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A CANONICAL PARTITION THEOREM FOR TREES

VOJKAN VUKSANOVIC

Abstract. We show that for every positive integer d, every downwards
closed subtree T of d

<N without terminal nodes and every finite weakly
embedded subtree A of T there is a finite list of equivalence relations
on Em

A(T ) with the property that for every other equivalence relation
E on Em

A(T ) there is a strongly embedded subtree S ⊆ T of height ω,
such that E � Em

A(S) is equal to one of the equivalence relations from
the list.

1. Introduction

Given a set X with some topology and/or structure one frequently needs
to understand which kind of equivalence relations one can have on X as
well as their behaviour on substructures that are similar to X in some way.
In the literature one can find several approaches in classifying equivalence
relations or the corresponding quotient structures. The approach we follow
has been started by Erdős and Rado [1] for the case when the set X is equal
to the symmetric cube

[N]n = {F ⊆ N : |F | = n}

of the set N of positive integers. Note the following family En
∆ (∆ ⊆

{1, ..., n}) of “canonical” equivalence relations one can define on [N]n:

{x1, ..., xn} En
∆ {y1, ..., yn} if and only if xi = yi for all i ∈ ∆,

where we assume that the n-element sets are listed in the increasing order.
What Erdös and Rado [1] prove is that En

∆ (∆ ⊆ {1, ..., n}) forms a basis
for the family of all equivalence relations on the symmetric cube [N]n in a
very precise sense: for every equivalence relation E on [N]n there exists an
infinite M ⊆ N and ∆ ⊆ {1, ..., n} such that

E � [M ]n = En
∆ � [M ]n.

They have concentrated on the classification of the equivalence relations
on [N]n rather than Nn because they considered their result as an extension
of the famous Ramsey’s theorem [4] which in this terminology simply asserts
that the full and empty equivalence relations on [N]n form a 2-element basis
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for the class of all equivalence relations on [N]n with finitely many classes.
However, it is not hard to see that one can actually obtain basis for the
class of all equivalence relations on Nn as well. In fact the existence of the
finite basis for equivalence relations on Nn can be easily deduced from the
Erdős-Rado result about Ek

∆ (∆ ⊆ {1, ..., k}, 1 ≤ k ≤ n).

In this paper we consider downwards closed subtrees T of d<N of height
ω without terminal nodes and prove a canonical partition result for the set
of all finite weakly embedded subtrees of T which have the same embedding
type (see Definition 2.3) as A where A is a given finite subtree of T closed
under the meet operation. This is an extension of the result of Milliken
(see [3]) about weakly embedded subtrees of rooted, finitely branching trees,
without terminal nodes and of height ω. We are using the same method as in
[6] (see also [7] and [5]). The author has learned that there is an unpublished
paper of Milliken ([2]), circulated in the 1980’s, about canonical partitions of
finite strongly embedded subtrees of regular trees. Although one can prove
the result about finite weakly embedded subtrees from it, in this paper we
give a direct proof for any finite weakly embedded subtree of a given regular
tree.

2. Preliminaries

A tree is any partially ordered set (T,≤) such that for any t ∈ T the
set {s ∈ T : s ≤ t} is well ordered by the induced order. Given a tree T

we say that S is a subtree of T if S ⊆ T . From now on we will suppose
that every tree has a root, i.e. we will suppose that every tree has a unique
minimal element. By Succ(t, T ) we will denote the set of all s ∈ T such
that t ≤ s. By Pred(t, T ) we will denote the set of all s ∈ T such that
s ≤ t and by IS(t, T ) we will denote the set of immediate successors of t

in T . We will also suppose that for a given tree T , for every t ∈ T , both
Pred(t, T ) and IS(t, T ) are finite. We say that a tree T is regular if there
is a positive integer d such that for all t ∈ T , |IS(t, T )| = d, and we call d

degree of T . By T (n) we will denote the n-th level of T i.e. the set of all
t ∈ T such that |{s ∈ T : s ≤ t, s 6= t}| = n. For a tree T , height(T ) will
denote sup{n + 1 : T (n) 6= ∅}. Given a tree T and nodes s and t in T by
s ∧ t we will denote the maximal node in T which is below both s and t. If
A ⊆ T , by ∧(A) we will denote the ∧ - closure of A, the smallest subset A′

of T containing A such that for all s, t ∈ A the node s ∧ t belongs to A′.

Definition 2.1. Suppose that S is a subtree of T . We say that S is strongly
embedded in T (see Figure 1 for the case T = 3<N) if:

(1) If s ∈ S(n) for some n < height(S) − 1 and t ∈ IS(s, T ), then
Succ(t, T ) ∩ IS(s, S) is a singleton,

(2) If height(T ) = ω and height(S) ≤ ω there is a strictly increasing
function f : height(S) → ω such that S(n) ⊆ T (f(n)) for each
n ∈ height(S).
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If in the previous definition we drop requirement 2), and instead of 1) we
have:

1′. If s is a nonmaximal element of S and t ∈ IS(s, T ), then Succ(t, T )∩
IS(s, S) is either a singleton or empty.

then we say that S is weakly embedded in T .
From now on by WEm<ω(T ) we denote the set of all finite weakly em-

bedded subtrees of T .
Note that a strongly embedded subtree S ′ of a strongly embedded subtree

S of T is strongly embedded in T , and a weakly embedded subtree A of a
strongly embedded subtree S of T is weakly embedded in T .

