Contributions to Discrete Mathematics

S-SPACES FROM FREE EXTENSIONS

ANGELO SONNINO
Dedicated to the centenary of the birth of Ferenc Kárteszi (1907-1989).

Abstract

We prove that there exist S-spaces containing an arbitrary number of non-isomorphic affine planes of any admissible order. The proof is obtained by constructing some new S-spaces in two different ways. In one case we obtain S-spaces of finite order containing an infinite number of points, while in the other case we obtain S-spaces of infinite order.

1. Introduction

The study of S-spaces begun in the early 60 's when E. Sperner [10] introduced certain incidence structures similar to ordinary affine spaces, but with some weaker properties regarding the classical Desargues theorem and the concept of dimension. Some fairly recent results on S-spaces are in $[4,7,8,9]$, while a good account on the basic properties of S -spaces can be found in [2].

A generalised affine space (briefly, an S-space) is an incidence structure \mathfrak{S} of "points" and "lines", together with a binary relation between lines which is called "parallelism", satisfying the following axioms:
(1) Any two points are incident with exactly one line;
(2) All the lines are incident with the same number of points;
(3) The parallelism is an equivalence relation;
(4) Given a line ℓ and a point x, there exists exactly one line ℓ^{\prime} in \mathfrak{S} which is incident with x and parallel to ℓ.
Using Axioms (3) and (4) we find that if two lines ℓ_{1} and ℓ_{2} are parallel, then either $\ell_{1}=\ell_{2}$ or $\ell_{1} \cap \ell_{2}=\varnothing$.

Ordinary affine spaces provide the first examples of S -spaces, while an S-space \mathfrak{S} which is not an ordinary affine space is called a "proper" S-space. Further, if the number of points of Axiom (2) is finite, say n, then \mathfrak{S} is called a finite S -space of order n.

It is well known that the only subspaces of dimension 2 contained in an ordinary affine space are Desarguesian affine planes, while this is not true

[^0]in general when a proper S-space is considered. For a proper S-space \mathfrak{S}, the following questions arise:

- How many non-isomorphic affine planes are contained in \mathfrak{S} as subspaces?
- What are the maximum and the minimum number of non-isomorphic affine planes through a point?
This problem was originally posed in a more general setting by Barlotti [2] who defined the regularity parameters of an S-space \mathfrak{S}, that is, the minimum number m_{r} and the maximum number M_{r} of ordinary affine spaces of dimension r through a point of \mathfrak{S}.

In this paper we construct finite S-spaces containing k non-isomorphic affine planes of given order n for any $k<\delta+1$, with δ denoting the number of isomorphism classes of affine planes of order n, and show that for such an S-space $m_{2} \geq k$ holds with an arbitrarily large number of non-isomorphic affine planes through each point.

2. Preliminaries

From Axiom (4) it follows that through every point of a finite S-space \mathfrak{S} of order n there pass the same number of lines. Let $b(x)$ be the number of lines through each point x of an S-space \mathfrak{S}. The "dimension" of \mathfrak{S} is given by one of the following:

- if $b(x)=\infty$ for any $x \in \mathfrak{S}$, then \mathfrak{S} has infinite dimension;
- if there is a positive integer r such that

$$
b(x)=\frac{n^{r}-1}{n-1}
$$

for a fixed $n \in \mathbb{N}$ and any $x \in \mathfrak{S}$, then \mathfrak{S} has regular dimension r;

- if none of the above cases occurs, then \mathfrak{S} has no regular dimension.

S-spaces with no regular dimension actually exist, see $[5,6]$, while S -spaces of regular dimension 2 are always ordinary affine planes, see [1 , Theorem 1.2.1] for instance.

In the remainder of this section we recall an inductive method for constructing S-spaces due to A. Barlotti [2].

