Contributions to Discrete Mathematics

Volume 3, Number 1, Pages 39–46 ISSN 1715-0868

CONSTRUCTION OF A 3-DIMENSIONAL MDS-CODE

ANGELA AGUGLIA AND LUCA GIUZZI

Dedicated to the centenary of the birth of Ferenc Kárteszi (1907–1989).

ABSTRACT. In this paper, we describe a procedure for constructing qary [N, 3, N-2]-MDS codes, of length $N \leq q+1$ (for q odd) or $N \leq q+2$ (for q even), using a set of non-degenerate Hermitian forms in $PG(2, q^2)$.

1. INTRODUCTION

The well-known Singleton bound states that the cardinality M of a code of length N with minimum distance d over a q-ary alphabet always satisfies

$$(1.1) M \le q^{N-d+1};$$

see [8]. Codes attaining the bound are called *maximum distance separable* codes, or MDS codes for short.

Interesting families of maximum distance separable codes arise from geometric and combinatorial objects embedded in finite projective spaces. In particular linear [N, k, N - k + 1]-MDS codes, with $k \ge 3$, and N-arcs in PG(k - 1, q) are equivalent objects; see [1].

A general method for constructing a q-ary code is to take N polynomials f_1, \ldots, f_N in n indeterminates, defined over GF(q), and consider the set C given by

$$\mathcal{C} = \{ (f_1(x), \dots, f_N(x)) \mid x \in \mathcal{W} \},\$$

where \mathcal{W} is a suitable subset of $GF(q)^n$. In this paper, we deal with the case $|\mathcal{W}| = q^t$ and also assume that the *evaluation function*

$$\Theta : \mathcal{W} \to \mathcal{C} \\ x \mapsto (f_1(x), f_2(x), \dots, f_N(x))$$

is injective.

If C attains the Singleton bound then the restrictions of all the codewords to any given t = N - d + 1 places must all be different, namely in any tpositions all possible vectors occur exactly once. This means that a necessary condition for C to be MDS is that any t of the varieties $V(f_m)$ for m = $1, \ldots, N$ meet in exactly one point in W. Here V(f) denotes the algebraic variety associated to f.

©2008 University of Calgary

²⁰⁰⁰ Mathematics Subject Classification. 05B25, 11E39.

Key words and phrases. Hermitian form, MDS-code.

Applying the above procedure to a set of non-degenerate Hermitian forms in $PG(2, q^2)$ we construct some q-ary [N, 3, N - 2]-MDS codes, of length $N \leq q + 1$ (for q odd) or $N \leq q + 2$ (for q even). The codes thus obtained can also be represented by sets of points in PG(3, q); this representation is used in Section 4 in order to devise an algebraic decoding procedure, based upon polynomial factorisation; see [10].

2. Preliminaries

Let \mathcal{A} be a set containing q elements. For any integer $N \geq 1$, the function $d_H : \mathcal{A}^N \times \mathcal{A}^N \mapsto \mathbb{N}$ given by

$$d_H(\mathbf{x}, \mathbf{y}) = |\{i : x_i \neq y_i\}|,$$

is a metric on \mathcal{A}^N . This function is called the *Hamming distance* on \mathcal{A}^N . A q-ary (N, M, d)-code \mathcal{C} over the alphabet \mathcal{A} is just a collection of M elements of \mathcal{A}^N such that any two of them are either the same or at Hamming distance at least d; see [4, 6]. The elements of \mathcal{C} are called *codewords* whereas the integers d and N are respectively the *minimum distance* and the *length* of \mathcal{C} .

If $\mathcal{A} = GF(q)$ and \mathcal{C} is a k-dimensional vector subspace of $GF(q)^N$, then \mathcal{C} is said to be a *linear* [N, k, d]-code. Under several communication models, it is assumed that a received word \mathbf{r} should be decoded as the codeword $\mathbf{c} \in \mathcal{C}$ which is nearest to \mathbf{r} according to the Hamming distance; this is the so-called maximum likelihood decoding. Under these assumptions the following theorem, see [4, 6], provides a basic bound on the guaranteed error correction capability of a code.

Theorem 2.1. If C is a code of minimum distance d, then C can always either detect up to d-1 errors or correct $e = \lfloor (d-1)/2 \rfloor$ errors.