Lemma 2.2. Let d be a positive integer and let T be a strongly embedded
subtree of d<N. Then if height(T ) = n (height(T ) = ω) there is a unique
bijection h : d≤n−1 → T (resp. h : d<N → T ) such that:

(1) for every s, t ∈ d<N, s ⊆ t ⇔ h(s) ⊆ h(t),
(2) for every s, t ∈ d<N, |s| < |t| ⇔ |h(s)| < |h(t)| and
(3) for every s, t ∈ d<N, s <lex t ⇔ h(s) <lex h(t), where <lex denotes

the lexicographic ordering of d<N.

Proof. We will prove the lemma by induction on i < height(T ). In the case
height(T ) = 1 there is nothing to prove because T is a single node and
d0 = {∅}. So, suppose that the lemma is true for all strongly embedded
subtrees of height ≤ n and let T be a strongly embedded subtree of d<N

of height n + 1. Let T ′ = ∪n−1
i=0 T (i). Then T ′ is a strongly embedded

subtree of d<N of height n. By the inductive hypothesis there is a unique
bijection h′ : d≤n−1 → T ′ fulfilling the requirements 1-3 of the lemma.
Define h : d≤n → T as follows: put h � T ′ = h′ and for every t ∈ T (n)
if t is an i-extension of some t′ ∈ T (n − 1) for 0 ≤ i ≤ d − 1 then put
h(t) = h′(t′)ˆi. It is clear that h is a bijection between T and d≤n which
satisfies requirements 1-3 of the lemma. The uniqueness follows from the
uniqueness of the restriction h′ and the fact that any other bijection g which
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satisfies the requirements 1-3 of the lemma must also satisfy g(t) = h′(t′)ˆi
if t ∈ T (n) is an i-extension of some t′ ∈ T (n − 1).

If T is a strongly embedded subtree of d<N of height ω then for each
positive integer n, Tn = ∪n−1

i=0 T (i) is a strongly embedded subtree of d<N of
height n. So, for each positive integer n there is a bijection hn : d≤n−1 → Tn

satisfying requirements 1-3 of the lemma. By the first part of the proof for
every 1 ≤ m < n we have that hn � Tm = hm. Hence, h = ∪∞

n=1hn is
a bijection between T and d<N which satisfies the requirements 1-3 of the
lemma. The uniqueness of h follows from the fact that h � Tn is unique for
every positive integer n. This finishes the proof of the lemma.

�

We call h the standard tree isomorphism of T .
From now on by T we denote a downwards closed subtree of d<N of height

ω and without terminal nodes.

Definition 2.3. Given a strongly embedded subtree S of T and trees A

and B finite, weakly embedded in S, we say that A and B have the same
embedding type and we write A ∼Em B provided the following hold:

(1) There is a bijection f : A → B satisfying a ⊆ a′ if and only if
f(a) ⊆ f(a′),

(2) If a ∈ A ∩ T (n), a′ ∈ A ∩ T (n′), f(a) ∈ B ∩ T (m), and f(a′) ∈
B ∩ T (m′) then n < n′ if and only if m < m′ and

(3) Let a, a′ ∈ A be such that |a| < |a′|. Then we require that a′(|a|) = i

if and only if f(a′)(|f(a)|) = i where 0 ≤ i ≤ d − 1.

We write EmA(T ) for the collection of all weakly embedded subtrees B of T

with A ∼Em B.

Note that the above definition is not the same as the original definition
of Milliken given in [3]. Milliken required the immediate successors of each
node in the finitely branching tree T be linearly ordered by some ≺. In
other words, for each t ∈ T , IS(t, T ) can be enumerated as

IS(t, T ) = {is(t, T )(j) : j ∈ |IS(t, T )|}

so that

is(t, T )(i) ≺ is(t, T )(j) ⇔ i ∈ j ∈ |IS(t, T )|.

The third condition of Milliken’s definition asserts that given a ∈ A on level
n and a′ on a higher level, with f(a) ∈ B on level m and f(a′) ∈ B on a
higher level, if b is the element of level n + 1 which is below a′ in the tree
and b′ is the element of level m + 1 which is below f(a′) in the tree order,
then the equivalence b = is(a, T )(i) if and only if b′ = is(f(a), T )(i). In the
case of downwards closed subtrees of d<N of height ω and without terminal
nodes we naturally take the lexicographic ordering to be the linear order ≺.
Then it is easy to see that Definition 2.3 is equivalent to the original one
when working with the strongly embedded subtrees of d<N.
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Lemma 2.4. There are 1 + d + (1 + 2d)
(

d
2

)

different embedding types which

appear as the meet closure of a pair in d<N.

Proof. Figure 2 illustrates the case d = 3. There is one embedding type for
degenerate pairs consisting of a single point. There are d embedding types
for pairs {s, t} with s ( t. There are

(

d
2

)

embedding types for incomparable

pairs {s, t} with |s| = |t|. Finally there are 2d
(

d
2

)

embedding types for
incomparable pairs {s, t} with s <lex t and either |s| < |t| or |s| > |t|. �
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Lemma 2.5. Let S be a strongly embedded subtree of T and let A,B ∈
WEm<ω(S) be such that A ∼Em B. Then there is only one bijection f

between A and B witnessing A ∼Em B.

Proof. Use induction on the number of elements of A. �

Lemma 2.6. Let T be a strongly embedded subtree of d<N and let ΦT be the
standard tree isomorphism of T . For every weakly embedded subtree S of T ,
we have Φ−1

T
′′S ∼Em S. Moreover, among the subtrees of d≤n−1, there are

realizations of all embedding types of weakly embedded subtrees of d<N which
have at most n elements.

Proof. Use the definitions of embedding type and tree isomorphism to prove
that Φ−1

T
′′S ∼Em S.

