf(S,⊇) > λ.

Proof. Pick P ′ ∈ ESpecλ(P ) with P ⊆ P ′. By Lemma 2.18 and Corollary
2.13, cf(Iλ(P ′),⊆) > λ. Thus, by the preceding lemma, we may find S ′ ∈
[P ′]<κ with cf(S ′,⊇) > λ, and by |P ′| = λ, this indicates the existence of
S ∈ [λ]<κ with cf(S,⊇) > λ. �

Corollary 2.21 ([10]). If 〈P,≤〉 is a poset of singular cofinality, then P
contains an infinite antichain.

Corollary 2.22. Suppose 〈P,≤〉 is a poset of singular cofinality λ, with no
antichains of size cf(λ). If λ is minimal in that sense, then |ESpec(P )| =
cf(λ).

Proof. By the preceding corollary, κ := cf(λ) > ℵ0. Recalling Lemma 2.6,
we have that C := ESpec(P )\{λ} is a club in λ, and hence |C| ≥ cf |C| = κ.

Assume towards a contradiction that |C| > κ. Then one can find a
singular µ ∈ C such that cf(µ) = κ. Fix µ ∈ ESpec(P ) with λ > µ >
cf(µ) = κ. By minimality of λ, if P ′ ∈ ESpecµ(P ), then P ′ (and hence P )
contains an antichain of size κ, yielding a contradiction. �
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3. Sequences of subposets

Definition 3.1. Assume A = 〈Aj | j ∈ J〉 is an indexed sequence, I ⊆ J .
We write X ⊆I A iff X = Im(φ) for some choice function φ ∈

∏

i∈I Ai.

Our journey begins with the following definition due to Hajnal and Sauer.

Definition 3.2 ([5]). Assume 〈P,≤〉 is a poset, A = 〈Aα | α < κ〉 is a
family of sets, and P ′ ⊆ P . A is said to be an antichain sequence for P ′ iff

(a) for all β < α < κ, |Aβ| ≤ |Aα| and Aα ⊆ P ′ and

(b) for all I ⊆ κ and X ⊆I A, X is an antichain.

κ is considered to be the length of the antichain sequence. The cardinality
and cofinality (with respect to P ) of

⋃

α<κ Aα will, respectively, be called the
size and cofinality of the antichain sequence A.

The next lemma motivates the definition of an antichain sequence.

Lemma 3.3. Assume 〈P,≤〉 is a poset and P ′ ∈ ESpecλ(P ) for cardinals
λ > cf(λ) = κ. If there exists an antichain sequence for P ′ of length κ and
size λ, then P ′ (and hence P ) contains λκ antichains of size κ.

Proof. Fix A := 〈Aα | α < κ〉 like in the hypothesis. For all α < κ, set
λα = |Aα|. Finally, since 〈λα | α < κ〉 is non-decreasing, converging to λ:

∣

∣

∣

∣

∣

{

Im(φ)
∣

∣ φ ∈
∏

α<κ

Aα

}∣

∣

∣

∣

∣

=
∏

α<κ

λα = λκ.

�

We now start approximating Definition 3.2 in the following way.

Definition 3.4. Assume 〈P,≤〉 is a poset and P ′ ∈ ESpecλ(P ) for some
singular cardinal λ. Put κ := cf(λ). A sequence A = 〈Aα ∈ [P ′]<λ | α < κ〉
is a normal sequence for P ′ iff it satisfies

(a) for all α < κ, cfP (Aα) > (|Vα| + κ)+, where Vα :=
⋃

β<α Aβ and

(b) sup{cfP (Aα) | α < κ} = λ.

It is a one-sided sequence for P ′ if, additionally

(c) for each β < α < κ, Aβ ∩ Aα = ∅.

The length of the sequence A is κ, and the cofinality of A is cfP

(
⋃

α<κ Aα

)

.
Notice that the cofinality in items (a),(b) is also calculated according to P .

Lemma 3.5. Assume 〈P,≤〉 is a poset and P ′ ∈ ESpecλ(P ) for some car-
dinal λ > cf(λ) = κ. Then

(a) for any sequence of cardinals 〈λα | α < κ〉 cofinal in λ, there exists
a normal sequence for P ′, A = 〈Aα ∈ [P ′]<λ | α < κ〉, such that
cfP (Aα) > λα for all α < κ and

(b) any normal sequence for P ′ can be refined to a one-sided sequence
for P ′.
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In particular

(c) there exists a one-sided sequence for P ′, 〈Aα ∈ [P ′]<λ | α < κ〉 such
that P ′ ⊆

⋃

α<κ Aα.

Proof. (a) We build A by induction on α < κ.
Induction base:

By Lemma 2.6, we may pick A0 ∈ [P ′]<λ such that cfP (A0) > (κ+λ0)
+.

