Contributions to Discrete Mathematics

Volume 1, Number 1, Pages 57–67 ISSN 1715-0868

UNIQUELY CIRCULAR COLOURABLE AND UNIQUELY FRACTIONAL COLOURABLE GRAPHS OF LARGE GIRTH

SHUYUAN LIN AND XUDING ZHU

ABSTRACT. Given any rational numbers $r \ge r' > 2$ and an integer g, we prove that there is a graph G of girth at least g, which is uniquely circular r-colourable and uniquely fractional r'-colourable. Moreover, the graph G has maximum degree bounded by a number which depends on r and r' but does not depend on g.

1. INTRODUCTION

Suppose *G* is a graph with at least one edge and $r \ge 2$ is a rational number. A *circular r-colouring* of *G* is a mapping $f : V(G) \rightarrow [0, r)$ such that for any edge *xy* of $G, 1 \le |f(x) - f(y)| \le r - 1$. We say *G* is *circular r-colourable* if there is a circular *r*-colouring of *G*. The *circular chromatic number* of *G* is defined as

 $\chi_c(G) = \inf\{r : G \text{ is circular } r \text{-colourable}\}.$

It is known that for any graph G, $\chi(G) = \lceil \chi_c(G) \rceil$. Hence the circular chromatic number of a graph is a refinement of its chromatic number.

Suppose *f* is a circular *r*-colouring of *G*. Then for any $c \in [0, r)$ and for $\tau \in \{1, -1\}, g : V(G) \rightarrow [0, r)$ defined as $g(x) = [c + \tau f(x)]_r$ is also a circular *r*-colouring of *G*. (For a real number *x* and a positive real number *r*, we denote by $[x]_r$ the remainder of *x* dividing *r*, i.e., $[x]_r \in [0, r)$ is the unique number for which $x - [x]_r$ is a multiple of *r*.) If *f* and *g* are *r*-colourings of *G* such that $g(x) = [c + \tau f(x)]_r$ for some $c \in [0, r)$ and $\tau \in \{1, -1\}$, then we say *f* and *g* are *equivalent circular r-colourings* of *G*, written as $f \cong g$. It is obvious that ' \cong ' is an equivalence relation. A graph *G* is called uniquely circular *r*-colourable if up to equivalence, there is only one circular *r*-colouring of *G*. It is proved in [10] that for any rational $r \ge 2$, for any integer *g*, there is a graph *G* of girth at least *g* which is uniquely circular *r*-colourable.

Received by the editors May 5, 2005, and in revised form, Nov. 30, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. Uniquely circular *r*-colourable graphs, uniquely fractional r'-colourable graphs, graph homomorphism, graph product.

This research is partially supported by the National Science Council under grant NSC92-2115-M-110-007.

Let I(G) be the family of independent sets of *G*. A *fractional colouring f* of *G* is an assignment of nonnegative weights to independent sets of *G*, i.e., a mapping $f : I(G) \to R^{\geq 0}$, such that for each $x \in V(G)$, $\sum_{x \in I, I \in I} f(I) = 1$.

A fractional colouring f is called a *fractional r-colouring* of G if the sum $\sum_{I \in I} f(I)$ is equal to r. The *fractional chromatic number* of G, denoted by $\chi_f(G)$, is the least r such that G has a fractional r-colouring. We say that a graph G is *uniquely fractional r-colourable* if there is exactly one fractional r-colouring of G. I.e., there is a fractional r-colouring f of G and if f' is a fractional r-colouring of G, then f(I) = f'(I) for all $I \in I(G)$. It is proved in [5] that for any rational $r \ge 2$, for any integer g, there is a uniquely fractional r-colourable graph of girth at least g.

In this paper, we consider unique circular colourability and unique fractional colourability simultaneously. It is known [12] that for any graph G, $\chi_f(G) \leq \chi_c(G)$. On the other hand, it is not difficult to show that for any rationals $2 < r' \leq r$, there is a graph G with $\chi_f(G) = r'$ and $\chi_c(G) = r$. In this paper, we prove that for any rationals $2 < r' \leq r$, for any integer g, there is a graph G of girth at least g such that G is uniquely fractional r'-colourable, and at the same time, uniquely circular r-colourable. In particular, $\chi_f(G) = r'$ and $\chi_c(G) = r$.

