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MARTIN’S AXIOM AND ALMOST DISJOINT FAMILIES

LATIFA FAOUZI

Abstract. Assuming Martin’s Axiom and ℵ1 < 2ℵ0 , we show that, for
any κ, λ < 2ℵ0 and any almost disjoint family {ai : i < λ} of countable
subsets of κ, there is a partition {pn : n ∈ ω} of κ so that pn ∩ ai is
finite for each 〈i, n〉 ∈ λ × ω.

1. Introduction

Almost disjoint families are frequently used in set theory, general topology
[6, Ch. 3, §11] and Boolean algebras [1, 5]. We recall that if D is a set and
A ⊆ P(D), the set A is an almost disjoint family, if |a| = ℵ0 for any a ∈ A,
and a∩b is finite for every distinct members a and b of A. As a consequence of
[3, Theorem 2.3] there is an almost disjoint family {ai : i < ℵ1} of countable
subsets of ℵ1 such that for every uncountable subset b of ℵ1, ai ⊆ b for some
i < ℵ1. This result is used to construct various “increasing chains” of
superatomic Boolean algebras that have well-founded generating sublattices
whose union is a superatomic Boolean algebra and is not generated by a well-
founded sublattice. On the other hand, M. Rubin shows, under Martin’s
Axiom, Theorem 1.1 below for κ = ℵ1 (see [3, Proposition 2.5]). In this
present work, we give a complete and detailed proof of Rubin’s result for
any κ < 2ℵ0 . In Remark 2 we will see that Theorem 1.1 cannot be extended
in cardinality 2ℵ0 .

Theorem 1.1. Assume Martin’s Axiom and ℵ1 < 2ℵ0 . Let κ, λ < 2ℵ0 and

A := {ai : i < λ} be an almost disjoint family of countable subsets of κ.

Then there is a partition {pn : n ∈ ω} of κ such that for every n ∈ ω, pn∩a
is finite for any a ∈ A.

Proof. Let 〈P,≤〉 be the poset defined as follows. A member of P has the
form 〈σ, η〉, where

(1) σ is a finite subset of ω×κ, and for every α ∈ κ there is at most one
n ∈ ω such that 〈n, α〉 ∈ σ, and

(2) η is a finite subset of λ.
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For 〈σ1, η1〉, 〈σ2, η2〉 ∈ P, we define 〈σ1, η1〉 ≤ 〈σ2, η2〉 if σ1 ⊆ σ2, η1 ⊆ η2,
and for every i ∈ η1 and n ∈ Dom(σ1), ({n} × ai) ∩ σ1 = ({n} × ai) ∩ σ2.

For 〈σ, η〉 ∈ P, the interpretation of “〈n, β〉 ∈ σ and i ∈ η” will be
β ∈ pn ∩ ai.

The proof that P satisfies c.c.c. (Claim 1.4) uses a non-standard argument
that we can find in [2]. First, we show that some sets are dense.

Claim 1.2. For every α < κ, Dα := {〈σ, η〉 ∈ P : α ∈ Rng(σ)} is dense in

P.

Proof. Let 〈σ, η〉 ∈ P and α ∈ κ. If α ∈ Rng(σ) there is nothing to prove.
Suppose that α 6∈ Rng(σ). Let ` ∈ ω\Dom(σ), σ ′ := σ ∪ {〈`, α〉}, and
η′ = η. Then 〈σ′, η′〉 ∈ P and 〈σ, η〉 ≤ 〈σ′, η′〉. This is so, because if i ∈ η

and n ∈ Dom(σ), then 〈`, α〉 6∈ {n} × ai. �

Claim 1.3. For every i < λ, Ei := {〈σ, η〉 ∈ P : i ∈ η} is dense in P.

Proof. Let 〈σ, η〉 ∈ P and i ∈ λ. If i ∈ η there is nothing to prove. If i 6∈ η,
then 〈σ, η〉 ≤ 〈σ, η ∪ {i}〉 ∈ Ei. �

Claim 1.4. 〈P,≤〉 is c.c.c.