Given a weakly embedded subtree S of T with m ≤ n nodes, build a
strongly embedded subtree U of T such that S ⊆ U and {m : S ∩ T (m) 6=
∅} = {m : U ∩ T (m) 6= ∅}, and observe that height(U) ≤ m ≤ n. Let
ΦU be the standard tree isomorphism of U . Then Φ−1

U
′′S is a subtree of

d≤m−1 ⊆ d≤n−1 of the same embedding type as S. �
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The following theorem, which is due to Milliken [3], is crucial for our
proof.

Theorem 2.7. Let S be a strongly embedded subtree of T of height ω, A ∈
WEm<ω(S) and EmA(S) =

⋃

i∈r Ci for some positive integer r. Then
there is a strongly embedded subtree U of S of height ω and k ∈ r such that
EmA(U) ⊆ Ck.

3. Transitive Sets

From now on let F be a fixed weakly embedded subtree of a given tree
T . we shall proceed now as we did in [6], [7] and [5].

Definition 3.1. Let A,B,C,D ∈ EmF (T ). Then we write A : B = C : D if
there is a bijection f : ∧(A∪B) → ∧(C ∪D) which preserves the embedding
type such that f ′′A = C and f ′′B = D.

From now on, whenever we write A : B = C : D the requirements men-
tioned in the first sentence of Definition 3.1 are to be understood.

Definition 3.2. Let A,B,C,D ∈ EmF (T ). Define A : B ' C : D if and
only if A : B = C : D or A : B = D : C.

Lemma 3.3. For each finite weakly embedded subtree F of T there is a
finite set ΛF ⊆ EmF (T )×EmF (T ) such that for every (A,B) ∈ EmF (T )×
EmF (T ) there is a pair (C,D) ∈ ΛF such that

A : B ' C : D.

Proof. The proof follows immediately from Definition 3.1 and from the fact
there are just finitely many embedding types which appear as the ∧-closure
of the union of two finite subtrees of T which have the same embedding
type as F . Indeed, given A,B ∈ EmF (T ) we have n ≤ |A ∪ B| ≤ 2n,
where |F | = n. By Lemma 2.6 all embedding types of the weakly embedded
subtrees of T which have ≤ 2n elements can be realized in d≤4n−2. �

Let, from now on, ΛF ⊆ EmF (T )×EmF (T ) be a fixed minimal set as in
the previous lemma.

Definition 3.4. Let S be a strongly embedded subtree of T of height ω and
let F ∈ WEm<ω(S). We say that T ⊆ ΛF is transitive for S if

(1) It contains a pair (A,A) where A ∈ EmF (S) and
(2) For every (A1, B1), (A2, B2) ∈ T there is a pair (A3, B3) ∈ T such

that if C,D,E ∈ EmF (S) and C : D ' A1 : B1 and D : E ' A2 : B2

then C : E ' A3 : B3.

Let S be a strongly embedded subtree of T of height ω, let F ∈ WEm<ω(S)
and let T ⊆ ΛF be transitive for S. Given A,B ∈ EmF (S) set:

A ET B if and only if A : B ' C : D for some (C,D) ∈ T .
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Lemma 3.5. ET is an equivalence relation on EmF (S). Also, different
transitive sets for S define different equivalence relations.

Proof. 1. Reflexivity and symmetry of ET follow immediately from the
definition of ET .

2. To prove transitivity, suppose A ET B and B ET C. If A = B or
B = C then A ET C, so suppose that A 6= B 6= C. Then there are (A1, B1)
and (A2, B2) in T such that A1 : B1 ' A : B and A2 : B2 ' B : C. By
Definition 3.3 there is a pair (A3, B3) ∈ T such that A : C ' A3 : B3. This
implies A ET C. Hence, ET is transitive.

To finish the proof of the lemma, suppose that T ′, T ′′ are two different
transitive sets for S. Then either there is a pair (A′, B′) ∈ T ′ \ T ′′ or there
is a pair (A′′, B′′) ∈ T ′′ \ T ′. The assertion of the theorem now follows
immediately from the definition of ET ′ and ET ′′ . �

Given a strongly embedded subtree S of T of height ω, F ∈ WEm<ω(S)
and a transitive set T ⊆ ΛF , from now on we will denote by ET the relation
on EmF (S) which corresponds to T . We call these equivalence relations
ET , canonical relations. We will prove now that the name canonical is
appropriate.

Theorem 3.6. Let S be a strongly embedded subtree of T of height ω and
F ∈ WEm<ω(S). Then for every equivalence relation E on EmF (S) there
is a strongly embedded subtree U of S of height ω and there is T ⊆ ΛF

transitive for U such that for every A,B ∈ EmF (U), we have

A E B ⇔ A ET B.

Proof. Without loss of generality we may assume that S has the prop-
erty that every strongly embedded subtree of S of height ω realizes the
F -embedding type. Otherwise, choose a strongly embedded subtree U of S

of height ω which does not realize the F -embedding type. Then U trivially
satisfies the theorem. Let {(A1, B1), ..., (Al, Bl)} ⊆ ΛF be a minimal set
such that for every C,D ∈ EmF (S) there is a pair (Ai, Bi) from the list
such that Ai : Bi ' C : D. By induction on 1 ≤ i ≤ l, we will find a
decreasing sequence {Ti : 1 ≤ i ≤ l} of strongly embedded subtrees of S of
height ω such that for every 1 ≤ i ≤ l the following holds:

?(i) : for every 1 ≤ j ≤ i we have either C E D for every
C,D ∈ EmF (Ti) such that C : D ' Aj : Bj or C 6E D for
every C,D ∈ EmF (Ti) such that C : D ' Aj : Bj .