Inductive step:

Assume 〈Aβ ∈ [P ′]<λ | β < α〉 has already been defined. Since α < κ =
cf(λ), we have |Vα| < λ, thus, we may again apply Lemma 2.6 and pick
Aα ∈ [P ′]<λ with cfP (Aα) > (|Vα| + λα)+.

(b) Assume A = 〈Aα ∈ [P ′]<λ | α < κ〉 is a normal sequence for P ′.
Assume α < κ, Set Bα := Aα \ Vα. Since cfP (Aα) > |Vα| ≥ cfP (Vα), we
have cfP (Bα) = cfP (Aα). It follows that B = 〈Bα | α < κ〉 is a one-sided
sequence for P ′ refining A.

(c) By the first item, we may pick a normal sequence for P ′, 〈Aα ∈ [P ′]<λ |
α < κ〉. Put S := P ′ \

⋃

α<κ Aα. Since |S| ≤ λ = supα<κ cfP (Aα), we may
partition S =

⋃

α<κ Sα such that |Sα| ≤ cfP (Aα) for all α < κ, and then
consider the normal sequence 〈Aα ∪ Sα | α < κ〉.

Repeating the proof of the second item, we end up with a sequence 〈Bα ∈
[P ′]<λ | α < κ〉 satisfying the desired properties. �

Definition 3.6. Assume 〈P,≤〉 is a poset and P ′ ∈ ESpecλ(P ) for some
singular cardinal λ. Assume A = 〈Aα ∈ [P ′]<λ | α < κ〉 is a one-sided
sequence for P ′, where κ = cf(λ). A is said to be upwards-extendible iff for
all I ∈ [κ]<κ and X ⊆I A, there exists Σ ∈ [κ]κ, such that 〈Aγ \ X | γ ∈ Σ〉
is a one-sided sequence for P ′.

The next lemma justifies the definition of an upwards-extendible sequence.

Lemma 3.7. Assume 〈P,≤〉 is a poset and P ′ ∈ ESpecλ(P ) for some sin-
gular cardinal λ. If there exists an upwards-extendible one-sided sequence
for P ′, then P ′ (and hence P ) contains an antichain of size cf(λ).

Proof. Put κ := cf(λ). Assume A = 〈Aα ∈ [P ′]<λ | α < κ〉 is an upwards-
extendible sequence for P ′. We build, by induction on α < κ, two families
{τα | α < κ} and {xα ∈ Aτα | α < κ}.
Induction base:

Put τ0 := 0 and pick arbitrary x0 ∈ A0.
Inductive hypothesis:

Assume Iα := {τβ | β < α} is increasing and Xα = {xβ ∈ Aτβ
| β < α}

is an antichain.
Inductive step:

Since A is upwards-extendible and Iα ∈ [κ]<κ, there exists γ > sup(Iα)
such that Aγ \ Xα 6= ∅, so set τα := γ and pick xα ∈ Aγ \ Xα.
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To see that Xα ∪{xα} is an antichain, fix β < α. By the choice of xα 6∈ Xα,
clearly xβ 6≤ xα. Since A is one-sided, we also have xβ 6≥ xα. This ends the
construction. �

Here is a simple case where an upwards-extendible sequence must exist.

Theorem 3.8. Assume 〈P,≤〉 is a poset, and λ > cf(λ) = κ are cardinals.
If there exists P ′ ∈ ESpecλ(P ), and µ < λ, such that |{x} ∩ P ′| < µ for

all x ∈ P ′, then there exists a one-sided sequence for P ′ which is upwards-
extendible.

Proof. We present an interesting proof, not necessarily the shortest one.
Assume P ′ is like in the hypothesis. Let A := 〈Aα ∈ [P ′]<λ | α < κ〉 be a
one-sided sequence for P ′, with |Aα| > µ for all α < κ. Fix α < κ.

Set λα := |Vα|
+. Put Cα := {X ∈ [Vα]<κ | cfP (Aα \ X) ≤ λα}. If

Cα = ∅, let Dα := ∅. Assume otherwise, let Dα ⊆ Cα be a maximal subset
of mutually disjoint sets. By |Dα| ≤ |Vα| < λα, regularity of λα, and the
defining properties of Cα, we have cfP (

⋃

{Aα \ X | X ∈ Dα}) ≤ λα. Since
cfP (Aα) > λα and cfP (Aα \

⋂

{X | X ∈ Dα}) ≤ λα, we conclude that
⋂

{X | X ∈ Dα} 6= ∅. Pick y ∈
⋂

{X | X ∈ Dα}. Since members of Dα are
mutually disjoint, |Dα| ≤ |{y} ∩ P ′| < µ. It follows that |

⋃

Dα| < µ · κ.2

In both cases, we get that if X ∈ [Vα]<κ and (
⋃

Dα) ∩ X = ∅, then
X 6∈ Cα. Set D :=

⋃

{X | ∃α < κ(X ∈ Dα)}. Notice that |D| ≤ µ · κ.
For α < κ, set Bα := Aα \D. It follows from cfP (Aα) > µ · κ ≥ |D|, that

cfP (Bα) = cfP (Aα), thus, B = 〈Bα | α < κ〉 is a one-sided sequence for P ′.
Finally, to see that B is upwards-extendible, pick I ∈ [κ]<κ and X ⊆I B.