Proof. By way of contradiction, let {〈σµ, ηµ〉 : µ ∈ ℵ1} be a set of pairwise
incompatible conditions. Let F = {ηµ : µ ∈ ℵ1}. Suppose first that F is
countable. In that case, there are A ⊆ ℵ1 and η ∈ F such that |A| = ℵ1 and
ηµ = η for every µ ∈ A. Next suppose |F | = ℵ1. There are m ∈ ω and an
uncountable subset A′ of ℵ1 such that |ηµ| = m for every µ ∈ A′. By the
∆-lemma, there are an uncountable subset A of A′ and a finite set η such
that ηµ ∩ ην = η for distinct µ, ν ∈ A. In the two cases, |A| = ℵ1, and thus
we may assume that A = ℵ1. That is, either

(1) for every µ ∈ ℵ1, ηµ = η, or
(2) for every distinct µ, ν ∈ ℵ1, we have ηµ 6= ην , ηµ ∩ ην = η, and

|ηµ| = |ην |.

Since for every µ ∈ ℵ1, Dom(σµ) is a finite subset of ω, we may also suppose
that there is a finite set δ of ω, such that

(3) for every µ ∈ ℵ1, Dom(σµ) := δ.

Let ρµ = Rng(σµ) for µ < ℵ1. So ρµ is a finite subset of κ. Similiar to the
case of η above, we may also assume that there is a finite subset ρ of κ such
that either

(4) for every µ ∈ ℵ1, ρµ = ρ, or
(5) for every distinct µ, ν ∈ ℵ1, we have ρµ 6= ρν , ρµ ∩ ρν = ρ and

|ρµ| = |ρν |.

Since δ × ρ is finite, there is an uncountable subset B of ℵ1 such that for
every distinct µ, ν ∈ B, σµ ∩ (δ × ρ) = σν ∩ (δ × ρ). Hence, we can suppose
also that for any µ, ν ∈ ℵ1, k ∈ δ and α ∈ ρ,

(6) 〈k, α〉 ∈ σµ iff 〈k, α〉 ∈ σν .
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Now, we consider 〈〈σµ, ηµ〉 : µ ∈ ℵ1〉 as a sequence of pairwise incompatible
conditions. Let µ ∈ ℵ1. We define an ordinal βµ ∈ ℵ1 and a countable
subset Sµ of κ satisfying the following properties:

(7)
⋃

{ai : i ∈ ηµ} ⊆ Sµ, βµ ≥ µ and ρν ∩ Sµ = ρ for every ν > βµ.

Let T =
⋃

{ai : i ∈ ηµ} and Λ = {ζ ∈ ℵ1 : (ρζ\ρ) ∩ T 6= ∅}. Let
Sµ = T ∪

⋃

{ρζ : ζ ∈ Λ} and β ′
µ = sup(Λ). (Notice that |T | = ℵ0 and thus

Sµ is countable.) Assume that (ρν\ρ)∩Sµ 6= ∅. First, if (ρν\ρ)∩T 6= ∅, then
ν ∈ Λ, and thus ν ≤ β ′

µ. Next, suppose that (ρν\ρ)∩
(
⋃

{ρζ : ζ ∈ Λ}
)

6= ∅.
Then there is ζ ∈ Λ such that (ρν\ρ)∩ρζ 6= ∅. That is (ρν\ρ)∩ (ρζ\ρ) 6= ∅,
and thus ν = ζ ∈ Λ. Hence ν ≤ β ′

µ. So Sµ and βµ := max(β′
µ, µ) are as

required in (7). Note that in (4), Λ = ∅ and thus Sµ = T and βµ = µ

(because β ′
µ := sup(Λ) = 0).