The initial step i = 1: Define

g1 : Em∧(A1∪B1)(S) → {0, 1}

by g(H) = 1 if and only if C E D where H ∈ Em∧(A1∪B1)(S) and C and
D are unique n-element subsets of H such that A1 : B1 = C : D. By
Theorem 2.7 there is a strongly embedded subtree T1 of S of height ω such
that g1 is monochromatic on Em∧(A1∪B1)(T1). This means that we have
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either C E D for every C,D ∈ EmF (T1) such that C : D ' A1 : B1 or C 6E
D for every C,D ∈ EmF (T1) such that C : D ' A1 : B1. This finishes the
proof of the initial step i = 1.

The induction step for i with 1 < i < l: Suppose that we have defined a
sequence {Tj : 1 ≤ j ≤ i} for 1 ≤ i < l which satisfies ?(i). Define

gi+1 : Em∧(Ai+1∪Bi+1)(Ti) → {0, 1}

with gi+1(H) = 1 if and only if C E D where F ∈ Em∧(Ai+1∪Bi+1)(Ti) and
C and D are unique n-element subsets of H such that Ai+1 : Bi+1 = C : D.
By Theorem 2.7 there is a strongly embedded subtree Ti+1 of Ti of height ω

such that gi+1 is monochromatic on Em∧(Ai+1∪Bi+1)(Ti+1). Therefore, either
C E D for every C,D ∈ EmF (Ti+1) such that C : D ' Ai+1 : Bi+1 or C 6E
D for every C,D ∈ EmF (Ti+1) such that C : D ' Ai+1 : Bi+1. Since Ti+1

is a strongly embedded subtree of Ti of height ω, it is strongly embedded in
S and also of height ω. By the inductive hypothesis for every 1 ≤ j ≤ i we
have either C E D for every C,D ∈ EmF (Ti+1) such that C : D ' Aj : Bj

or C 6E D for every C,D ∈ EmF (Ti+1) such that C : D ' Aj : Bj . Hence
Ti+1 satisfies ?(i + 1).

Let U = Tl and T = {(A,B) ∈ ΛF : there is C,D ∈ EmF (U) such that
A : B ' C : D and C E D}.

Let us check that T is as claimed in the theorem. First, let us prove
that T is transitive for U . It is obvious that T contains a pair (A,A)
such that A ∈ EmF (U). Let (A1, B1), (A2, B2) ∈ T be arbitrary and let
C,D,E ∈ EmF (U) be such that C : D ' A1 : B1 and D : E ' A2 : B2. By
the definition of the set T we must have C E D and D E E. Hence C E E.
Let (A3, B3) ∈ ΛF be such that A3 : B3 ' C : E. Hence, T is transitive.

Let A,B ∈ EmF (U). Suppose that A ET B. Then, there is a pair
(C,D) ∈ T such that A : B ' C : D. Then by the definition of the set T
there are A′, B′ ∈ EmF (U) such that C : D ' A′ : B′ and A′ E B′. But, by
the construction of the subtree U we must have A E B. This finishes the
proof of the theorem. �

As in the case of rationals (see [7]) and random graphs (see [5]) there is a
more “canonical” way to describe transitive sets. Before we state the result
we need the following definitions.

Definition 3.7. Let F ∈ WEm<ω(T ). By F ∗ we denote the set of all t ∈ T

such that there is a positive integer n and there are s, u ∈ F with t, u ∈ T (n)
and t ⊆ s.

Lemma 3.8. Let A,B ∈ WEm<ω(T ) be such that A ' B. Then A∗ ' B∗.
Moreover, if f : A∗ → B∗ is a bijection witnessing A∗ ' B∗, then f � A is
a bijection from A onto B witnessing A ' B.

Proof. The proof follows immediately from the definition of embedding type.
�
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Given F ∈ WEm<ω(T ), by (N,L) we denote an arbitrary pair such that
N ⊆ F ∗, L ⊆ {0, 1, ..., height(F ∗) − 1}, N = ∧(N), and if n < height(F ∗)
is a maximal integer such that there is a node t ∈ N with t ∈ F ∗(n) then
n < min(L). We call the pair (N,L), a node-level pair of F .

Definition 3.9. Let F ∈ WEm<ω(T ), let (N,L) be a node-level pair of
F and let A,B ∈ EmF (T ). We write A � (N,L) = B � (N,L) providing
the following holds: if f : F ∗ → A∗ and g : F ∗ → B∗ are the bijections
witnessing F ∗ ∼Em A∗ and F ∗ ∼Em B∗ then:

f(t) = g(t) for every t ∈ N , and for every n ∈ L, if A∗(n) ⊆
T (n′) and B∗(n) ⊆ T (n′′), then n′ = n′′.

Remark 3.10. Note that if S ⊆ T is a finite strongly embedded subtree
of T then S∗ = S. Moreover, if (N,L) is a node-level pair for S and if
U, V ∈ EmS(T ) then U � (N,L) = V � (N,L) means simply that the
corresponding nodes of U and V are equal and U(i) and V (i) lie on the
same level of T for every i ∈ L.

From now on let T be a regular tree of degree d. Very often in the proof
that follows we will use the procedure of stretching the subtree. By this
we mean the following: Let n, k be positive integers, let F = {f1, ..., fn} ∈
WEm<ω(T ) and let fi ∈ F be fixed. One can easily construct a subtree H =
{h1, ..., hn, h1

i , ..., h
k
i } of T such that H ′ ∼Em F , where H ′ = {h1, ..., hn},

and (H ′\{hi})∪{hj
i } ∼Em F for each 1 ≤ j ≤ k. We also need the following

definition.

Definition 3.11. Let T ⊆ ΛF be a transitive set. We say that a node-level
pair (N,L) of F is maximal for T if (N, ∅) is maximal such that for all
(A,B) ∈ T , A � (N, ∅) = B � (N, ∅) and having defined such an N , L is
maximal among subsets for which (N,L) is a node-level pair of F and for
all (A,B) ∈ T , A � (N,L) = B � (N,L).