Set Σ := κ \ (sup(I) + 1), and assume γ ∈ Σ. Since X ∩ D = ∅, we have
X 6∈ Cγ , and hence cfP (Aγ \ X) > λγ . Since cfP (Aγ \ Bγ) ≤ |D| < λγ , we

must conclude that cfP (Bγ \X) > λγ . It now follows that 〈Bγ \X | γ ∈ Σ〉
is a one-sided sequence for P ′. �

Theorem 3.9. Assume 〈P,≤〉 is a poset and λ > cf(λ) = κ are cardinals.

If there is P ′ ∈ ESpecλ(P ) with cfP ({x ∈ P ′ | cfP ({x} ∩ P ′) < λ}) = λ,
then there exists an antichain sequence for P ′ of length κ and cofinality λ.

Proof. Let {xi | i < λ} be a bijective enumeration of P ′. Let 〈λα | α < κ〉
be a strictly increasing sequence of cardinals cofinal in λ, with λ0 > κ. Fix
α < κ and set Aα := {xi ∈ P ′ | i < λα, cfP ({xi} ∩ P ′) < λα}. Thus

cfP (Aα ∩ P ′) = cfP

(

⋃

x∈Aα

{x} ∩ P ′

)

≤
∑

x∈Aα

cfP ({x} ∩ P ′) ≤ λα · λα = λα.

Since {Aα | α < κ} is an increasing chain of sets, each of bounded cardi-
nality, and cfP (

⋃

α<κ Aα) = cfP (P ′) = λ, the family Γ := {cfP (Aα) | α < κ}

2Notice this is the only usage of the hypothesis in the whole proof.
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is unbounded in λ. Let f : κ → κ be the order-preserving injection
defined recursively by letting f(0) := min{γ < κ | cfP (Aγ) > κ} and
f(α) := min{γ < κ |

∑

β<α λf(β) < cfP (Aγ)} for α with 0 < α < κ.
To see that the definition is good, it suffices to recall that Γ is unbounded

in λ, and to observe that, for all α < κ,
∑

β<α λf(β) is bounded in λ, simply

because α < κ = cf(λ).
For all α < κ, set Wα :=

⋃

β<α Af(β) and Bα := Af(α) \(Wα∪Wα). To see

that B := 〈Bα ∈ [P ′]<λ | α < κ〉 is an antichain sequence for P ′ of cofinality
λ, we are left with showing that sup{cfP (Bα) | α < κ} = λ. Fix α < κ.

By cfP (Wα) ≤ cfP (Wα ∩ P ′) = cfP (
⋃

β<α Af(β) ∩ P ′) ≤
∑

β<α λf(β) and

the definition of f , we conclude that cfP (Af(α)) > cfP ((Wα ∪Wα)∩P ′) and
cfP (Bα) = cfP (Af(α)). �

Even though it does not look so, it happens that the existence of an
upwards-extendible sequence is equivalent to the existence of an antichain
sequence. We prove this in Theorem 3.11 below.

Definition 3.10. For a poset 〈P,≤〉, P ′ ⊆ P , cfP (P ′) = λ,cf(λ) = κ, let

℘(P ′) := {X ∈ [P ′]<κ | cfP (P ′ \ X) < λ}.

Theorem 3.11. Assume 〈P,≤〉 is a poset. For λ > cf(λ) = κ, the following
are equivalent:

(a) There exists P0 ∈ ESpecλ(P ) with cf(℘(P0),⊇) = 0.
(b) There exists P1 ∈ ESpecλ(P ) with cf(℘(P1),⊇) ≤ λ.
(c) There exists P2 ∈ ESpecλ(P ) such that {P2 \ X | X ∈ ℘(P2)} is not

⊆-cofinal in Iλ(P ) � P2 = {A ⊆ P2 | cfP (A) < λ}.
(d) There exists P3 ∈ ESpecλ(P ) and A = 〈Aα ∈ [P3]

<λ | α < κ〉, where
A is a one-sided, upwards-extendible sequence for P3.

(e) There exists P4 ∈ ESpecλ(P ) and B = 〈Bα ∈ [P4]
<λ | α < κ〉, where

B is an antichain sequence for P4 =
⋃

α<κ Bα.

Proof. For the sake of this proof, fix a strictly increasing sequence of cardi-
nals, 〈λα | α < κ〉, converging to λ.

(a ⇒ b) This implication is trivial.
(e ⇒ a) Let B be an antichain sequence for P4 like in the hypothesis.

