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UNIQUELY CIRCULAR COLOURABLE AND UNIQUELY

FRACTIONAL COLOURABLE GRAPHS OF LARGE GIRTH

SHUYUAN LIN AND XUDING ZHU

ABSTRACT. Given any rational numbers r ≥ r′ > 2 and an integer g, we
prove that there is a graph G of girth at least g, which is uniquely circular
r-colourable and uniquely fractional r′-colourable. Moreover, the graph
G has maximum degree bounded by a number which depends on r and
r′ but does not depend on g.

1. INTRODUCTION

Suppose G is a graph with at least one edge and r ≥ 2 is a rational
number. A circular r-colouring of G is a mapping f : V(G) → [0, r) such
that for any edge xy of G, 1 ≤ | f (x) − f (y)| ≤ r − 1. We say G is circular r-
colourable if there is a circular r-colouring of G. The circular chromatic number
of G is defined as

χc(G) = inf{r : G is circular r-colourable}.

It is known that for any graph G, χ(G) = ⌈χc(G)⌉. Hence the circular
chromatic number of a graph is a refinement of its chromatic number.

Suppose f is a circular r-colouring of G. Then for any c ∈ [0, r) and for
τ ∈ {1,−1}, g : V(G) → [0, r) defined as g(x) = [c + τ f (x)]r is also a
circular r-colouring of G. (For a real number x and a positive real num-
ber r, we denote by [x]r the remainder of x dividing r, i.e., [x]r ∈ [0, r) is
the unique number for which x − [x]r is a multiple of r.) If f and g are
r-colourings of G such that g(x) = [c + τ f (x)]r for some c ∈ [0, r) and
τ ∈ {1,−1}, then we say f and g are equivalent circular r-colourings of G,
written as f ∼= g. It is obvious that ‘∼=’ is an equivalence relation. A graph
G is called uniquely circular r-colourable if up to equivalence, there is only
one circular r-colouring of G. It is proved in [10] that for any rational r ≥ 2,
for any integer g, there is a graph G of girth at least g which is uniquely
circular r-colourbale.
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Let I(G) be the family of independent sets of G. A fractional colouring f
of G is an assignment of nonnegative weights to independent sets of G, i.e.,
a mapping f : I(G) → R≥0, such that for each x ∈ V(G), ∑x∈I,I∈I f (I) = 1.

A fractional colouring f is called a fractional r-colouring of G if the sum

∑I∈I f (I) is equal to r. The fractional chromatic number of G, denoted by
χ f (G), is the least r such that G has a fractional r-colouring. We say that
a graph G is uniquely fractional r-colourable if there is exactly one fractional
r-colouring of G. I.e., there is a fractional r-colouring f of G and if f ′ is a
fractional r-colouring of G, then f (I) = f ′(I) for all I ∈ I(G). It is proved
in [5] that for any rational r ≥ 2, for any integer g, there is a uniquely
fractional r-colourable graph of girth at least g.

In this paper, we consider unique circular colourability and unique frac-
tional colourability simultaneously. It is known [12] that for any graph G,
χ f (G) ≤ χc(G). On the other hand, it is not difficult to show that for any

rationals 2 < r′ ≤ r, there is a graph G with χ f (G) = r′ and χc(G) = r.

In this paper, we prove that for any rationals 2 < r′ ≤ r, for any integer
g, there is a graph G of girth at least g such that G is uniquely fractional
r′-colourable, and at the same time, uniquely circular r-colourable. In par-
ticular, χ f (G) = r′ and χc(G) = r.

Both circular chromatic number and fractional chromatic number of a
graph can be defined through graph homomorphisms. Suppose G and H
are graphs. A homomorphism of G to H is a mapping f : V(G) → V(H) such
that { f (x), f (y)} ∈ E(H) whenever {x, y} ∈ E(G). A homomorphism
of G to H is also called an H-colouring of G. A graph G is said to be H-
colourable if there exists a homomorphism of G to H. A graph G is said to
be uniquely H-colourable, if there exists an H-colouring f of G such that f
is an onto homomorphism and for any other H-colouring f ′ of G, f ′ is the
composition f ◦ σ of f with an automorphism σ of H.