Let $\mathcal{S}=(P, L)$ be a near linear space with set of points P and set of lines L (see [3]), such that no line contains more than s points for a certain positive integer s. Set

$$
\left\{A_{j}=\left(P_{j}, L_{j}\right) \mid j=1,2,3, \ldots\right\}
$$

where A_{j} is an incidence structure of "points" and "lines" with point set P_{j} and line set L_{j} defined as follows:
(1) $A_{0}=\mathcal{S}$;
(2) A_{h+1} is obtained from A_{h} as follows:
(a) let \mathcal{F} be a family of subsets of P_{h} such that:
(i) no such subset contains two points on a line of L_{h};
(ii) every two points of P_{h} belong to exactly one subset of \mathcal{F};
(iii) every subset of \mathcal{F} contains k points, with $1<k \leq s$.

If A_{h} is not an S -space in its own right, then there exists a set \mathcal{F} as above: One example is provided by the set of pairs of points which are not joined by a line of L_{h}. Once we found such a set \mathcal{F}, we consider its subsets as new "lines" that will be added to those of L_{h} to obtain an incidence structure $A_{h}^{(1)}=\left(P_{h}^{(1)}, L_{h}^{(1)}\right)$, with $L_{h}^{(1)}=L_{h} \cup \mathcal{F}$. Then we extend in a natural way the existing parallelism to these new lines by considering each of them parallel to itself. Doing so, we introduce some new classes of parallelism, each consisting of a single line.
(b) Add to any line of $L_{h}^{(1)}$ containing $k<s$ points $s-k$ new points. This yields a new incidence structure $A_{h}^{(2)}=\left(P_{h}^{(2)}, L_{h}^{(2)}\right)$.
(c) Choose some subsets of $P_{h}^{(2)}$ such that no two points in each of them are on a line or on two parallel lines of $L_{h}^{(2)}$. Contract each of these subsets to one point, in order to obtain a new incidence structure $A_{h}^{(3)}=\left(P_{h}^{(3)}, L_{h}^{(3)}\right)$.
(d) Let ℓ_{1} and ℓ_{2} be two lines such that no line parallel to one of them meets a line parallel to the other. If such pairs of lines exist, then define a new parallelism class containing ℓ_{1}, ℓ_{2}, all the lines parallel to ℓ_{1} and all the lines parallel to ℓ_{2}. This yields new incidence structure $A_{h}^{(4)}=\left(P_{h}^{(4)}, L_{h}^{(4)}\right)$.
(e) Let $\ell \in L_{h}^{(4)}$. For every point $x \in P_{h}^{(4)}$ not contained in a line parallel to ℓ add a new line ℓ_{x} (initially containing the point x only) to the parallelism class of ℓ. The incidence structure so constructed is A_{h+1}.
An incidence structure $A_{t}, t \in \mathbb{N}$, obtained from a near linear space \mathcal{S} as above is called an extension of order t of \mathcal{S}. Such an extension is called a free extesion if every subset of 2 a contains exactly two points and neither the contraction of 2 c , nor the modification of 2 d are performed.

Theorem 2.1 (Barlotti). The incidence structure

$$
\mathfrak{S}=\lim _{h \rightarrow \infty} A_{h}
$$

is an S-space.
Using free extensions, Barlotti was able to construct a class of S-spaces with regularity parameter $M_{2}=0$, that is, S-spaces containing no affine planes.

3. The Required S-Spaces

Let δ denote the number of non-isomorphic affine planes of a certain order n.

Theorem 3.1. For every positive integer $k<\delta+1$, let $\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{k-1}\right\}$ be a set of non-isomorphic affine planes of order n. Then there exists an S-space \mathfrak{S} of order n containing all the π_{j} as subspaces. Furthermore, \mathfrak{S} has regularity parameter $m_{2} \geq k$.