Then by regularity of κ, for each X ∈ [P4]
<κ there exists some α > κ such

that X ⊆
⋃

β<α Bβ, and it follows that Bδ \X = Bδ for all δ > α, and hence

cfP (P4 \ X) ≥ sup{cfP (Bδ) | α < δ < κ} = λ, concluding that ℘(P4) = ∅.
(b ⇒ c) Let P1 be like in the hypothesis. We claim that P2 := P1 works.

Assume towards a contradiction that {P2 \ X | X ∈ ℘(P2)} is ⊆-cofinal
in Iλ(P ) � P2, then cf(Iλ(P ) � P2,⊆) ≤ cf({X ∩ P2 | X ∈ ℘(P2)},⊇) ≤
cf(℘(P1),⊇) ≤ λ.

Clearly, Iλ(P ) � P2 =
⋃

α<κ(Iλα
(P ) � P2). Also, by P2 ∈ ESpecλ(P ), we

have cfP (P2) = λ and cov(Iλα
(P ) � P2) = λ for all α < κ. Thus, if indeed

cf(Iλ(P ) � P2,⊆) ≤ λ, then by Lemma 2.12, there exists some X ∈ [P2]
κ

such that X 6∈ Iλ(P ), which is an absurd.
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(c ⇒ d) Fix P2 like in the hypothesis and let Y ∈ Iλ(P ) � P2 be a witness
to the assumption. That is, Y 6⊆ P2 \ X for all X ∈ ℘(P2).

Let P3 := P2 \ Y . By cfP (Y ) < λ, we have P3 ∈ ESpecλ(P ). By Lemma
3.5, let us fix a one-sided sequence for P3, A := 〈Aα ∈ [P3]

<λ | α < κ〉 such
that P3 ⊆

⋃

α<κ Aα.
To see that A is upwards-extendible, assume towards a contradiction that

there exists some I ∈ [κ]<κ and X ⊆I A such that 〈Aα \ X | α ∈ Σ〉 is not
one-sided for all Σ ∈ [κ]κ. It follows that cfP (

⋃

α<κ Aα \ X) < λ and hence

cfP (P2 \X) ≤ cfP (Y ∪P3 \X) < cfP (Y )+ + λ, concluding that X ∈ ℘(P2).
However, by Y 6⊆ P2 \ X and Y ⊆ P2, we get that Y ∩ X 6= ∅ and hence

Y ∩ X 6= ∅, in contradiction with X ⊆I A and Y ∩ Aα = ∅ for all α < κ.
(d ⇒ e) Assume P3 ∈ ESpecλ(P ) and A given by the hypothesis. If there

exists Q ⊆ P3 such that cfP ({x ∈ Q | cfP (Q∩{x}) < λ}) = λ, then Theorem
3.9 completes the proof. Thus, from now on, we may assume

(3.1) cfP ({x ∈ Q | cfP (Q ∩ {x}) < λ}) < λ for all Q ⊆ P3.

For all δ < κ, denote V δ :=
⋃

{Aγ | δ ≤ γ < κ}. Notice that by the

hypothesis on A, for all δ < κ and X ⊆δ A, we have cfP (V δ \ X) = λ.
We now build the following objects by induction on α < κ:

(i) Two increasing sequences of ordinals I = 〈τα < κ | α < κ〉, and
J = 〈δα < κ | α < κ〉.

(ii) An antichain X = {xα ∈ Aτα | α < κ}.
(iii) An antichain sequence of the form B = 〈Bα ∈ [V δα ]<λ | α < κ〉.

Induction base:
By cfP (P3) = λ and property (3.1), we may pick τ0 < κ and x0 ∈ Aτ0

such that cfP (P3 ∩ {x0}) = λ, hence, by Lemma 2.6 there exists B0 ∈

[P3 ∩ {x0}]
<λ with cfP (B0) > λ0. Put δ0 := τ0, and notice that since A

is one-sided, indeed B0 ∈ [V δ0 ]<λ

Induction hypothesis:
We assume the following objects have already been defined:

(i) Increasing Iα := {τβ | β < α} and Jα := {δβ | β < α}.
(ii) An antichain Xα := {xβ ∈ Aτβ

| β < α}.

(iii) A sequence 〈Bβ ∈ [V δβ ∩ {xβ}]
<λ | β < α〉 such that

– for all β < α, λβ < cfP (Bβ) < λ and

– β < γ < α implies Bβ ∩ Bγ = ∅ and Bβ ∩ Bγ = ∅.

Inductive step:

By Iα ∈ [κ]<κ and A being upwards-extendible, we may pick δα >
sup(Iα ∪ Jα) such that cfP (V δα \ Xα) = λ. Set Q := V δα \ Xα.

By (3.1), we choose τα > δα and xα ∈ (Aτα \Xα) such that cfP ({xα}∩Q) =
λ. Set θ :=

∑

β<α |Bβ |. Since |Bβ | < λ for all β < α, and α < κ = cf(λ), we

have θ < λ. Thus, just like in the base case, we may find B ′
α ∈ [Q∩{xα}]

<λ

with cfP (B′
α) > λα + θ. Finally, put Bα := B′

α \
⋃

β<α Bβ. By cfP (B′
α) > θ,

we conclude cfP (Bα) = cfP (B′
α).