Note that a Kn-colouring of G is equivalent to an n-colouring of G, and
unique n-colourability of G is equivalent to unique Kn-colourability of G.
So the study of the chromatic number of a graph and unique colourability
of a graph can be carried out in terms of graph homomorphisms. The same
is true for the circular colouring.

For a pair of positive integers p, q such that p ≥ 2q. Let K p
q

be the

graph which has vertices {0, · · · , p − 1} and in which {i, j} is an edge if
and only if q ≤ |i − j| ≤ p − q. A K p

q
-colouring of a graph G is also called a

(p, q)-colouring of G. It is known [12] and easy to see that for any graph G,
χc(G) = inf{ p

q : G is K p
q
-colourable }. It is also easy to show that a graph G

is uniquely
p
q -colourable if and only if it is uniquely K p

q
-colourable.

The fractional chromatic number of a graph can be defined through graph
homomorphisms to Kneser graphs. Suppose n ≥ 2k are positive integers.

Let [n] = {0, 1, 2, · · · , n − 1} and denote by ([n]
k ) the set of all k-subsets of

[n]. The Kneser graph K(n, k) has vertex set V = ([n]
k ) in which two vertices
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A and B are adjacent if, when regarded as subsets of [n], they do not in-
tersect, i.e., A ∩ B = Ø. A homomorphism f from a graph G to K(n, k) is
also called a k-tuple n-colouring of G. Such a homomorphism f assigns to
each vertex x of G a set f (x) of k colours, and if x and y are adjacent, then
f (x) ∩ f (y) = Ø, i.e., no colour is assigned to two adjacent vertices. It is
known [9] that the fractional chromatic number of G is χ f (G) = min{ n

k : G

is K(n, k)-colourable }. However, unique fractional p/q-colourability is dif-
ferent from unique H-colourability for any graph H [5]. In particular, a
uniquely K(n, k)-colourable graph G maybe not uniquely fractional n/k-
colourable. This is due to the fact that a fractional n/k-colourable graph
may not be K(n, k)-colourable. On the other hand, it is proved in [5] that
if a graph G is uniquely K(pt, qt)-colourable for some integer t, and more-
over, for any integer t′, if G is K(pt′, qt′)-colourable, then G is uniquely
K(pt′, qt′)-colourable, then G is uniquely fractional p/q-colourable.

The purpose of this paper is to construct, for any 2 <
p′

q′ ≤ p
q , for any

integer g, a graph G of girth at least g such that (1): G is uniquely circular
p
q -colourable, and (2): G is uniquely fractional

p′

q′ -colourable.

2. MAIN RESULT AND SOME PRELIMINARIES

The main result of this paper is the following theorem:

Theorem 1. Given any two rational numbers 2 < r′ ≤ r, for any integer g,
there is a graph G of girth at least g such that G is uniquely circular r-colourable
and uniquely fractional r′-colourable. Moreover, the graph G has maximum degree
bounded by a number which depends on r and r′ but does not depend on g.

To prove Theorem 1, we shall first relax the condition on large girth and
prove that for any 2 < r′ ≤ r, there is a graph G′ which is uniquely circu-
lar r-colourable, and also uniquely fractional r′-colourable. Assume r = p

q

and r′ = p′

q′ . If
p
q = p′

q′ , then G′ = K p
q

is uniquely circular r-colourable

and uniquely fractional r-colourable. Assume
p
q >

p′

q′ . The graph which is

uniquely circular r-colourable, and also uniquely fractional r′-colourable is
constructed through graph product. For graphs G and H, the categorical
product G × H has vertex set {(x, y) : x ∈ V(G), y ∈ V(H)}. Two vertices
(x, y) and (x′, y′) are adjacent in G× H if and only if x and x′ are adjacent in
G, y and y′ are adjacent in G. We shall prove that if t is a large enough inte-
ger, then the categorical product graph K(p′t, q′t)× K p

q
is uniquely circular

r-colourable and uniquely fractional r′-colourable. The following lemma is
easy.