Both circular chromatic number and fractional chromatic number of a graph can be defined through graph homomorphisms. Suppose *G* and *H* are graphs. A *homomorphism* of *G* to *H* is a mapping $f : V(G) \rightarrow V(H)$ such that $\{f(x), f(y)\} \in E(H)$ whenever $\{x, y\} \in E(G)$. A homomorphism of *G* to *H* is also called an *H*-colouring of *G*. A graph *G* is said to be *H*-colourable if there exists a homomorphism of *G* to *H*. A graph *G* is said to be *uniquely H*-colourable, if there exists an *H*-colouring *f* of *G* such that *f* is an onto homomorphism and for any other *H*-colouring *f'* of *G*, *f'* is the composition $f \circ \sigma$ of *f* with an automorphism σ of *H*.

Note that a K_n -colouring of G is equivalent to an n-colouring of G, and unique n-colourability of G is equivalent to unique K_n -colourability of G. So the study of the chromatic number of a graph and unique colourability of a graph can be carried out in terms of graph homomorphisms. The same is true for the circular colouring.

For a pair of positive integers p, q such that $p \ge 2q$. Let $K_{\frac{p}{q}}$ be the graph which has vertices $\{0, \dots, p-1\}$ and in which $\{i, j\}$ is an edge if and only if $q \le |i-j| \le p-q$. A $K_{\frac{p}{q}}$ -colouring of a graph *G* is also called a (p,q)-colouring of *G*. It is known [12] and easy to see that for any graph *G*, $\chi_c(G) = \inf\{\frac{p}{q}: G \text{ is } K_{\frac{p}{q}}\text{-colourable }\}$. It is also easy to show that a graph *G* is uniquely $\frac{p}{q}$ -colourable if and only if it is uniquely $K_{\frac{p}{q}}$ -colourable.

The fractional chromatic number of a graph can be defined through graph homomorphisms to Kneser graphs. Suppose $n \ge 2k$ are positive integers. Let $[n] = \{0, 1, 2, \dots, n-1\}$ and denote by $\binom{[n]}{k}$ the set of all *k*-subsets of [n]. The *Kneser graph* K(n,k) has vertex set $V = \binom{[n]}{k}$ in which two vertices A and *B* are adjacent if, when regarded as subsets of [n], they do not intersect, i.e., $A \cap B = \emptyset$. A homomorphism *f* from a graph *G* to K(n,k) is also called a *k*-tuple *n*-colouring of *G*. Such a homomorphism *f* assigns to each vertex *x* of *G* a set f(x) of *k* colours, and if *x* and *y* are adjacent, then $f(x) \cap f(y) = \emptyset$, i.e., no colour is assigned to two adjacent vertices. It is known [9] that the fractional chromatic number of *G* is $\chi_f(G) = \min\{\frac{n}{k} : G$ is K(n,k)-colourable }. However, unique fractional p/q-colourability is different from unique *H*-colourability for any graph *H* [5]. In particular, a uniquely K(n,k)-colourable graph *G* maybe not uniquely fractional n/k-colourable. This is due to the fact that a fractional n/k-colourable graph *G* is uniquely K(n,k)-colourable. On the other hand, it is proved in [5] that if a graph *G* is uniquely K(pt,qt)-colourable for some integer *t*, and moreover, for any integer *t'*, if *G* is K(pt',qt')-colourable, then *G* is uniquely K(pt',qt')-colourable.

The purpose of this paper is to construct, for any $2 < \frac{p'}{q'} \le \frac{p}{q}$, for any integer *g*, a graph *G* of girth at least *g* such that (1): *G* is uniquely circular $\frac{p}{q}$ -colourable, and (2): *G* is uniquely fractional $\frac{p'}{q'}$ -colourable.

2. MAIN RESULT AND SOME PRELIMINARIES

The main result of this paper is the following theorem:

Theorem 1. Given any two rational numbers $2 < r' \leq r$, for any integer g, there is a graph G of girth at least g such that G is uniquely circular r-colourable and uniquely fractional r'-colourable. Moreover, the graph G has maximum degree bounded by a number which depends on r and r' but does not depend on g.

To prove Theorem 1, we shall first relax the condition on large girth and prove that for any $2 < r' \leq r$, there is a graph G' which is uniquely circular r-colourable, and also uniquely fractional r'-colourable. Assume $r = \frac{p}{q}$ and $r' = \frac{p'}{q'}$. If $\frac{p}{q} = \frac{p'}{q'}$, then $G' = K_{\frac{p}{q}}$ is uniquely circular r-colourable and uniquely fractional r-colourable. Assume $\frac{p}{q} > \frac{p'}{q'}$. The graph which is uniquely circular r-colourable, and also uniquely fractional r'-colourable. Assume $\frac{p}{q} > \frac{p'}{q'}$. The graph which is uniquely circular r-colourable, and also uniquely fractional r'-colourable is constructed through graph product. For graphs G and H, the categorical product $G \times H$ has vertex set $\{(x, y) : x \in V(G), y \in V(H)\}$. Two vertices (x, y) and (x', y') are adjacent in $G \times H$ if and only if x and x' are adjacent in G, y and y' are adjacent in G. We shall prove that if t is a large enough integer, then the categorical product graph $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely circular r-colourable and uniquely fractional r'-colourable. The following lemma is easy.