By (7), using induction, and renaming a subsequence, we may assume
that there is a family 〈Sµ : µ ∈ ℵ1〉 of countable subsets of κ such that
〈〈σµ, ηµ〉 : µ ∈ ℵ1〉 satisfies the following properties:

(8) if i ∈ ηµ then ai ⊆ Sµ, and
(9) if ν > µ, then ρν ∩ Sµ = ρ.

For µ < ν < ω1, let rµ := 〈σµ, ηµ〉 and rµ,ν := 〈σµ ∪ σν , ηµ ∪ ην〉. We show
that the following condition holds:

(10) for every µ < ν < ω1, rµ,ν ∈ P and rµ ≤ rµ,ν .

We prove first that rµ,ν ∈ P. Let α ∈ κ and distinct m,n such that
〈m,α〉, 〈n, α〉 ∈ σµ ∪ σν . For instance 〈m,α〉 ∈ σµ and 〈n, α〉 ∈ σν . By
(6), α 6∈ ρ, and thus α ∈ ρµ\ρ and α ∈ ρν\ρ, which contradicts (5). Now,
it is trivial to see that rµ,ν ∈ P. Next we show that rµ ≤ rµ,ν . Trivially,
σµ ⊆ σµ∪σν and ηµ ⊆ ηµ∪ην . Let i ∈ ηµ and n ∈ δ := Dom(σµ). Let α ∈ ai

be such that 〈n, α〉 ∈ σν . It suffices to prove that 〈n, α〉 ∈ σµ. By way of
contradiction, suppose that 〈n, α〉 6∈ σµ. By (6), 〈n, α〉 6∈ δ×ρ. Hence α 6∈ ρ
and thus α ∈ ρν\ρ ⊆ κ. First if α ∈ Sµ, by (9), then α ∈ ρ, a contradiction.
Next, suppose α 6∈ Sµ. Since i ∈ ηµ, by (8), ai ⊆ Sµ and so α ∈ Sµ, another
contradiction. Therefore 〈n, α〉 ∈ σµ. We have proved (10).

Since for µ < ν < ω1, rµ and rν are incompatible, and by (10) rµ ≤ rµ,ν ,
it follows that rν 6≤ rµ,ν . This means

(11) for every ν > µ there are kν ∈ δ, iν ∈ ην and α ∈ aiν such that
〈kν , α〉 ∈ σµ and 〈kν , α〉 6∈ σν .

By (6) and (11), we have α ∈ ρµ\ρ, implying that (4) does not occur, and
thus we are in Case (5).

Next let ψ(µ, ν, k, i, α) be the formula

ψ(µ, ν, k, i, α) ≡ (k ∈ δ) ∧ (i ∈ η) ∧ (α ∈ ai) ∧ (〈k, α〉 ∈ σµ) ∧ (〈k, α〉 6∈ σν)

and I = {µ < ω1 : (∃ν)(∃k)(∃i)(∃α) ((ν>µ) ∧ ψ(µ, ν, k, i, α))}. We claim
that |I| ≤ ℵ0. Indeed, let a :=

⋃

i∈η ai, so |a| = ℵ0. If ν > µ and

ψ(µ, ν, k, i, α) holds, then α ∈ a and α ∈ ρµ \ ρ. Since the ρµ \ ρ’s are
pairwise disjoint, |I| ≤ |a| = ℵ0.



MARTIN’S AXIOM AND ALMOST DISJOINT FAMILIES 217

Hence, for µ > sup(I): if ν > µ, there is no i such that ψ(µ, ν, k, i, α)
hold. This means that in (11), iν ∈ ην \ η. In particular ην \ η 6= ∅. Hence
we are in Case (2), that is,

(12) for every ν > µ there are k ∈ δ, iν ∈ ην\η and α ∈ aiν such that
〈k, α〉 ∈ σµ and 〈k, α〉 6∈ σν . In particular α ∈ ρµ\ρ.