Lemma 2. For any 2 <
p′

q′ <
p
q , if t is a large enough integer, then K(p′t, q′t) ×

K p
q

is uniquely circular
p
q -colourable.
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Proof. Suppose H is a core graph, i.e., a graph which admits no homo-
morphism to any of its proper subgraphs. Let C(H) be the graph whose
vertices are all the mappings f : V(H) → V(H) which are not automor-
phisms, and whose edges are pairs { f , g} such that for any {x, y} ∈ E(H),
{ f (x), g(y)} ∈ E(H). Since H is a core graph and no vertex f of C(H) is
an automorphism, the graph C(H) is loopless. It is proved in [10] that if
χ(G) > χ(C(H)) then G × H is uniquely H-colourable. As χ(K(p′t, q′t)) =
(p′ − 2q′)t + 2 [6], it follows that if t > (χ(C(K p

q
)) − 2)/(p′ − 2q′), then

K(p′t, q′t) × K p
q

is uniquely K p
q
-colourable, and hence uniquely circular

p
q -

colourable. �

Lemma 3. For any 2 <
p′

q′ <
p
q and for any integer t, K(p′t, q′t)×K p

q
is uniquely

fractional
p′

q′ -colourable.

Proof. For each i ∈ {0, 1, · · · , p′t − 1}, let Ii = {x ∈ V(K(p′t, q′t)) : i ∈ x}
( recall that each vertex of K(p′t, q′t) is a q′t-subset of {0, 1, · · · , p′t − 1}
). Then Ii is a maximum independent set of K(p′t, q′t) and Ii × V(K p

q
) is

an independent set of K(p′t, q′t) × K p
q
. Let f : I(K(p′t, q′t) × K p

q
) → [0, 1]

be defined as f (Ii × V(K p
q
)) = 1/q′t for each i ∈ {0, 1, · · · , p′t − 1} and

f (I) = 0 for any other independent set I of K(p′t, q′t) × K p
q
. Then f is

a
p′

q′ -fractional colouring of K(p′t, q′t) × K p
q
. We need to prove that, up to

equivalence, f is the unique fractional
p′

q′ -colouring of K(p′t, q′t) × K p
q
.

Lemma 4. The independent sets Ii ×V(K p
q
) for i = 0, 1, · · · , p′t− 1 are the only

maximum independent sets of K(p′t, q′t) × K p
q
.

We shall delay the proof of Lemma 4 for a little while. Now we use

Lemma 4 to show that up to equivalence, f is the unique fractional
p′

q′ -

colouring of K(p′t, q′t) × K p
q
.

Assume g is a fractional
p′

q′ -coloring of K(p′t, q′t)×K p
q
. We need to prove

that for any independent set U of K(p′t, q′t) × K p
q
,

g(U) =

{

1/q′t if U = Ii × V(K p
q
) for some i ∈ {0, 1, · · · , p′t − 1}

0 otherwise.

It is well-known [9] that for any vertex transitive graph G, χ f (G) = |V(G)|
α(G)

and for any optimal fractional colouring f of G, f (I) = 0 if I is not a maxi-
mum independent set. By Lemma 4, Ii × V(K p

q
) for i = 0, 1, · · · , p′t − 1 are

the only maximum independent sets. Therefore g(I) = 0 if I 6= Ii × V(K p
q
)

for some i ∈ {0, 1, · · · , p′t − 1}.
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Assume there exists It such that g(It × V(K p
q
)) 6= 1/q′t. Without loss of

generality, assume g(It × V(K p
q
)) > 1/q′t. Since ∑

p′t−1
i=0 g(Ii × V(K p

q
)) = p′

q′ ,

there exist Ii1 × V(K p
q
), Ii2 × V(K p

q
), · · · , Iiq′ t

× V(K p
q
) such that ∑

q′t
t=1 g(Iit

×

V(K p
q
)) < 1. Let x = {i1, · · · , iq′t} ∈ V(K(p′t, q′t)). Since Ii1 × V(K p

q
), Ii2 ×

V(K p
q
), · · · , Iiq′ t

× V(K p
q
) are the only maximum independent sets contain-

ing (x, a) for any a ∈ V(K p
q
), it follows that ∑(x,a)∈I g(I) = ∑

q′t
t=1 g(Iit

×

V(K p
q
)) < 1, in contrary to the assumption that g is a fractional colouring

of K(p′t, q′t) × K p
q
. Therefore,

g(U) =

{

1/q′t if U = Ii × V(K p
q
) for some i ∈ {0, 1, · · · , p′t − 1}

0 otherwise.

i.e., K(p′t, q′t) × K p
q

is uniquely fractional
p′

q′ -colourable.