Lemma 2. For any $2 < \frac{p'}{q'} < \frac{p}{q}$, if t is a large enough integer, then $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely circular $\frac{p}{q}$ -colourable.

Proof. Suppose *H* is a core graph, i.e., a graph which admits no homomorphism to any of its proper subgraphs. Let C(H) be the graph whose vertices are all the mappings $f : V(H) \to V(H)$ which are not automorphisms, and whose edges are pairs $\{f, g\}$ such that for any $\{x, y\} \in E(H)$, $\{f(x), g(y)\} \in E(H)$. Since *H* is a core graph and no vertex *f* of C(H) is an automorphism, the graph C(H) is loopless. It is proved in [10] that if $\chi(G) > \chi(C(H))$ then $G \times H$ is uniquely *H*-colourable. As $\chi(K(p't, q't)) = (p' - 2q')t + 2$ [6], it follows that if $t > (\chi(C(K_{\frac{p}{q}})) - 2)/(p' - 2q')$, then $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely $K_{\frac{p}{q}}$ -colourable, and hence uniquely circular $\frac{p}{q}$ -colourable.

Lemma 3. For any $2 < \frac{p'}{q'} < \frac{p}{q}$ and for any integer t, $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely fractional $\frac{p'}{q'}$ -colourable.

Proof. For each $i \in \{0, 1, \dots, p't - 1\}$, let $I_i = \{x \in V(K(p't, q't)) : i \in x\}$ (recall that each vertex of K(p't, q't) is a q't-subset of $\{0, 1, \dots, p't - 1\}$). Then I_i is a maximum independent set of K(p't, q't) and $I_i \times V(K_{\frac{p}{q}})$ is an independent set of $K(p't, q't) \times K_{\frac{p}{q}}$. Let $f : I(K(p't, q't) \times K_{\frac{p}{q}}) \to [0, 1]$ be defined as $f(I_i \times V(K_{\frac{p}{q}})) = 1/q't$ for each $i \in \{0, 1, \dots, p't - 1\}$ and f(I) = 0 for any other independent set I of $K(p't, q't) \times K_{\frac{p}{q}}$. Then f is a $\frac{p'}{q'}$ -fractional colouring of $K(p't, q't) \times K_{\frac{p}{q}}$. We need to prove that, up to equivalence, f is the unique fractional $\frac{p'}{q'}$ -colouring of $K(p't, q't) \times K_{\frac{p}{q}}$.

Lemma 4. The independent sets $I_i \times V(K_{\frac{p}{q}})$ for $i = 0, 1, \dots, p't - 1$ are the only maximum independent sets of $K(p't, q't) \times K_{\frac{p}{q}}$.

We shall delay the proof of Lemma 4 for a little while. Now we use Lemma 4 to show that up to equivalence, *f* is the unique fractional $\frac{p'}{q'}$ -colouring of $K(p't,q't) \times K_{\frac{p}{2}}$.

Assume *g* is a fractional $\frac{p'}{q'}$ -coloring of $K(p't, q't) \times K_{\frac{p}{q}}$. We need to prove that for any independent set *U* of $K(p't, q't) \times K_{\frac{p}{2}}$,

$$g(U) = \begin{cases} 1/q't & \text{if } U = I_i \times V(K_{\frac{p}{q}}) \text{ for some } i \in \{0, 1, \cdots, p't - 1\} \\ 0 & \text{otherwise.} \end{cases}$$