Then we have the following theorem.

Theorem 3.12. Let F ∈ WEm<ω(T ), let T ⊆ ΛF be a transitive set for T

and let a node-level pair (N,L) of F be maximal for T . Then

T = {(A,B) ∈ ΛF : A � (N,L) = B � (N,L)}.

Proof. We will prove the theorem by induction on the number of elements
of F ∗. From now on by n we denote the number of elements of F ∗.

The initial step n = 1: Let F = {∅} and let ΛF be a minimal set as
in Lemma 3.3. By replacing (A,B) by (B,A) if necessary, we may assume
without loss of generality that for all (A,B) = ({a}, {b}) ∈ ΛF with a 6= b

one of the following conditions holds: a ⊆ b or (a and b are incomparable
and a <lex b). Since T is transitive, ({∅}, {∅}) is in T . We can now describe
the possibilities for T .

Claim 3.12.a. The set T is one of the following:
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(1) T = {({∅}, {∅})};
(2) T = {({p}, {q}) ∈ ΛF : |p| = |q|}; or
(3) T = ΛF .

Proof of Claim. The proof proceeds by a case analysis.
Case 1: |T | = 1:

Then T = {({∅}, {∅})}.

Case 2: |T | > 1 and for all ({p}, {q}) ∈ T , |p| = |q|:
Let (A,B) = ({a}, {b}) ∈ T \ {({∅}, {∅})} be arbitrary. Then |a| = |b|
and by our assumption on ΛF , a <lex b. Let 0 ≤ i < j ≤ d − 1 be such
that (a ∧ b)ˆi ⊆ a and (a ∧ b)ˆj ⊆ b. Then the embedding type of the
meet closure of {a, b} is sketched in Figure 3.
Suppose (P,Q) = ({p}, {q}) ∈ ΛF is such that |p| = |q|. Then by our
assumption about ΛF , p <lex q. Let 0 ≤ i′ < j′ ≤ d − 1 be such that
(p ∧ q)ˆi′ ⊆ p and (p ∧ q)ˆj ′ ⊆ q.
Since T is a regular tree, it follows from Lemma 2.6 that S has subtrees
of every finite weak embedding type. Thus there are c, e, f ∈ T such that
the meet closure of {c, e, f} is a subtree of T with the weak embedding
type of the tree sketched in Figure 3 whose leaf nodes are labeled with
C = {c}, E = {e} and F = {f}.
Since C : E ' A : B, E : F ' A : B and C : F ' P : Q, by the
transitivity of T , it follows that (P,Q) ∈ T . Since (P,Q) was arbitrary,
it follows that T = {({p}, {q}) ∈ ΛF : |p| = |q|}.

A

i’ j’

i i jj

E FB C

Figure 3

Case 3: There is (A,B) = ({a}, {b}) ∈ T with a ( b or b ( a:
By our assumption about ΛF we know that a ( b. Let 0 ≤ i ≤ d − 1 be
such that aˆi ⊆ b.
We shall show that in this case, T = ΛF . Suppose (P,Q) = ({p}, {q})
is an arbitrary element of ΛF \ {({∅}, {∅})}. If p ( q, let j be such that
pˆj ⊆ q. If p and q are incomparable, then let 0 ≤ j < k ≤ d − 1 be
such that (p∧ q)ˆj ⊆ p and (p∧ q)ˆk ⊆ q. If |p| < |q|, then let l = q(|p|).
The weak embedding type of the meet closure of {p, q} is determined by
these parameters.
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As noted in the previous case, T realizes every finite weak embedding
type. First suppose p ( q. Then there are c, e, f ∈ T such that the meet
closure of {c, e, f} is a subtree of T with the weak embedding type of
the leftmost tree sketched in Figure 4 whose leaf nodes are labeled with
C = {c}, E = {e} and F = {f} and C : F ' P : Q. Since C : D ' A : B

and D : E ' A : B, by the transitivity of T , it follows that (P,Q) ∈ T .
Next suppose that p 6⊆ q. Then for one of the other trees sketched in
Figure 4, the embedding type of the meet closure of the pair of nodes la-
beled by C and F is the same as the embedding type of the meet closure
of the pair p, q. Thus there are c, e, f ∈ T such that the meet closure
of {c, e, f} is a subtree of S with the weak embedding type sketched in
Figure 4 with root node labeled E = {e}, leaf nodes labeled C = {c}
and F = {f} such that C : F ' P : Q. Since C : E ' A : B and
E : F ' A : B, by the transitivity of T , it follows that (P,Q) ∈ T .
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F j k
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E
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j k
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j k

E

C F
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Case 4: There is (A,B) = ({a}, {b}) ∈ T with |a| 6= |b|:
We may assume that a and b are incomparable. Otherwise we can pro-
ceed as in the previous case.
Let 0 ≤ i < j ≤ d − 1 be such that (a ∧ b)ˆi ⊆ a and (a ∧ b)ˆj ⊆ b. By
our assumption on ΛF . Suppose first that |a| < |b| and let k = b(|a|).

i j

F
E

l

k

C

l

k

C

i j

F
E

Figure 5
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Let (P,Q) = ({p}, {q}) ∈ ΛF \ {({∅}, {∅})} be such that p ( q and
q(|p|) = l. By our assumption on ΛF such a (P,Q) must exist. Then
there are c, e, f ∈ T such that the meet closure of {c, e, f} is a subtree of
T with f ( c, c(|f |) = l, |e| < |c|, f(|e|) = c(|e|) = k, e(|e ∧ f |) = i and
f(|e∧f |) = j. Set C = {c}, E = {e} and F = {f}. Then C : F ' P : Q.
Since C : E ' A : B and E : F ' A : B, it follows that (P,Q) ∈ T .
Thus by Case 3, T = ΛF . Similarly one treats the case |b| < |a|. The
cases for |a| < |b| and |b| < |a| are illustrated in Figure 5.