198 ASSAF RINOT

Pick β < α. Clearly, Bβ ∩ Bα = ∅. To see that Bβ ∩ Bα = ∅, assume

y ∈ Bβ, x ∈ Bα with x > y. Since y ∈ Bβ ⊆ {xβ}, we must conclude

that x > xβ. However, Bα ∈ [V δα \ Xα]<λ and xβ ∈ Xα, in particular,

Bα ⊆ P3 \ {xβ}, therefore, {xβ} ∩ Bα = ∅ and x 6> xβ. We conclude that
x 6> y and this ends the construction.

Evidently, the construction produces B := 〈Bα | α < κ〉 which is an
antichain sequence for P4 :=

⋃

α<κ Bα. Finally, since P3 is well-founded,
sup{cfP (Bα) | α < κ} = supα<κ λα = λ, and |Bα| < λ for all α < κ, we also
have P4 ∈ ESpecλ(P ). �

Thus, Corollary 2.20 may be improved to the following.

Corollary 3.12. Assume 〈P,≤〉 is a poset, cf(P ) = λ > cf(λ) = κ. If there
exists no antichain sequence of length κ and cofinality λ for P , then there
exists S ⊆ [λ]<κ such that cf(S,⊇) > λ.

Corollary 3.13. Assume 〈P,≤〉 is a poset, cf(P ) = λ > cf(λ) = κ. If any
of the sets

(a) {x ∈ P | cfP ({x}) < λ} or
(b) {x ∈ P | |{x}| < µ} for some µ < λ.

is of confinality λ, then P contains λκ antichains of size κ.

Proof. For (a), use Theorem 3.9 and Lemma 3.3. For (b), use Theorems 3.8,
3.11 and Lemma 3.3. �

It is worth mentioning that cfP ({x}) = 1 for all x ∈ P . Also, we have

already noticed in the proof of Lemma 2.17 that if cf(P ) = λ, then there
exists P ′ ∈ ESpecλ(P ) such that |{x}| < λ for all x ∈ P .

Definition 3.14 ([8]). Assume 〈P,≤〉 is a poset. 〈P,≤〉 is cofinally homo-

geneous iff for all x ∈ P , cfP ({x}) = cf(P ).

Thus any updirected poset is cofinally homogeneous.

Definition 3.15. Assume 〈P,≤〉 is a poset. P ′ ⊆ P is externally homoge-
neous iff for all x ∈ P ′,

cfP (P ′ ∩ {x}) = cfP (P ′ \ {x}) = cfP (P ′).

The next corollary tells us that we may restrict our research to explore
properties of externally homogeneous posets of singular cofinality.

Corollary 3.16. Assume 〈P,≤〉 is a poset, κ = cf(λ) < λ ∈ ESpec(P ).
Then at least one of the following conditions holds:

(a) There exists an antichain sequence for P of length κ and cofinality λ.
(b) There exists an externally homogeneous poset P ′ ∈ ESpecλ(P ).

Proof. Pick P1 ∈ ESpecλ(P ). Set P2 := {x ∈ P1 | cfP ({x} ∩ P1) < λ} and
µ := cfP (P2). If µ = λ then (a) holds as a consequence of Theorem 3.9.



ASPECTS OF SINGULAR COFINALITY 199

Assume µ < λ. Set P3 := P1 \ P2. Assume there exists x ∈ P3 with

cfP ({x} ∩ P3) = θ < λ. We show that x must be a member of P2, contra-

dicting P3 ∩ P2 = ∅. Indeed, pick A ∈ [P ]θ such that ({x} ∩ P3) ⊆ A.

It follows that ({x}∩P1) ⊆ ({x}∩P3)∪ ({x} ∩P2) ⊆ A ∪ P2, and x ∈ P2,

since cfP ({x} ∩ P1) ≤ θ + µ < λ. Thus, cfP ({x} ∩ P3) = λ for all x ∈ P3.

Finally, put P4 := {x ∈ P3 | cfP (P3 \ {x}) < λ}. If cfP (P4) = λ, then
P4 satisfies the hypothesis of Theorem 3.11.b and (a) holds. Otherwise, (b)
holds for P ′ := P3 \ P4. �

We now revisit Lemma 3.5, claiming the existence of “principal” one-sided
sequences.

Theorem 3.17. Assume 〈P,≤〉 is a poset, cf(P ) = λ > cf(λ) = κ. Assume
〈λα | α < κ〉 is a sequence of cardinals cofinal in λ. Then at least one of the
following conditions holds:

(a) There exists an antichain sequence for P of length κ and cofinality λ.
(b) There exists two families 〈Aα ∈ [P ]<λ | α < κ〉 and 〈xα ∈ P | α < κ〉

such that
(b.1) for all α < κ, (λα + κ + |Vα|)

+ < cfP (Aα) < λ and Aα ⊆ {xα},
where Vα :=

⋃

β<α Aβ, and

(b.2) for all β < α < κ, Aβ ∩ {xα} = ∅.