Observe that the theorem does not state that it is not possible to decode a word when more than e errors happened, but just that in this case the correction may fail. Managing to recover from more than e errors for some given received codewords is called "correcting beyond the bound".

The weight of an element $\mathbf{x} \in GF(q)^N$ is the number of non-zero components x_i of \mathbf{x} . For a linear code the minimum distance d equals the minimum weight of the non-zero codewords.

The parameters of a code are not independent; in general it is difficult to determine the maximum number of words a code of prescribed length N and minimum distance d may contain. For any arbitrary linear [N, k, d]-code, condition (1.1) may be rewritten as

$$(2.1) d \le N - k + 1;$$

thus C is a linear MDS code if and only if equality holds in (2.1).

In Section 3 we shall make extensive use of some non-degenerate Hermitian forms in $PG(2, q^2)$.

Consider the projective space $PG(d, q^2)$ and let V be the underlying vector space of dimension d + 1. A sesquilinear Hermitian form is a map

$$h: V \times V \longrightarrow GF(q^2)$$

additive in both components and satisfying

$$h(k\mathbf{v}, l\mathbf{w}) = kl^q h(\mathbf{v}, \mathbf{w})$$

for all $\mathbf{v}, \mathbf{w} \in V$ and $k, l \in GF(q^2)$. The form is *degenerate* if and only if the subspace $\{\mathbf{v} \mid h(\mathbf{v}, \mathbf{w}) = 0 \ \forall \mathbf{w} \in V\}$, the *radical* of h, is different from $\{\mathbf{0}\}$. Given a sesquilinear Hermitian form h, the associated Hermitian variety \mathcal{H} is the set of all points of $PG(d, q^2)$ such that $\{\langle \mathbf{v} \rangle \mid \mathbf{0} \neq \mathbf{v} \in V, h(\mathbf{v}, \mathbf{v}) = 0\}$. The variety \mathcal{H} is *degenerate* if h is degenerate; non-degenerate otherwise. If h is a sesquilinear Hermitian form in $PG(d, q^2)$ then the map $F: V \longrightarrow GF(q)$ defined by

$$F(\mathbf{v}) = h(\mathbf{v}, \mathbf{v}),$$

is called the Hermitian form on V associated to h. The Hermitian form F is non-degenerate if and only if h is non-degenerate. Complete introductions to Hermitian forms over finite fields may be found in [2, 7].

3. Construction

Let S be a representative system for the cosets of the additive subgroup T_0 of $\operatorname{GF}(q^2)$ given by

$$T_0 = \{ y \in GF(q^2) : T(y) = 0 \},\$$

where

$$\begin{array}{rccc} \mathrm{T} & : & \mathrm{GF}(q^2) & \to & \mathrm{GF}(q) \\ & y & \mapsto & y^q + y \end{array}$$

is the trace function. Denote by Λ a subset of $GF(q^2)$ satisfying

(3.1)
$$\left(\frac{\alpha-\beta}{\gamma-\beta}\right)^{q-1} \neq 1$$

for any $\alpha, \beta, \gamma \in \Lambda$. Choose a basis $B = \{1, \varepsilon\}$ of $GF(q^2)$, regarded as a 2-dimensional vector space over GF(q); hence, it is possible to write each element $\alpha \in GF(q^2)$ in components $\alpha_1, \alpha_2 \in GF(q)$ with respect to B. We may thus identify the elements of $GF(q^2)$ with the points of AG(2,q), by the bijection which maps $(x, y) \in AG(2, q)$ to $x + \varepsilon y \in GF(q^2)$. Condition (3.1) corresponds to require that Λ , regarded as point-set in AG(2,q), is an arc. Thus, setting $N = |\Lambda|$, we have

(3.2)
$$N \leq \begin{cases} q+1 & \text{for } q \text{ odd,} \\ q+2 & \text{for } q \text{ even;} \end{cases}$$

see [5, Theorem 8.5].

Now, consider the non–degenerate Hermitian forms $\mathcal{F}_{\lambda}(X,Y,Z)$ on $GF(q^2)^3$

$$\mathcal{F}_{\lambda}(X,Y,Z) = X^{q+1} + Y^q Z + Y Z^q + \lambda^q X^q Z + \lambda X Z^q,$$

as λ varies in Λ . Label the elements of Λ as $\lambda_1, \ldots, \lambda_N$ and let $\Omega = GF(q^2) \times S$.