�

3. THE PROOF OF LEMMA 4

Problems concerning independent sets of the categorical product of graphs
have been studied in many papers. For example, Frankl [3] determined
the maximum size of independent set of the categorical product of Kneser
graphs. Ahlswede , Aydinian and Khachatrian [1] determined the size of
the maximum independent set of the categorical product of certain gen-
eralized Kneser graphs. The size of the maximum independent set of the
categorical product of a Kneser graph with a circular complete graph also
follows from a result in [13] concerning the fractional chromatic number of
such graphs. In Lemma 4, besides the size of a maximum independent set,
we need to determine the structure of all maximum independent sets of the
product of a Kneser graph with a circular complete graph. The proof given
below is a refinement of the corresponding argument in [13].

Assume that U is a maximum independent set of K(p′t, q′t) × K p
q

and

U 6= Ii × K p
q

for any i ∈ {0, 1, · · · , p′t − 1}.

For each vertex x of K(p′t, q′t), let Ux = {y ∈ K p
q

: (x, y) ∈ U}.

Claim 1. If {x, x′} ∈ E(K(p′t, q′t)) and Ux 6= Ø, Ux′ 6= Ø, then |Ux|+ |Ux′ | ≤
2q.

Proof. Assume {x, x′} ∈ E(K(p′t, q′t)) and |Ux|+ |Ux′ | > 2q. Since Ux 6= Ø
and Ux′ 6= Ø, it is known [13] and easily to verify directly that there exist
a ∈ Ux and b ∈ Ux′ such that {a, b} ∈ E(K p

q
). Then {(x, a), (x′, b)} ∈

E(K(p′t, q′t)× K p
q
), in contrary to the assumption that U is an independent

set of K(p′t, q′t) × K p
q
. �
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Claim 2. For any vertex x of K(p′t, q′t), either |Ux| < 2q or |Ux| = p.

Proof. Assume to the contrary that there exists x ∈ V(K(p′t, q′t)) such that
2q ≤ |Ux| < p. By Claim 1, for all y ∈ N(x), Uy = Ø. Therefore U′ =
U ∪ {(x, a) : a ∈ K p

q
− Ux} is an independent set of K(p′t, q′t) × K p

q
. Since

|Ux| < p, U′ is strictly larger than U. This is in contrary to our assumption
that U is a maximum independent set. �

Claim 3. For any vertex x of K(p′t, q′t), either Ux = V(K p
q
) or Ux = Ø.

Proof. Let Y = {x ∈ V(K(p′t, q′t)) : Ux = V(K p
q
)}. By Claim 1, for all

x ∈ N(Y), Ux = Ø. Let

U∗ = U ∩ (V(K(p′t, q′t))− N[Y]) × V(K p
q
).

Then U∗ is an independent set of (K(p′t, q′t)− N[Y])×K p
q
. If U∗ = Ø, then

we are done. Assume U∗ 6= Ø.
For each independent set Z of K(p′t, q′t) − N[Y], Z ∪ Y is an indepen-

dent set of K(p′t, q′t), and hence has cardinality |Z| + |Y| ≤ (p′t−1
q′t−1). There-

fore α(K(p′t, q′t) − N[Y]) ≤ (p′t−1
q′t−1) − |Y|. Since χ f (K(p′t, q′t) − N[Y]) ≤

χ f (K(p′t, q′t)) = p′

q′ , it follows that

|V(K(p′t, q′t) − N[Y])| ≤ α(K(p′t, q′t) − N[Y])χ f (K(p′t, q′t) − N[Y])

≤ (

(

p′t − 1

q′t − 1

)

− |Y|)
p′

q′
.

