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S-SPACES FROM FREE EXTENSIONS

ANGELO SONNINO

Dedicated to the centenary of the birth of Ferenc Kárteszi (1907–1989).

Abstract. We prove that there exist S-spaces containing an arbitrary
number of non-isomorphic affine planes of any admissible order. The
proof is obtained by constructing some new S-spaces in two different
ways. In one case we obtain S-spaces of finite order containing an infinite
number of points, while in the other case we obtain S-spaces of infinite
order.

1. Introduction

The study of S-spaces begun in the early 60’s when E. Sperner [10] in-
troduced certain incidence structures similar to ordinary affine spaces, but
with some weaker properties regarding the classical Desargues theorem and
the concept of dimension. Some fairly recent results on S-spaces are in
[4, 7, 8, 9], while a good account on the basic properties of S–spaces can be
found in [2].

A generalised affine space (briefly, an S-space) is an incidence structure S

of “points” and “lines”, together with a binary relation between lines which
is called “parallelism”, satisfying the following axioms:

(1) Any two points are incident with exactly one line;
(2) All the lines are incident with the same number of points;
(3) The parallelism is an equivalence relation;
(4) Given a line ` and a point x, there exists exactly one line `′ in S

which is incident with x and parallel to `.

Using Axioms (3) and (4) we find that if two lines `1 and `2 are parallel,
then either `1 = `2 or `1 ∩ `2 = ∅.

Ordinary affine spaces provide the first examples of S-spaces, while an
S-space S which is not an ordinary affine space is called a “proper” S-space.
Further, if the number of points of Axiom (2) is finite, say n, then S is
called a finite S-space of order n.

It is well known that the only subspaces of dimension 2 contained in an
ordinary affine space are Desarguesian affine planes, while this is not true
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in general when a proper S-space is considered. For a proper S-space S, the
following questions arise:

• How many non-isomorphic affine planes are contained in S as sub-
spaces?

• What are the maximum and the minimum number of non-isomorphic
affine planes through a point?

This problem was originally posed in a more general setting by Barlotti
[2] who defined the regularity parameters of an S-space S, that is, the min-
imum number mr and the maximum number Mr of ordinary affine spaces
of dimension r through a point of S.

In this paper we construct finite S-spaces containing k non-isomorphic
affine planes of given order n for any k < δ +1, with δ denoting the number
of isomorphism classes of affine planes of order n, and show that for such an
S-space m2 ≥ k holds with an arbitrarily large number of non-isomorphic
affine planes through each point.

2. Preliminaries

From Axiom (4) it follows that through every point of a finite S-space S

of order n there pass the same number of lines. Let b(x) be the number of
lines through each point x of an S-space S. The “dimension” of S is given
by one of the following:

• if b(x) = ∞ for any x ∈ S, then S has infinite dimension;
• if there is a positive integer r such that

b(x) =
nr − 1

n − 1

for a fixed n ∈ N and any x ∈ S, then S has regular dimension r;
• if none of the above cases occurs, then S has no regular dimension.

S-spaces with no regular dimension actually exist, see [5, 6], while S-spaces
of regular dimension 2 are always ordinary affine planes, see [1, Theorem
1.2.1] for instance.

In the remainder of this section we recall an inductive method for con-
structing S-spaces due to A. Barlotti [2].

Let S = (P,L) be a near linear space with set of points P and set of
lines L (see [3]), such that no line contains more than s points for a certain
positive integer s. Set

{Aj = (Pj , Lj) | j = 1, 2, 3, . . . },

where Aj is an incidence structure of “points” and “lines” with point set Pj

and line set Lj defined as follows:

(1) A0 = S;
(2) Ah+1 is obtained from Ah as follows:

(a) let F be a family of subsets of Ph such that:
(i) no such subset contains two points on a line of Lh;
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(ii) every two points of Ph belong to exactly one subset of F ;
(iii) every subset of F contains k points, with 1 < k ≤ s.

If Ah is not an S-space in its own right, then there exists a set F
as above: One example is provided by the set of pairs of points
which are not joined by a line of Lh. Once we found such a set
F , we consider its subsets as new “lines” that will be added to

those of Lh to obtain an incidence structure A
(1)
h

= (P
(1)
h

, L
(1)
h

),

with L
(1)
h = Lh ∪ F . Then we extend in a natural way the

existing parallelism to these new lines by considering each of
them parallel to itself. Doing so, we introduce some new classes
of parallelism, each consisting of a single line.