Theorem 3.1. The set

$$\mathcal{C} = \{ (\mathcal{F}_{\lambda_1}(x, y, 1), \mathcal{F}_{\lambda_2}(x, y, 1), \dots, \mathcal{F}_{\lambda_N}(x, y, 1)) | (x, y) \in \Omega \}$$

is a q-ary linear [N, 3, N-2]-MDS code.

Proof. We first show that C consists of q^3 tuples from GF(q). Let (x_0, y_0) , $(x_1, y_1) \in \Omega$ and suppose that for any $\lambda \in \Lambda$,

$$\mathcal{F}_{\lambda}(x_0, y_0, 1) = \mathcal{F}_{\lambda}(x_1, y_1, 1)$$

Then,

(3.3)
$$T(\lambda(x_1 - x_0)) = x_0^{q+1} - x_1^{q+1} + T(y_0 - y_1).$$

In particular,

(3.4)
$$T(\lambda(x_1 - x_0)) = T(\alpha(x_1 - x_0)) = T(\gamma(x_1 - x_0))$$

for any $\alpha, \lambda, \gamma \in \Lambda$.

If it were $x_1 \neq x_0$, then (3.4) would imply

$$\left(\frac{\alpha-\beta}{\gamma-\beta}\right)^{q-1} = 1,$$

contradicting the assumption made on Λ . Therefore, $x_1 = x_0$ and from (3.3) we get $T(y_0 - y_1) = 0$. Hence, y_0 and y_1 are in the same coset of T_0 ; by definition of S, it follows that $y_0 = y_1$, thus C has as many tuples as $|\Omega|$.

We are now going to show that C is a vector subspace of $GF(q)^N$. Take $(x_0, y_0), (x_1, y_1) \in \Omega$. For any $\lambda \in \Lambda$,

(3.5)
$$\mathcal{F}_{\lambda}(x_0, y_0, 1) + \mathcal{F}_{\lambda}(x_1, y_1, 1) = \mathcal{F}_{\lambda}(x_2, y_2, 1),$$

where $x_2 = x_0 + x_1$ and $y_2 = y_0 + y_1 - x_0^q x_1 - x_1^q x_0$. Likewise, for any $\kappa \in GF(q)$,

(3.6)
$$\kappa \mathcal{F}_{\lambda}(x_0, y_0, 1) = \mathcal{F}_{\lambda}(x, y, 1),$$

where $x = \kappa x_0$ and y is a root of

$$y^{2} + y = (\kappa - \kappa^{2})x_{0}^{q+1} + \kappa(y_{0}^{q} + y_{0}).$$

Therefore, C is a vector subspace of $GF(q)^N$; as it consists of q^3 tuples, C is indeed a 3-dimensional vector space.

Finally we prove that the minimum distance d of C is N-2. Since C is a vector subspace of $GF(q)^N$, its minimum distance is N-z, where

$$z = \max_{\substack{\mathbf{c} \in \mathcal{C}, \\ \mathbf{c} \neq \mathbf{0}}} |\{i : c_i = 0\}|.$$

42

Furthermore, $z \ge 2$ because of Singleton bound (2.1). In order to show that z = 2 we study the following system

(3.7)
$$\begin{cases} \mathcal{F}_{\alpha}(x,y,1) = 0, \\ \mathcal{F}_{\beta}(x,y,1) = 0, \\ \mathcal{F}_{\gamma}(x,y,1) = 0, \end{cases}$$

for α, β, γ distinct elements of Λ . Set $U = x^{q+1} + y^q + y$, $V = x^q$ and W = x; then, (3.7) becomes

(3.8)
$$\begin{cases} U + \alpha^q V + \alpha W = 0, \\ U + \beta^q V + \beta W = 0, \\ U + \gamma^q V + \gamma W = 0. \end{cases}$$

Since $\left(\frac{\alpha-\beta}{\gamma-\beta}\right) \neq 1$, the only solution of (3.8) is U = V = W = 0, that is x = 0 and $y + y^q = 0$. In particular, there is just one solution to (3.7) in Ω , that is $\mathbf{x} = (0,0)$. This implies that a codeword which has at least three zero components is the zero vector, hence z = 2 and thus the minimum distance of \mathcal{C} is N-2.