Since
p′

q′ <
p
q , this implies that

|V(K(p′t, q′t) − N[Y])|q + |Y|p <

(

p′t − 1

q′t − 1

)

p = |Ii × V(K p
q
)|. (1)

Let κ = max{|Ux| : x ∈ K(p′t, q′t) − N[Y]}. By Claim 2 and the defini-
tion of Y, we know that κ < 2q. If κ ≤ q, then by (1),

|U| ≤ |V(K(p′t, q′t) − N[Y])|q + |Y|p < |Ii × V(K p
q
)|.

This is in contrary to the assumption that U is a maximum independent set
of K(p′t, q′t) × K p

q
.

Thus we may assume that q < κ < 2q. For s = q + 1, q + 2, · · · , 2q − 1,
let Ys = {x ∈ V(K(p′t, q′t)) − N[Y] : |Ux| = s}.

Let q + 1 ≤ s0 < s1 < · · · < sm < 2q be the integers such that either
Ysi

6= Ø or Y2q−si
6= Ø.

And let Zsi
= {x ∈ V(K(p′t, q′t)) − N[Y] : |Ux| = 2q − si}

Ysi
= {x ∈ V(K(p′t, q′t)) − N[Y] : |Ux| = si}

and B = {x ∈ V(K(p′t, q′t)) − N[Y] : |Ux| = q}.
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Then

|U| = |Y|p + |B|q +
m

∑
i=0

(|Ysi
| + |Zsi

|)q −
m

∑
i=0

(|Zsi
| − |Ysi

|)(si − q).

Now we need the following lemma which is slightly different from Lemma
4.5 of [13], but can be proved the same way.

Lemma 5. Suppose α0, · · · , αm and β0, · · · , βm are positive real number such

that
βi

αi
≥ βi+1

αi+1
for i = 0, · · · , m − 1. If x0, · · · , xm are real numbers satisfying

∑
i
j=0 αjxj > 0 for all 0 ≤ i ≤ m, then ∑

i
j=0 β jxj > 0 for all 0 ≤ i ≤ m.

Let xi = |Zsi
| − |Ysi

|, βi = si − q, αi = 2q − si. Then βi > 0 and αi > 0 for
all i = 0, · · · , m and

|U| = |Y|p + |B|q +
m

∑
i=0

(|Ysi
| + |Zsi

|)q −
m

∑
j=0

β jxj

If ∑
i
j=0 αjxj > 0 for all i, then by Lemma 5, ∑

i
j=0 β jxj > 0. This implies

that
|U| = |Y|p + |B|q + ∑

m
i=0(|Ysi

| + |Zsi
|)q − ∑

m
j=0 β jxj

< |Y|p + |B|q + ∑
m
i=0(|Ysi

| + |Zsi
|)q

≤ |Y|p + |V(K(p′t, q′t) − N[Y])|q < |Ii × V(K p
q
)|.

This is in contrary to the assumption that U is a maximum independent
set of K(p′t, q′t) × K p

q
.

Thus we assume that ∑
i
j=0 αjxj ≤ 0 for some 0 ≤ i ≤ m. Let U′ be the

independent set of K(p′t, q′t) × K p
q

defined as

• U′
x = V(K p

q
) if x ∈ Ysj

for some j ≤ i;

• U′
x = Ø if x ∈ Zsj

for some j ≤ i;

• U′
x = Ux otherwise.

Then U′ is an independent set of K(p′t, q′t) × K p
q
, and

|U′| = |U| −
i

∑
j=0

|Zsj
|(2q − sj) +

i

∑
j=0

|Ysj
|(p − sj)

> |U| −
i

∑
j=0

|Zsj
|(2q − sj) +

i

∑
j=0

|Ysj
|(2q − sj)

≥ |U|.

This is again in contrary to the assumption that U is an maximum indepen-
dent set of K(p′t, q′t) × K p

q
.