(b) Add to any line of L
(1)
h

containing k < s points s−k new points.

This yields a new incidence structure A
(2)
h = (P

(2)
h , L

(2)
h ).

(c) Choose some subsets of P
(2)
h such that no two points in each of

them are on a line or on two parallel lines of L
(2)
h . Contract each

of these subsets to one point, in order to obtain a new incidence

structure A
(3)
h = (P

(3)
h , L

(3)
h ).

(d) Let `1 and `2 be two lines such that no line parallel to one of
them meets a line parallel to the other. If such pairs of lines
exist, then define a new parallelism class containing `1, `2, all
the lines parallel to `1 and all the lines parallel to `2. This yields

new incidence structure A
(4)
h = (P

(4)
h , L

(4)
h ).

(e) Let ` ∈ L
(4)
h . For every point x ∈ P

(4)
h not contained in a line

parallel to ` add a new line `x (initially containing the point x

only) to the parallelism class of `. The incidence structure so
constructed is Ah+1.

An incidence structure At, t ∈ N, obtained from a near linear space S as
above is called an extension of order t of S. Such an extension is called a
free extesion if every subset of 2a contains exactly two points and neither
the contraction of 2c, nor the modification of 2d are performed.

Theorem 2.1 (Barlotti). The incidence structure

S = lim
h→∞

Ah

is an S-space.

Using free extensions, Barlotti was able to construct a class of S-spaces
with regularity parameter M2 = 0, that is, S-spaces containing no affine
planes.

3. The required S-spaces

Let δ denote the number of non-isomorphic affine planes of a certain order
n.
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Theorem 3.1. For every positive integer k < δ + 1, let {π0, π1, . . . , πk−1}
be a set of non-isomorphic affine planes of order n. Then there exists an

S-space S of order n containing all the πj as subspaces. Furthermore, S

has regularity parameter m2 ≥ k.

Proof. For a prime power n, let A0 = (P,L) be a near linear space whose
longest line contains at most k ≤ n points, but containing some lines of

size less than n. For h > 0 let Ah be a free extension of A0, and A
(2)
h

=

(P
(2)
h , L

(2)
h ) the incidence structure obtained after performing 2b on Ah. Let

j be an integer with 1 ≤ j ≤ k. If h ≡ j (mod k), then for each point

x ∈ P
(2)
h

not contained in any affine plane isomorphic to πj add a set B of

n2−1 new points in such a way that {x}∪B yields an affine plane isomorphic
to πj. Denote the resulting incidence structure by Ah+1.

After m such extensions of Ah, with 1 < m < k, we end up with an
incidence structure Ah+m containing points which are in no affine plane
isomorphic to πj ; however, these points can be included in such affine planes
extending Ah+m again. The incidence structure

N = lim
h→∞

Ah

is a finite S-space of order q satisfying all the required conditions. The
existence of the parallelism is granted by the fact that a free extesion includes
2e. �

Note that the S-space N arising from Theorem 3.1 is a finite S-space
of order n containing an infinite number of points. Now we are going to
construct S-spaces of infinite order instead, in order to prove the following
result.

Theorem 3.2. There exist S-spaces satisfying M2 = m2 = ∞.

Proof. As in the proof of Theorem 3.1, we start off with a near linear space
A0 whose lines have length at most s. For every h ≥ 0, obtain a free

extension of Ah by adding s + h − r points to each line of L
(1)
h containing

r ≤ s points, and denote by Bh+1 = (P ′

h+1, L
′

h+1) the resulting incidence
structure. If h is an integer such that no affine plane of order s + h exists,
then put Bh+1 = Ah+1 and go on; otherwise, for every point x ∈ P ′

h+1 add

(s + h)2 − 1 more points in such a way that these points together with x

constitute an affine plane of order s + h. The resulting S-space

M = lim
h→∞

Ah

has infinite order, and contains finite affine planes of any admissible order.
Further, the condition M2 = m2 = ∞ is an obvious consequence of the
construction. �

We remark that all the S-spaces arising from both Theorems 3.1 and 3.2
have infinite dimension.
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