To complete the proof, we check that one of the above cases must hold.
If T is not a singleton, then it must contain some (A,B) = ({a}, {b}) with
a 6= b. If a ( b or b ( a, we are done by Case 3. If |a| 6= |b|, then we are done
by Case 4. Otherwise, for all (P,Q) = ({p}, {q}) ∈ T , we have |p| = |q|, and
Case 2 applies. �

Now we prove the initial step n = 1 from the claim. If T = {({∅}, {∅})},
then T = {(A,B) ∈ ΛF : A � ({∅}, ∅) = B � ({∅}, ∅)}. If T = {({p}, {q}) ∈
ΛF : |p| = |q|}, then T = {(A,B) ∈ ΛF : A � (∅, {0}) = B � (∅, {0})}. If
T = ΛF , then T = {(A,B) ∈ ΛF : A � (∅, ∅) = B � (∅, ∅)}. This finishes the
proof of the initial step |F ∗| = 1.

The induction step at n > 1: Suppose now that the claim is true for all
F ∈ WEm<ω(T ) with 1 ≤ |F ∗| < n and let F ∈ WEm<ω(T ) be such that
|F ∗| = n. Let g = height(F ∗). Note that g > 1. Let T ⊆ ΛF be transitive
for F , let (N,L) be a maximal node-level pair for all T and let (C,D) ∈ ΛF

be such that C � (N,L) = D � (N,L). Let ΛF ′ be a fixed minimal saturated
set for F ′ = F ∗ \ {f} where f ∈ F is the right-most element of the top-level
of F ∗ and let

T ′ = {(K,M) ∈ ΛF ′ : there is (A,B) ∈ T such that A∗\{a} :
B∗ \{b} ' K : M , where a and b are the right-most elements
of the top-levels of A∗ and B∗ respectively }.

Claim 3.12.b. T ′ is a transitive set.

Proof of Claim. Let (A′
1, B1), (A

′
2, B

′
2) ∈ T ′ and let C ′, D′, E′ ∈ EmF ′

(T ) be
such that C ′ : D′ ' A′

1 : B′
1 and D′ : E′ ' A′

2 : B′
2. By the definition of the

set T ′ there are (A1, B1), (A2, B2) ∈ T such that A∗
1 \{a1} : B∗

1 \{b1} ' A′
1 :

B′
1 and A∗

2 \{a2} : B∗
2 \{b2} ' A′

2 : B′
2, where a1, a2, b1 and b2 are the right-

most elements of the top-levels of A∗
1, A∗

2, B∗
1 and B∗

2 respectively. Without
loss of generality we may assume that C ′ : D′ = A′

1 : B′
1, D′ : E′ = A′

2 : B′
2,

A∗
1\{a1} : B∗

1 \{b1} = A′
1 : B′

1 and A∗
2\{a2} : B∗

2 \{b2} = A′
2 : B′

2. Note that
this means that the only difference between B1 and A2 can be the position
of the right-most nodes b1 and a2 or the position of their meet. We will
prove now that there is a pair (K,M) ∈ T such that K : M ' B1 : A2.
Note that this will finish the proof of Claim 3.12.b. Suppose that there is a
pair (K,M) ∈ T such that K : M ' B1 : A2. Then by the transitivity of
T we have that there is a pair (A3, B3) ∈ T such that A1 : B2 ' A3 : B3.
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This implies that C ′ : E′ ' A′
3 : B′

3, where (A′
3, B

′
3) ∈ ΛF ′ is such that

A∗
3 \ {a3} : B∗

3 \ {b3} ' A′
3 : B′

3 and a3 and b3 are the right-most elements
of the top-levels of A∗

3 and B∗
3 respectively. The proof follows by a case

analysis.
Case 1: f ∈ N :

Then there is nothing to prove since K = M = B1 = A2.
Case 2: f 6∈ N :

Then either g − 1 ∈ L or g − 1 6∈ L.
Case 2.1: g − 1 ∈ L:

Note that in this case we must have |a2| = |b1|. Since f 6∈ N and the
node-level pair (N,L) is maximal such that A � (N,L) = B � (N,L)
for all (A,B) ∈ T there is a pair (P,Q) ∈ T such that p 6= q where
p and q are the right-most elements of the top-levels of P ∗ and Q∗

respectively. Note that we must have |p| = |q| since g − 1 ∈ L.
Assume first that p <lex q. Let p′ ∈ P ∗(g − 2) and q′ ∈ Q∗(g − 2) be
such that p′ ⊆ p and q′ ⊆ q. Then either p′ and q′ are comparable or
they are not comparable.
Case 2.1.1: p′ and q′ are comparable:

Then either |p′| < |q′| or |p′| = |q′| or |p′| > |q′|.
Case 2.1.1.1: |p′| < |q′|:

Then either |p ∧ q| < |q′| or |p ∧ q| ≥ |q′|.
Case 2.1.1.1.1: |p ∧ q| < |q′|:

Stretching the subtree (P ∪Q)∗ we can find a node q1 (see
Figure 6) such that P : Q ' P : (Q \ {q}) ∪ {q1} and
Q : (Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we
have that (K,M) ∈ T .

p’

q

q’

pQ*(g−1)P*(g−1) q1

Figure 6

Case 2.1.1.1.2: |p ∧ q| ≥ |q′|:
Stretching the subtree (P ∪Q)∗ we can find a node q1 (see
Figure 7) such that P : Q ' P : (Q \ {q}) ∪ {q1} and
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Q : (Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we
have that (K,M) ∈ T .

p’

q

q’

p
P*(g−1) Q*(g−1)

q1

Figure 7

Case 2.1.1.2: |p′| = |q′|:
Stretching the subtree (P ∪ Q)∗ we can find a node q1 (see
Figure 8) such that P : Q ' P : (Q \ {q}) ∪ {q1} and Q :
(Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we have
that (K,M) ∈ T .

q’=p’

qpQ*(g−1)P*(g−1) q1

Figure 8

Case 2.1.1.3: |p′| > |q′|:
Similar to Case 2.1.1.1.