Proof. Assume (¬a). By Corollary 3.16, we may pick an externally homo-
geneous P ′ ∈ ESpecλ(P ). We build the two families by induction on α < κ.
Induction base:

Pick x0 ∈ P ′ arbitrarily. By ({x0} ∩ P ′) ∈ ESpecλ(P ), we may use

Lemma 2.6 to pick A0 ∈ [{xo} ∩ P ′]<λ such that cfP (A0) > (λ0 + κ)+.
Induction hypothesis:

Assume 〈xβ ∈ P ′ | β < α〉, 〈Aβ ∈ [{xβ} ∩ P ′]<λ | β < α〉 have already
been defined.

Inductive step:

Pick xα ∈ P ′ \ Vα arbitrarily. Notice that by the choice of xα, ({xα} ∩

Vα) = ∅, and hence Aβ ∩ {xα} = ∅ for all β < α. Just like in the base

case, since ({xα} ∩ P ′) ∈ ESpecλ(P ), we may pick Aα ∈ [{xα} ∩ P ′]<λ

such that cfP (Aα) > |(λα +κ+ |Vα|)|
+. This completes the construction.

�

4. Sufficient and equivalent conditions for the existence of

antichain sequences

Theorem 4.1. Assume 〈P,≤〉 is a poset, and cf(P ) = λ > cf(λ) = κ. If
there exists P ′ ∈ ESpecλ(P ) such that either

(a) ({x} ∩ P ′) is linearly ordered for all x ∈ P ′, or
(b) ({x} ∩ P ′) is linearly ordered for all x ∈ P ′.

then there exists an antichain sequence for P of length κ and cofinality λ.
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Proof. (a) Recall that linear orders must have regular cofinality, and hence

cfP ({x} ∩P ′) < λ for all x ∈ P ′. The result now follows from Theorem 3.9.
(b) Let 〈Aα | α < κ〉 and X = {xα | α < κ} be as in Theorem 3.17.b. Put

Bα := (Aα \ X) for all α < κ. Clearly, the refinement B = 〈Bα | α < κ〉 is
also a one-sided normal sequence for P . To see it is an antichain sequence,
assume β < α < κ and b ∈ Bβ , a ∈ Bβ.

Since B is one-sided, we have b 6≥ a. Assume b < a. From a ∈ Aα ⊆ {xα},

we have xα < a. From b ∈ Aβ ⊆ {xβ} and b < a, we have xβ < b < a. It
follows that {xα, xβ, b} ⊆ {a}, thus, by the hypothesis, {xα, xβ , b} is linearly
ordered by <. We now yield a contradiction, by showing that xα and b are
incomparable:

• since b ∈ Bβ ⊆ Aβ and (Aβ ∩ {xα}) = ∅, we have b 6≥ xα.
• since b ∈ Bβ = Aβ \ X ⊆ (Aβ \ {xα}), we have b 6≤ xα.

�

Recall that a poset 〈T,≤〉 is a pseudotree iff 〈{x},≤〉 is linearly-ordered
for all x ∈ T .

Corollary 4.2. A counter-example to the Milner-Sauer conjecture cannot
embed a pseudotree of the same cofinality.

Thus, if for a cardinal λ, we denote by Tλ the class of all λ-Aronszajn
trees, then ∀λ(λ > cf(λ) → MS(Tλ)) holds.

Recall that for a sequence 〈Aα | α < κ〉, and α < κ, we let Vα :=
⋃

β<α Aα

and V α :=
⋃

α≤γ<κ Aγ . In the following two theorems, we show that normal
sequences with untight mutual relations between their components can be
refined into sequences with no mutual relations at all.

Theorem 4.3 (Upward boundness properties). Assume 〈P,≤〉 is a poset,
and λ > cf(λ) = κ are cardinals. The following are equivalent :

(1) There exists P1 ∈ ESpecλ(P ) and an antichain sequence for P1 of
length κ and cofinality λ.

(2) There exists P2 ∈ ESpecλ(P ) and A = 〈Aα ∈ [P2]
<λ | α < κ〉 which

is a normal sequence, cfP (
⋃

α<κ Aα) = λ, and any of the following
conditions hold:

(2.1) sup{|V α ∩ Vα| | α < κ} < λ,

(2.2) sup{|V α ∩ {x}| | x ∈ Vα, α < κ} < λ, or

(2.3) sup{cfP (V α ∩ {x}) | x ∈ Vα, α < κ} < λ.

Proof. Obviously, (1 ⇒ 2.1 ⇒ 2.2 ⇒ 2.3) as V α ∩ Vα = ∅ for all α < κ,
whenever A is an antichain sequence. We show (2.3 ⇒ 1).