Proof. For a prime power n, let $A_{0}=(P, L)$ be a near linear space whose longest line contains at most $k \leq n$ points, but containing some lines of size less than n. For $h>0$ let A_{h} be a free extension of A_{0}, and $A_{h}^{(2)}=$ $\left(P_{h}^{(2)}, L_{h}^{(2)}\right)$ the incidence structure obtained after performing 2 b on A_{h}. Let j be an integer with $1 \leq j \leq k$. If $h \equiv j(\bmod k)$, then for each point $x \in P_{h}^{(2)}$ not contained in any affine plane isomorphic to π_{j} add a set B of $n^{2}-1$ new points in such a way that $\{x\} \cup B$ yields an affine plane isomorphic to π_{j}. Denote the resulting incidence structure by A_{h+1}.

After m such extensions of A_{h}, with $1<m<k$, we end up with an incidence structure A_{h+m} containing points which are in no affine plane isomorphic to π_{j}; however, these points can be included in such affine planes extending A_{h+m} again. The incidence structure

$$
\mathfrak{N}=\lim _{h \rightarrow \infty} A_{h}
$$

is a finite S-space of order q satisfying all the required conditions. The existence of the parallelism is granted by the fact that a free extesion includes 2 e .

Note that the S-space \mathfrak{N} arising from Theorem 3.1 is a finite S -space of order n containing an infinite number of points. Now we are going to construct S-spaces of infinite order instead, in order to prove the following result.

Theorem 3.2. There exist S-spaces satisfying $M_{2}=m_{2}=\infty$.
Proof. As in the proof of Theorem 3.1, we start off with a near linear space A_{0} whose lines have length at most s. For every $h \geq 0$, obtain a free extension of A_{h} by adding $s+h-r$ points to each line of $L_{h}^{(1)}$ containing $r \leq s$ points, and denote by $B_{h+1}=\left(P_{h+1}^{\prime}, L_{h+1}^{\prime}\right)$ the resulting incidence structure. If h is an integer such that no affine plane of order $s+h$ exists, then put $B_{h+1}=A_{h+1}$ and go on; otherwise, for every point $x \in P_{h+1}^{\prime}$ add $(s+h)^{2}-1$ more points in such a way that these points together with x constitute an affine plane of order $s+h$. The resulting S-space

$$
\mathfrak{M}=\lim _{h \rightarrow \infty} A_{h}
$$

has infinite order, and contains finite affine planes of any admissible order. Further, the condition $M_{2}=m_{2}=\infty$ is an obvious consequence of the construction.

We remark that all the S-spaces arising from both Theorems 3.1 and 3.2 have infinite dimension.

References

1. A. Barlotti, Some topics in finite geometrical structures, Institute of Statistics Mimeo Series, no. 439, University of North Carolina.
2. \qquad , Alcuni risultati nello studio degli spazi affini generalizzati di Sperner, Rend. Sem. Mat. Univ. Padova 35 (1965), 18-46.
3. L. M. Batten, Combinatorics of Finite Geometries, Cambridge University Press, Cambridge, 1986.
4. A. Blunck, A new approach to derivation, Forum Math. 14 (2002), no. 6, 831-845.
5. R. C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements, Calcutta Math. Soc. Golden Jubilee Commemoration Vol. (1958/59), Part II, Calcutta Math. Soc., Calcutta, 1963, pp. 341-354.
6. P. Quattrocchi, Un metodo per la costruzione di spazi affini generalizzati di Sperner, Matematiche (Catania) 22 (1967), 1-9.
7. A. Sonnino, A new class of Sperner spaces, Pure Math. Appl. 9 (1998), no. 3-4, 451462.
8. , Cryptosystems based on latin rectangles and generalised affine spaces, Rad. Mat. 9 (1999), no. 2, 177-186.
9. \qquad , Two methods for constructing S-spaces, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), no. 1, 65-71.
10. E. Sperner, Affine Räume mit schwacher Inzidenz und zugehörige algebraische Strukturen, J. Reine Angew. Math. 204 (1960), 205-215.

Dipartimento di Matematica e Informatica, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italia

E-mail address: angelo.sonnino@unibas.it

[^0]: 2000 Mathematics Subject Classification. Primary 51A15. Secondary 51E15.
 Key words and phrases. S-space, free extension, affine space, incidence.