Case 2.1.2: p′ and q′ are not comparable:
Then either p′ <lex q′ or q′ <lex p′.
Case 2.1.2.1: p′ <lex q′:
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Then either |p′| < |q′| or |p′| = |q′| or |p′| > |q′|.
Case 2.1.2.1.1: |p′| < |q′|:

Stretching the subtree (P ∪Q)∗ we can find a node q1 (see
Figure 9) such that P : Q ' P : (Q \ {q}) ∪ {q1} and
Q : (Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we
have that (K,M) ∈ T .

q
p

q’

P*(g−1) Q*(g−1)

p’

q1

Figure 9

Case 2.1.2.1.2: |p′| = |q′|:
Stretching the subtree (P ∪Q)∗ we can find a node q1 (see
Figure 10) such that P : Q ' P : (Q \ {q}) ∪ {q1} and
Q : (Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we
have that (K,M) ∈ T .

q1 q
p

p’
q’

P*(g−1) Q*(g−1)

Figure 10

Case 2.1.2.1.3: |p′| > |q′|:
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Stretching the subtree (P ∪Q)∗ we can find a node q1 (see
Figure 11) such that P : Q ' P : (Q \ {q}) ∪ {q1} and
Q : (Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we
have that (K,M) ∈ T .

q
p

q’

P*(g−1) Q*(g−1)

p’

q1

Figure 11

Let us recall that we have started the proof of Case 2.1 with the
assumption that p <lex q. It should be clear that the same proof
works in the case q <lex p with p instead of q.

Case 2.2: g − 1 6∈ L:
Note that in this case the length of a2 and b1 can be different. Since
g − 1 6∈ N and the node-level pair (N,L) is maximal such that A �

(N,L) = B � (N,L) for all (A,B) ∈ T there is a pair (P,Q) ∈ T such
that |p| 6= |q| where p and q are the right-most elements of the top-
levels of P ∗ and Q∗ respectively. Assume first that |p| < |q|. Then
either |F ∗(g − 1)| = 1 or |F ∗(g − 1)| > 1.
Case 2.2.1: |F ∗(g − 1)| = 1:

Let p′ ∈ P ∗(g − 2) and q′ ∈ Q∗(g − 2) be such that p′ ⊆ p and
q′ ⊆ q. Then either p′ and q′ are comparable or they are not
comparable.
Case 2.2.1.1: p′ and q′ are comparable:

Then either |p′| < |q′| or |p′| = |q′| or |p′| > |q′|.
Case 2.2.1.1.1: |p′| < |q′|:

Then either p and q are comparable or they are not com-
parable.
Case 2.2.1.1.1.1: p and q are comparable:

Assume first that |q′| < |p|. Stretching the subtree
(P ∪Q)∗ we can find nodes q1, q2, q3 and q4 (see Figure
12) such that P : Q ' P : (Q \ {q}) ∪ {qi} for every
1 ≤ i ≤ 4 and Q : (Q \ {q}) ∪ {qi} ' K : M for some
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i, 1 ≤ i ≤ 4. By the transitivity of T we have that
(K,M) ∈ T .

3q

p’

p
q’

q q
1

2

q
q4

Figure 12

It should be clear that the same proof works in the case
|q′| ≥ |p|.

Case 2.2.1.1.1.2: p and q are not comparable:
Assume first that |q′| < |p∧ q| and p <lex q. Stretching
the subtree (P ∪Q)∗ we can find nodes q1, q2, q3 and q4

(see Figure 13) such that P : Q ' P : (Q \ {q}) ∪ {qi}
for every 1 ≤ i ≤ 4 and Q : (Q \ {q}) ∪ {qi} ' K : M

for some i, 1 ≤ i ≤ 4. By the transitivity of T we have
that (K,M) ∈ T .
It should be clear that the same proof works in the case
|q′| ≥ |p ∧ q| or q <lex p.

Case 2.2.1.1.2: |p′| = |q′|:
Similar to Case 2.2.1.1.1.

Case 2.2.1.1.3: |p′| > |q′|:
Similar to Case 2.2.1.1.1.

Case 2.2.1.2: p′ and q′ are not comparable:
Then either |p′| < |q′| or |p′| = |q′| or |p′| > |q′|.
Case 2.2.1.2.1: |p′| < |q′|:

Assume first that |q′| < |p| and p′ <lex q′. Stretching the
subtree (P ∪ Q)∗ we can find nodes q1, q2, q3 and q4 (see
Figure 14) such that P : Q ' P : (Q \ {q}) ∪ {qi} for
every 1 ≤ i ≤ 4 and Q : (Q \ {q}) ∪ {qi} ' K : M for
some i, 1 ≤ i ≤ 4. By the transitivity of T we have that
(K,M) ∈ T .
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It should be clear that the same proof works in the case
|q′| ≥ |p| or q <lex p.

Case 2.2.1.2.2: |p′| = |q′|:
Similar to case 2.2.1.2.1.