Set P ′ :=
⋃

{Aα | α < κ} and µ := sup{cfP (V α ∩ {x}) | x ∈ Vα, α < κ}.
Fix x ∈ P ′. Find α < κ such that x ∈ Aα. We have

cfP ({x} ∩ P ′) ≤ cfP ({x} ∩ Vα+1) + cfP ({x} ∩ V α+1)

≤ cfP (Vα+1) + µ < λ.



ASPECTS OF SINGULAR COFINALITY 201

The implication now follows from Theorem 3.9. �

Theorem 4.4 (Downward boundness properties). Assume 〈P,≤〉 is a poset,
and λ > cf(λ) = κ are cardinals. The following are equivalent :

(1) There exists P1 ∈ ESpecλ(P ) and an antichain sequence for P1 of
length κ and cofinality λ.

(2) There exists P2 ∈ ESpecλ(P ) and A = 〈Aα ∈ [P2]
<λ | α < κ〉 which

is a normal sequence, cfP (
⋃

α<κ Aα) = λ, and any of the following
conditions hold:

(2.1) sup{|Vα ∩ Aα| | α < κ} < λ,
(2.2) sup{|Vα ∩ {x}| | x ∈ Aα, α < κ} < λ, or

(2.3) sup{cfP (Vα ∩ Aα) | α < κ} < λ.

Proof. Evidently, (1 ⇒ 2.1 ⇒ 2.2) and (1 ⇒ 2.3). By Theorems 3.8 and
3.11, we have (2.2 ⇒ 1). We are left with showing (2.3 ⇒ 1).

Assume A = 〈Aα ∈ [P2]
<λ | α < κ〉 is the normal sequence given by the

hypothesis. Put µ := sup{cfP (Vα ∩ Aα) | α < κ} and λα := cfP (Aα) for all
α < κ. By Lemma 3.5 and µ, κ < λ, we may also assume that A is one-sided
and λ0 > µ + κ.

For each α < κ, let Xα ∈ [P ]≤µ be such that Vα ∩ Aα ⊆ Xα. Define
Cα :=

⋃

{Aα ∩ Xδ | α < δ < κ}, and Bα := Aα \ Cα.
To see that B = 〈Bα | α < κ〉 is an antichain sequence, let y ∈ Bβ, x ∈ Bα

for some β < α < κ. Since Vα ∩ {x} ⊆ Vα ∩ Aα ⊆ Xα and Bβ ∩ Xα = ∅,
it follows that y 6≤ x. Since A is a one-sided sequence, we also have x 6≤ y,
therefore x and y are incomparable. Finally, to evaluate the cofinality of B,
fix α < κ and observe that Aα = Bα ∪ Cα, cfP (Aα) = λα, while

cfP (Cα) ≤ cfP

(

⋃

{Xδ | α < δ < κ}
)

≤ µ · κ < λα.

Hence cf(Bα) = λα and λ = sup{λα | α < κ} ≤ cfP (
⋃

α<κ Bα) ≤ λ. �

Definition 4.5. Assume a poset 〈P,≤〉, P ′ ⊆ P , and I is an ideal over
P ′.We say that I is unbounded in P ′ iff there exists an increasing ⊆-chain
{Uα | α < µ} ⊆ I such that sup{cfP (Uα) | α < µ} = cfP (P ′).

Corollary 4.6. Assume 〈P,≤〉 is a poset, P ′ ∈ ESpecλ(P ) for some singu-
lar cardinal λ. Then, the ideal [P ′]<λ is unbounded in P ′.

Proof. We repeat the proof of Lemma 2.6.a. Put κ := cf(λ). Let P ′ =
⋃

α<κ Uα, where {Uα | α < κ} ⊆ [P ′]<λ is an increasing ⊆-chain. It

follows that λ = cfP (P ′) = cfP

(
⋃

α<κ Uα

)

≤
∑

α<κ cfP (Uα) and hence
sup{cfP (Uα) | α < κ} = λ. �

Definition 4.7. Assume 〈P,≤〉 is a poset, P ′ ⊆ P and cfP (P ′) = λ. Define
the ideal Jµ(P ′) := {Y ∈ [P ′]<λ | cf(Iµ(P ′) � Y,⊆) < λ}, where µ denotes a
cardinal and Iµ(P ′) � Y := {X ⊆ Y | cfP ′(X) < µ}.

For κ = cf(λ), it is not hard to see that assuming the SSH, the ideal
Jκ(P ′) is κ-complete. Consequently, in this case, Jκ(P ′) is unbounded in
P ′ iff sup{cfP (U) | U ∈ Jκ(P ′)} = λ.
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For notational simplicity, we shall further say that J (P ′) is unbounded
in P ′ to express: ∃µ < cfP (P ′) (Jµ(P ′) is unbounded in P ′).

Lemma 4.8. Assume 〈P,≤〉 is a poset, P ′ ∈ ESpecλ(P ) for a cardinal λ.
If λ is a singular strong limit cardinal, then J (P ′) is unbounded in P ′.