Example 3.2. When q is odd, a representative system S for the cosets of T_0 is given by the subfield GF(q) embedded in $GF(q^2)$. In this case it is then extremely simple to construct the code. For q = 5, a computation using GAP [3], shows that in order for Λ to satisfy property (3.1), we may take $\Lambda = \{\varepsilon^3, \varepsilon^4, \varepsilon^8, \varepsilon^{15}, \varepsilon^{16}, \varepsilon^{20}\}$, where ε is a root of the polynomial $X^2 - X + 2$, irreducible over GF(5). The corresponding Hermitian forms are

A generator matrix for the [6,3,4]-MDS code obtained applying Theorem 3.1 to these Hermitian forms is

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 & 2 \\ 0 & 0 & 1 & 2 & 2 & 1 \end{pmatrix}$$

Remark 3.3. In $PG(2, q^2)$, take the line $\ell_{\infty} : Z = 0$ as the line at infinity. Then, in the affine plane $AG(2, q^2) = PG(2, q^2) \setminus \ell_{\infty}$, any two Hermitian curves $V(F_{\lambda})$ have q^2 affine points in common, q of which in $\Omega \subset AG(2, q^2)$. Likewise, the full intersection

$$\bigcap_{\lambda \in \Lambda} V(F_{\lambda})$$

consists of the q affine points $\{(0, y) \mid y^q + y = 0\}$, corresponding to just a single point in Ω .

Remark 3.4. Denote by A_i the number of words in C of weight *i*. Since C is an MDS code, we have

$$A_{i} = \binom{N}{i} (q-1) \sum_{j=0}^{i-N+2} (-1)^{j} \binom{i-1}{j} q^{i-j-N+2};$$

see [9]. Thus,

$$A_{N-2} = \frac{1}{2}(N^2 - N)(q - 1),$$

$$A_{N-1} = Nq^2 - (N^2 - N)q + N^2 - 2N,$$

$$A_N = q^3 - Nq^2 + \frac{1}{2}\left((N^2 - N)q - N^2 + 3N\right)$$

4. Decoding

In this section it will be shown how the code C we constructed may be decoded by geometric means.

Our approach is based upon two remarks:

(1) Any received word $\mathbf{r} = (r_1, \dots, r_N)$ can be uniquely represented by a set $\tilde{\mathbf{r}}$ of N points of PG(3,q)

$$\widetilde{\mathbf{r}} = \left\{ \left(\lambda_i^1, \lambda_i^2, r_i, 1 \right) : \lambda = \lambda_i^1 + \varepsilon \lambda_i^2 \in \Lambda \right\}.$$

These points all lie on the cone Ψ of basis

$$\Xi = \left\{ \left(\lambda_i^1, \lambda_i^2, 0, 1\right) : \lambda = \lambda_i^1 + \varepsilon \lambda_i^2 \in \Lambda \right\}$$

and vertex $Z_{\infty} = (0, 0, 1, 0)$.

(2) For any $a, b \in GF(q^2)$, the function

$$\phi_{(a,b)}(x,y,z,t) = \left(a^{q+1} + \mathrm{T}(b)\right)t + \mathrm{T}\left((x+\varepsilon y)a\right)$$

is a homogeneous linear form with domain $GF(q)^4$.

Recall that the codeword **c** corresponding to a given $(a, b) \in \Omega$ is

$$\mathbf{c} = \left(\phi_{(a,b)}(\lambda_1^1, \lambda_1^2, 0, 1), \phi_{(a,b)}(\lambda_2^1, \lambda_2^2, 0, 1), \dots, \phi_{(a,b)}(\lambda_N^1, \lambda_N^2, 0, 1)\right);$$

thus, $\tilde{\mathbf{c}}$, the set containing the points $(\lambda_i^1, \lambda_i^2, c_i, 1)$, is the full intersection of the plane $\pi_{a,b}: z = \phi_{(a,b)}(x, y, z, t)$ with the cone Ψ .