It follows from Lemma 3 that U = I ×V(K p
q
) for some independent set I

of K(p′t, q′t). Since U is a maximum independent set of K(p′t, q′t)×K p
q
, we

conclude that I is a maximum independent set of K(p′t, q′t) and hence I =
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Ii for some i ∈ {0, 1, · · · , p′t − 1}, which is in contrary to our assumption.
This completes the proof of Lemma 4.

�

4. THE PROOF OF THEOREM 1

For arbitrary core graphs H, uniquely H-colourable graphs of large girth
have been studied in many papers. As observed before, unique circular
p/q-colourability of a graph is equivalent to the unique Kp/q-colourability

of the graph. However, unique fractional p′/q′-colourability is not equiva-
lent to unique H-colourability for any graph H. As noted in [5], if t is large
enough, then K(p′t, q′t) × K(p′, q′) is uniquely K(p′, q′)-colourable but not
uniquely fractional p′/q′-colourable. For this reason, the existing results
concerning uniquely H-colourable graphs of large girth cannot be applied
directly to obtain Theorem 1. Nevertheless, the proof of Theorem 1 be-
low is parallel to the existing probabilistic proofs concerning uniquely H-
colourable graphs of large girth.

Suppose F is an n vertex graph with vertices 0, 1, · · · , n − 1. Given a

positive integer m, we denote by F[m] = F[Km] the lexicographic product

of F and Km. In other words, for each vertex v of F, let v[m] be a set of
cardinality m. Then F[m] has vertex set ∪v∈V(F)v[m] such that x ∈ v[m] is

adjacent to x′ ∈ v′[m] if and only if {v, v′} is an edge of F.
It is proved in [9, 5] that for any integer g, there exists an integer m,

such that F[m] has a spanning subgraph G of girth at least g for which the
following hold:

(1) V(G) = W0 ∪ W1 ∪ · · · ∪ Wn−1 where Wi = i[m] for each i ∈ V(F).
(2) For any edge {v, v′} of F, for any X ⊆ v[m], Y ⊆ v′[m], if |X| ≥

m/40n and |Y| ≥ m/40n, then there is an edge (in G) between X
and Y.

(3) For any edge {v, v′} of F, for any X ⊆ v[m], Y ⊆ v′[m] with n ≤
|X| = n|Y| ≤ m

40 , there are less than |Y|n10/2 edges between X and
Y.

(4) For any edge {v, v′} of F, for any vertex x ∈ v[m], x has at least
n10/2 neighbours in v′[m].

(5) Each vertex of G has degree at most 5|V(F)|13.

If
p′

q′ = p
q , then let F = K p

q
. If 2 <

p′

q′ <
p
q , then let F = K(p′t, q′t) ×

K p
q
, where t is large enough so that F is uniquely circular

p
q -colourable. To

prove Theorem 1, we shall prove that the spanning subgraph G of F[m]
with properties (1) and (4) listed above is uniquely circular

p
q -colourable

and also uniquely fractional
p′

q′ -colourable. Property (5) implies that the

maximum degree of G is bounded by a number which does not depends
on g (but depends on p/q and p′/q′). As unique circular

p
q -colourability
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is equivalent to unique Kp/q-colourability, the following lemma is a special
case of Theorem 4 in [4].

Lemma 6. Suppose G is a spanning subgraph of F[m] with properties (1)-(4)
listed above. Then G is uniquely circular

p
q -colourable.

Lemma 7. Suppose G is a spanning subgraph of F[m] with properties (1)-(4)

listed above. Then G is uniquely fractional
p′

q′ -colourable.

Proof. Since G ⊆ F[m] and F is fractional
p′

q′ -colourable, it follows that

G is fractional
p′

q′ -colourable. To prove that G is uniquely fractional
p′

q′ -

colourable, it suffices to show that each maximum independent set of G
is of the form I[m] for a maximum independent set of I of F.

Let αF and αG be the size of the maximum independent set of F and G,
respectively.