Proof. Since λ is a strong limit, cf(Iω(P ′) � Y,⊆) ≤ 2|Y | < λ for all Y ∈
[P ′]<λ. Thus, Jω(P ′) = [P ′]<λ and we may appeal to Corollary 4.6. �

The proof of the next theorem was inspired by a beautiful idea from [5].

Theorem 4.9 (Boundness by ideals). Assume 〈P,≤〉 is a poset and λ >
cf(λ) = κ are cardinals. The following are equivalent:

(a) There exists P ′ ∈ ESpecλ(P ) such that J (P ′) is unbounded in P ′.
(b) There exists P ′′ ∈ ESpecλ(P ) and A = 〈Aα ∈ [P ′′]<λ | α < κ〉 which

is an antichain sequence of length κ and cofinality λ.

Proof. To help the reader get used to the definition, we start with (b ⇒ a).
Assume A = 〈Aα ∈ [P ′′]<λ | α < κ〉 is like in (b). Put P ′ :=

⋃

α<κ Aα. To
see that J (P ′) is unbounded in P ′, it suffices to show that {Vα | α < κ} ⊆
Jω(P ′). Let α < κ, we need to verify that cf(Iω(P ′) � Vα,⊆) < λ.

Evidently, Iω(P ′) � Vα is generated by {X∩Vα | X ∈ [P ′]<ω}. By A being
an antichain sequence, it is actually generated by {X ∩ Vα | X ∈ [Vα]<ω}.
It follows that cf(Iω(P ′) � Vα,⊆) ≤ |[Vα]<ω| = |Vα| < λ.

(a ⇒ b) Assume P ′ is like in (a), θ < λ and {Uα | α < κ} ⊆ Jθ(P
′)

is a witness to the unboundedness property. We define by induction an
increasing function f : κ → κ and a normal sequence A = 〈Aα ⊆ Uf(α) |
α < κ〉 with property (2.3) of Theorem 4.4.
Induction base:

Let f(0) := min{γ < κ | cfP (Uγ) > κ} and A0 := Uf(0).
Induction hypothesis:

Assume f � α and 〈Aβ | β < α〉 have already been defined, such that
cfP (Vβ ∩ Aβ) < θ for all β < α.

Inductive step:

Put τα := supβ<α f(β) and µα := cf(Iθ(P
′) � Vα,⊆). By Vα ⊆ Uτα ∈

Jθ(P
′), we have Vα ∈ Jθ(P

′) and µα < λ.
Fix {Yi ∈ [P ′]<θ | i < µα} such that {Vα ∩ Yi | i < µα} is indeed cofinal in
Iθ(P

′) � Vα. Put f(α) := min{γ < κ | (|Uτα | + µα)+ < cfP (Uγ)}.
Now, for all i < µα, set Bi := {x ∈ Uf(α) | Vα ∩ {x} ⊆ Vα ∩ Yi}. Since

Uf(α) ⊆ P ′, we have Uf(α) =
⋃

{Bi | i < µα}. By cfP (Uf(α)) > (|Uτα |+µα)+,

there must exist some j < µ such that cfP (Bj) > |Uτα |
+. Set Aα := Bj .

Finally, since (Vα ∩ Aα) ⊆ Yj, we have cfP (Vα ∩ Aα) ≤ |Yj | < θ. �

We end with a corollary to [5] or to the preceding theorem.

Corollary 4.10. Suppose λ is a singular cardinal and MSλ fails. Then
there exists a poset 〈P,≤〉 of cofinality λ with no antichains of size cf(λ)
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and no chains of size λ. In fact, this 〈P,≤〉 satisfies

sup{|L| | L ⊆ P is linearly-ordered } < λ.

Proof. Let 〈Q,≤〉 witness ¬MSλ. Pick Q′ ∈ ESpecλ(Q). Put κ := cf(λ)
and take an increasing ⊆-chain of sets {Aα | α < κ} ⊆ [Q′]<λ such that
(
⋃

α<κ Aα

)

= Q′. By the preceding theorem, Jω(Q′) is not unbounded in
Q′, and hence there is some α < κ such that Aα 6∈ Jω(Q′). Fix such α.

Put P ′ := {Aα ∩ {x} | x ∈ Q′}. Since

cf
(

{X ⊆ Aα | cfQ′(X) < ω},⊆
)

= λ,

we have cf(P ′,⊆) = λ, so let us pick P ∈ ESpecλ(P ′). We claim that 〈P,⊆〉
works. Indeed, P cannot contain an antichain of size κ, since Q′ does not
contain one. Finally, 〈P,⊆〉 is well-founded, hence, for any linearly-ordered
L ⊆ P , we have |L| ≤ |

⋃

L|. It follows that

sup{|L| | L ⊆ P is linearly-ordered } ≤ |Aα| < λ.

�
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