It is clear that knowledge of the plane $\pi_{(a,b)}$ is enough to reconstruct the codeword **c**. In the presence of errors, we are looking for the nearest codeword **c** to a vector **r**; this is the same as to determine the plane $\pi_{(a,b)}$ containing most of the points of $\tilde{\mathbf{r}}$. In order to obtain such a plane, we adopt the following approach. Assume ℓ to be a line of the plane $\pi_{0,0} : z = 0$ external to Ξ and denote by π_{∞} the plane at infinity of equation t = 0. For any $P \in \ell$, let $\tilde{\mathbf{r}}^P$ be the projection from P of the set $\tilde{\mathbf{r}}$ on π_{∞} . Write $\mathcal{L}^P_{\mathbf{r}}$ for a curve of π_{∞} of minimum degree containing $\tilde{\mathbf{r}}^P$. Observe that deg $\mathcal{L}^P_{\mathbf{r}} \leq q+1$ and deg $\mathcal{L}^P_{\mathbf{r}} = 1$ if, and only if, all the points of $\tilde{\mathbf{r}}$ lie on a same plane through P, that is $\tilde{\mathbf{r}}$ corresponds to a codeword associated with that plane passing through P.

We now can apply the following algorithm using, for example, [3].

- (1) Take $P \in \ell$;
- (2) Determine the projection \mathbf{r}^P and compute the curve $\mathcal{L}^P_{\mathbf{r}}$;
- (3) Factor $\mathcal{L}^{P}_{\mathbf{r}}$ into irreducible factors, say $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{v}$; (4) Count the number of points in $\tilde{\mathbf{r}}^{P} \cap V(\mathcal{L}_{i})$ for any factor \mathcal{L}_{i} of $\mathcal{L}^{P}_{\mathbf{r}}$ with deg $\mathcal{L}_i = 1$;
- (5) If for some i we have $n_i > (N+1)/2$, then return the plane spawned by P and two points of L_i ; else, as long as not all the points of ℓ have been considered, return to point 1;
- (6) If no curve with the required property has been found, return failure.

Remark 4.1. The condition on n_i in point (5) checks if the plane contains more than half of the points corresponding to the received word \mathbf{r} ; when this is the case, a putative codeword **c** is constructed, with $d(\mathbf{c}, \mathbf{r}) \leq (N-3)/2$; thus, when $\mathbf{c} \in \mathcal{C}$, then it is indeed the unique word of \mathcal{C} at minimum distance from **r**. However, the aforementioned algorithm may be altered in several ways, in order to be able to try to correct errors beyond the bound; possible approaches are:

- (1) iterate the procedure for all the points on ℓ and return the planes containing most of the points corresponding to the received vector;
- (2) use some further properties of the cone Ψ ; in particular, when Ξ is a conic it seems possible to improve the decoding by considering also the quadratic components of the curve $\mathcal{L}_{\mathbf{r}}^{P}$.

Remark 4.2. The choice of P on a line ℓ is due to the fact that any line of $\pi_{0,0}$ meets all the planes of PG(3,q). In general, we might have chosen ℓ to be just a blocking set disjoint from Ξ . If q is odd and $|\Lambda| = q + 1$, then the line ℓ is just an external line to a conic of $\pi_{0,0}$.

References

- 1. E. F. Assmus, Jr. and J. D. Key, *Designs and their codes*, Cambridge University Press, 1992.
- 2. S. N. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N, q^2)$, Canad J. Math. **18** (1966), 1161–1182.
- 3. GAP Groups, Algorithms, and Programming, Version 4.4, 2006, http://www. gap-system.org.
- 4. L. Giuzzi, Codici correttori, Springer-Verlag, 2006.
- 5. J. W. P. Hirschfeld, Projective geometries over finite fields, 2 ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
- 6. R. McEliece, Theory of information and coding, Cambridge University Press, 2002.
- 7. B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. (4) **70** (1965), 1–201.
- 8. R. C. Singleton, Maximum distance q-nary codes, IEEE Trans. Inf. Theory 10 (1964), no. 2, 116-118.
- 9. L. Staiger, On the weight distribution of linear codes having dual distance d' > k, IEEE Trans. Inf. Theory 35 (1989), no. 1, 186–188.

 M. Sudan, Decoding Reed Solomon codes beyond the error-correction bound, Journal of Complexity 13 (1997), no. 1, 180–193.

> DIPARTIMENTO DI MATEMATICA, POLITECNICO DI BARI, VIA G. AMENDOLA 126/B, 70126 BARI, ITALY *E-mail address*: a.aguglia@poliba.it *E-mail address*: l.giuzzi@poliba.it