Since G is a spanning subgraph of F[m], we have αG ≥ αFm. Assume
J ∈ I(G), |J| = αG ≥ αFm. Let v be a vertex of F, we denote by ϕ(v)
the size of v[m] ∩ J, i.e., ϕ(v) = |J ∩ v[m]|. Then, there exists an order of
V(F), {v1, v2, · · · , vn}, such that ϕ(v1) ≥ ϕ(v2) ≥ · · · ϕ(vn) ≥ 0. Since

∑
n
i=1 φ(vi) ≥ αFm, we have ϕ(v1) ≥ αFm

n , ϕ(v2) ≥ αFm−m
n , · · · , ϕ(vαF

) ≥
αFm−(αF−1)m

n−(αF−1)
≥ m

n .

Let I = {v1, v2, · · · , vαF
}. First we show that I is an independent set of F.

If not, then there exists vi, vj ∈ I such that {vi, vj} ∈ E(F). Since vi[m] ∩ J
has size ϕ(vi) ≥ m

n and vj[m] ∩ J has size ϕ(vj) ≥ m
n , there are subsets U

of vi[m] ∩ J and W of vj[m] ∩ J such that |U| = |W| = ⌈ m
40n⌉. However,

by Property (2), there exists an edge between U and W, contrary to the
assumption that J is an independent set of G.

Next we show that ϕ(xα+1) = 0. Assume to the contrary that if ϕ(xα+1) 6=
0, i.e., vα+1[m] ∩ J 6= Ø. Since I ∪ vα+1 is not independent set of F, there ex-
ists a vi ∈ I such that {vi, vα+1} is an edge of F. By Property (3), each vertex
in J ∩ vα+1[m] has at least n10/2 neighbours in vi[m]. As J ∩ vα+1[m] 6= Ø
and J is independent in G, it follows that |vi[m] − J| ≥ n10/2. Let W =
vi[m] − J and let β = |W|. Let ℓ = ϕ(vα+1). Since ϕ(vα+1) ≥ ϕ(vj) for
j = α + 1, · · · , n, it follows that β ≤ ℓ · (n − α) ≤ ℓ · n. So ℓ ≥ β/n.
Let U ⊆ vα+1[m] ∩ J be a subset of size β/n. Since each vertex of U has

at least t10

2 neighbours in vi[m] − J = W, we conclude that there are at

least t10

2 |U| edges between U and W. This is in contrary to Property (3).
Therefore ϕ(vα+1) = 0, i.e., if J is a maximum independent set of G, then
J = I[m] for some maximum independent set I of F. And we have Ii × K p

q

for i = 0, 1, · · · , p′t − 1 are the only maximum independent set of F with

size (p′t−1
q′t−1)p. Therefore, J = (Ii × K p

q
)[m] for some i = 0, 1, · · · , p′t − 1.
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Since G is a spanning subgraph of F[m], G is fractional
p′

q′ -colourable.

As |V(F)| = (p′t
q′t)p, we have |V(G)| = m(p′t

q′t)p, αG = αFm = (p′t−1
q′t−1)pm,

so χ f (G) ≥ |V(G)|
αG

= p′

q′ . Thus we know that χ f (G) = p′

q′ . Let Ji be

the maximum independent set of G such that Ji = (Ii × K p
q
)[m] for i =

0, 1, · · · , p′t − 1.
Let f : I(G) → [0, 1] such that

f (U) =

{

1/q′t if U = Ji for some i ∈ {0, 1, · · · , p′t − 1},

0 otherwise.

then we know that f is a proper fractional
p′

q′ -colouring of G.

Next we want to show that for any fractional
p′

q′ -g of G, g(I) = f (I) for

any independent set I of G. As χ f (G) = |V(G)|
αG

, for any optimal fractional

colouring g of G, g(I) = 0 if I is not a maximum independent set. As Ji for
i = 0, 1, · · · , p′t − 1 are the only maximum independent sets of G, we have
g(I) = 0 if I 6= Ji for some i ∈ {0, 1, · · · , p′t − 1}. It remains to show that

for any fractional
p′

q′ -colouring g of G.

g(U) =

{

1/q′t if U = Ji for some i ∈ {0, 1, · · · , p′t − 1},

0 otherwise.

This part is similar to the proof of Lemma 3 and omitted. �
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