Case 2.2.1.2.3: |p′| = |q′|:
Similar to case 2.2.1.2.1

Case 2.2.2: |F ∗(g − 1)| > 1:
Let p′ ∈ P ∗(g − 2) and q′ ∈ Q∗(g − 2) be such that p′ ⊆ p and
q′ ⊆ q. Then either p′ and q′ are comparable or they are not
comparable.
Case 2.2.2.1: p′ and q′ are comparable:
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Then either |p′| < |q′| or |p′| = |q′| or |p′| > |q′|.
Case 2.2.2.1.1: |p′| < |q′|:

Then either p and q are comparable or they are not com-
parable.
Case 2.2.2.1.1.1: p and q are comparable:

Assume first that |p| < |q′|. Stretching the subtree
(P ∪ Q)∗ we can find a node q1 (see Figure 15) such
that P : Q ' P : (Q \ {q}) ∪ {q1} and Q : (Q \ {q}) ∪
{q1} ' K : M . By the transitivity of T we have that
(K,M) ∈ T .

q

q’

p
p’

q1

Figure 15

It should be clear that the same proof works in the case
|p| ≥ |q′|.

Case 2.2.2.1.1.2: p and q are not comparable:
Assume first that |q′| < |p∧ q| and p <lex q. Stretching
the subtree (P ∪Q)∗ we can find a node q1 (see Figure
16) such that P : Q ' P : (Q \ {q}) ∪ {q1} and Q :
(Q \ {q}) ∪ {q1} ' K : M . By the transitivity of T we
have that (K,M) ∈ T .
It should be clear that the same proof works in the case
|q′| ≥ |p ∧ q| or q <lex p.

Case 2.2.2.1.2: |p′| = |q′|:
Similar to Case 2.2.2.1.1.

Case 2.2.2.1.3: |p′| > |q′|:
Similar to Case 2.2.2.1.1.

Case 2.2.2.2: p′ and q′ are not comparable:
Then either |p′| < |q′| or |p′| = |q′| or |p′| > |q′|.
Case 2.2.2.2.1: |p′| < |q′|:

Assume first that |p| < |q′| and p′ <lex q′. Stretching the
subtree (P ∪Q)∗ we can find a node q1 (see Figure 17) such
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q

q’

p’

p

q1

Figure 16

that P : Q ' P : (Q\{q})∪{q1} and Q : (Q\{q})∪{q1} '
K : M . By the transitivity of T we have that (K,M) ∈ T .

q

q’

p

p’

q1

Figure 17

It should be clear that the same proof works in the case
|p| ≥ |q′| or q <lex p.

Case 2.2.2.2.2: |p′| = |q′|:
Similar to case 2.2.2.2.1.

Case 2.2.2.2.3: |p′| = |q′|:
Similar to case 2.2.2.2.1.

Let us recall that we have started the proof of Case 2.2 with the
assumption that |p| < |q|. It should be clear that the same proof
works in the case |q| < |p| with p instead of q.

�
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Define a node-level pair (N ′, L′) of F ′ as follows: set N ′ = N \ {f}, and
let L′ = L \ {g − 1} if |F ∗(g − 1)| = 1, where height(F ∗) = g and L′ = L

otherwise. Note that the node-level pair (N ′, L′) is a maximal node-level
pair for T ′. Let (C ′, D′) ∈ ΛF ′ be such that C ′ : D′ = C∗ \ {c} : D∗ \ {d},
where c and d are the right-most elements of the top-levels of C ∗ and D∗

respectively. By the inductive hypothesis applied to F ′ and T ′, (C ′, D′) ∈
T ′. Let (K,M) ∈ T be such that K∗ \ {k} : M ∗ \ {m} = C ′ : D′ =
C∗ \ {c} : D∗ \ {d}, where k and m are the right-most elements of the top-
levels of K∗ and M∗ respectively. We will prove now that there are pairs
(A1, B1), (A2, B2) ∈ T such that A1 : B1 ' K : C and A2 : B2 ' M : D.
Note that this will finish the proof of the theorem since by the transitivity
of T applied twice we have that (C,D) ∈ T .

Claim 3.12.c. There are pairs (A1, B1), (A2, B2) ∈ T such that A1 : B1 '
K : C and A2 : B2 ' M : D.

Proof of Claim 3.12.c. The proof proceeds by the same case analysis as in
Claim 3.12.b. �

�

By Theorem 3.12 and Theorem 3.6 we get the following result (see also
[2]).

Theorem 3.13. Let S be a strongly embedded subtree of T of height ω and
F ∈ WEm<ω(S). Then for every equivalence relation E on EmF (S) there
is a strongly embedded subtree U of S of height ω and there is a node-level
pair (N,L) of F such that for every A,B ∈ EmF (U), we have

A E B ⇔ A � (N,L) = B � (N,L).

Proof. Let E be an equivalence relation on EmF (S). By Theorem 3.6 there
is a strongly embedded subtree U of S of height ω and there is T ⊆ ΛF

transitive for U such that for every A,B ∈ EmF (U), we have

A E B ⇔ A ET B.

By Theorem 3.12 there is a node-level pair (N,L) of F such that

T = {(A,B) ∈ ΛF : A � (N,L) = B � (N,L).

Thus, for every A,B ∈ EmF (U)

A E B ⇔ A ET B ⇔ A � (N,L) = B � (N,L) .

This finishes the proof of the theorem. �

In the case of colorings of nodes of T we get the following nice result
discovered independently by the author and by Milliken [2].

Corollary 3.14. Let f : T → N be arbitrary. Then there is a strongly
embedded subtree S of T of height ω such that exactly one of the following
three alternatives holds:
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(1) ∀s, t ∈ S f(s) = f(t) ⇔ s = t,
(2) ∀s, t ∈ S f(s) = f(t) ⇔ ∀n(s ∈ S(n) ⇔ t ∈ S(n)) or
(3) ∀s, t ∈ S f(s) = f(t).
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