We have proved that 〈rµ : µ < ω1〉 satisfies (2), (3), (5) and (6)–(12).
By (5), let p ∈ ω be such that for every µ < ω1, |ρµ\ρ| := p ≥ 1. For

µ ∈ ℵ1, let {α0
µ, α

1
µ, . . . , α

p−1
µ } be an enumeration of ρµ\ρ ⊆ κ. Also, by

(2), for every µ, ν < ω1, |ηµ\η| = |ην\η| := q ≥ 1. Let {i0ν , i
1
ν , . . . , i

q−1
ν } an

enumeration of ην\η.
Let m < n < ω. We define a color c(m,n). An unordered pair may have

more than one color. (This kind of coloring is used in the proof of Fact 6
in [2, p. 13].) Since n < ω + m, rn and rω+m are incompatible. By (10),

rω+m 6≤ rn,ω+m. We set c(m,n) := 〈j, `〉 if ijω+m ∈ ηω+m, α`
n ∈ a

i
j
ω+m

(in

particular α`
n ∈ ρn), there is k ∈ δ such that 〈k, α`

n〉 ∈ σn, and 〈k, α`
n〉 6∈

σω+m. By (5) and (12), c(m,n) exists. Also, since j < q and ` < p, the set
of possible 〈j, `〉 is finite. By Ramsey’s Theorem, let A be an infinite subset
of ω and let 〈j, `〉 be such that for every distinct m,n ∈ A, if m < n then
c(m,n) = 〈j, `〉.

Let m0 < m1 be the first two members of A. Let n ∈ A be such that
n > m1. Then c(m0, n) = c(m1, n) = 〈j, `〉. Hence α`

n ∈ a
i
j
ω+m0

∩ a
i
j
ω+m1

.

Since α`
n ∈ ρn\ ρ for n ∈ ω, α`

n 6= α`
n′ for distinct members n, n′ of A greater

than m1. Hence

(13) a
i
j
ω+m0

∩ a
i
j
ω+m1

is infinite.

From (12), ijω+m0
, i

j
ω+m1

6∈ η, and thus ijω+m0
6= i

j
ω+m1

. By almost disjoint-
ness, a

i
j
ω+m0

∩a
i
j
ω+m1

is finite, which contradicts (13). We have proved Claim

3. �

Now, by Martin’s Axiom, let G ⊆ P be a filter which intersects each Dα

and each Ei. For n ∈ ω, let

pn := {α : for some 〈σ, η〉 ∈ G, 〈n, α〉 ∈ σ}.

Obviously {pn : n ∈ ω} is a partition of κ. Next, let n ∈ ω and i ∈ λ.
Let 〈σ, η〉 ∈ G be such that i ∈ η and 〈n, β〉 ∈ σ for some β ∈ κ. From the
definition of ≤ on P, it follows that {n} × ai ⊆ σ. Since σ is finite, pn ∩ ai

is finite. So {pn : n ∈ ω} is as required in the theorem. �

Remark: (1) Assume Martin’s Axiom and 2ℵ0 > ℵ1. Let κ be a cardinal
such that ℵ0 < κ < 2ℵ0 . Let A be a maximal almost disjoint family of
countable subsets of κ. Note that |A| = 2κ = 2ℵ0 (see Theorem 2.18 and
Corollary 2.16 of [4]). Next A does not satisfy the conclusion of Theorem 1.1.
This is because for any partition {pn : n ∈ ω} of κ, there is m ∈ ω such
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that |pm| > ℵ0; by the maximality of A, for every n ∈ ω such that |pn| ≥ ℵ0,
there is a ∈ A such that a ∩ pn is infinite.

(2) If κ = ℵ0, then {{n} : n ∈ ℵ0} is a countable partition of ℵ0, and
trivially Theorem 1.1 holds for any family A of subsets of ℵ0.

(3) In the conclusion of Theorem 1.1, we can replace the existence of
a countable partition {pn : n ∈ ω} of κ by the existence of a partition
{pm : m ∈ ρ} where ρ is any infinite cardinal less or equal to κ.
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