It is well-known [9] that for any vertex transitive graph G, $\chi_f(G) = \frac{|V(G)|}{\alpha(G)}$ and for any optimal fractional colouring f of G, f(I) = 0 if I is not a maximum independent set. By Lemma 4, $I_i \times V(K_{\frac{p}{q}})$ for $i = 0, 1, \dots, p't - 1$ are the only maximum independent sets. Therefore g(I) = 0 if $I \neq I_i \times V(K_{\frac{p}{q}})$ for some $i \in \{0, 1, \dots, p't - 1\}$. Assume there exists I_t such that $g(I_t \times V(K_{\frac{p}{q}})) \neq 1/q't$. Without loss of generality, assume $g(I_t \times V(K_{\frac{p}{q}})) > 1/q't$. Since $\sum_{i=0}^{p't-1} g(I_i \times V(K_{\frac{p}{q}})) = \frac{p'}{q'}$, there exist $I_{i_1} \times V(K_{\frac{p}{q}})$, $I_{i_2} \times V(K_{\frac{p}{q}})$, \cdots , $I_{i_{q't}} \times V(K_{\frac{p}{q}})$ such that $\sum_{t=1}^{q't} g(I_i \times V(K_{\frac{p}{q}})) < 1$. Let $x = \{i_1, \cdots, i_{q't}\} \in V(K(p't, q't))$. Since $I_{i_1} \times V(K_{\frac{p}{q}})$, $I_{i_2} \times V(K_{\frac{p}{q}})$, \cdots , $I_{i_{q't}} \times V(K_{\frac{p}{q}})$, $I_{i_2} \times V(K_{\frac{p}{q}})$, \cdots , $I_{i_{q't}} \times V(K_{\frac{p}{q}})$, i_t so containing (x, a) for any $a \in V(K_{\frac{p}{q}})$, it follows that $\sum_{(x,a) \in I} g(I) = \sum_{t=1}^{q't} g(I_i \times V(K_{\frac{p}{q}})) < 1$, in contrary to the assumption that g is a fractional colouring of $K(p't, q't) \times K_{\frac{p}{q}}$. Therefore,

$$g(U) = \begin{cases} 1/q't & \text{if } U = I_i \times V(K_{\frac{p}{q}}) \text{ for some } i \in \{0, 1, \cdots, p't - 1\} \\ 0 & \text{otherwise.} \end{cases}$$

i.e., $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely fractional $\frac{p'}{q'}$ -colourable.

3. The proof of Lemma 4

Problems concerning independent sets of the categorical product of graphs have been studied in many papers. For example, Frankl [3] determined the maximum size of independent set of the categorical product of Kneser graphs. Ahlswede , Aydinian and Khachatrian [1] determined the size of the maximum independent set of the categorical product of certain generalized Kneser graphs. The size of the maximum independent set of the categorical product of a Kneser graph with a circular complete graph also follows from a result in [13] concerning the fractional chromatic number of such graphs. In Lemma 4, besides the size of a maximum independent set, we need to determine the structure of all maximum independent sets of the product of a Kneser graph with a circular complete graph. The proof given below is a refinement of the corresponding argument in [13].

Assume that *U* is a maximum independent set of $K(p't, q't) \times K_{\frac{p}{q}}$ and

 $U \neq I_i \times K_{\frac{p}{q}}$ for any $i \in \{0, 1, \cdots, p't - 1\}$.

For each vertex x of K(p't, q't), let $U_x = \{y \in K_{\frac{p}{a}} : (x, y) \in U\}$.

Claim 1. *If* $\{x, x'\} \in E(K(p't, q't))$ *and* $U_x \neq \emptyset$ *,* $U_{x'} \neq \emptyset$ *, then* $|U_x| + |U_{x'}| \le 2q$ *.*

Proof. Assume $\{x, x'\} \in E(K(p't, q't))$ and $|U_x| + |U_{x'}| > 2q$. Since $U_x \neq \emptyset$ and $U_{x'} \neq \emptyset$, it is known [13] and easily to verify directly that there exist $a \in U_x$ and $b \in U_{x'}$ such that $\{a, b\} \in E(K_{\frac{p}{q}})$. Then $\{(x, a), (x', b)\} \in E(K(p't, q't) \times K_{\frac{p}{q}})$, in contrary to the assumption that U is an independent set of $K(p't, q't) \times K_{\frac{p}{q}}$.

Claim 2. For any vertex x of K(p't, q't), either $|U_x| < 2q$ or $|U_x| = p$.

Proof. Assume to the contrary that there exists $x \in V(K(p't, q't))$ such that $2q \leq |U_x| < p$. By Claim 1, for all $y \in N(x)$, $U_y = \emptyset$. Therefore $U' = U \cup \{(x, a) : a \in K_{\frac{p}{q}} - U_x\}$ is an independent set of $K(p't, q't) \times K_{\frac{p}{q}}$. Since $|U_x| < p$, U' is strictly larger than U. This is in contrary to our assumption that U is a maximum independent set.

Claim 3. For any vertex x of K(p't, q't), either $U_x = V(K_{\frac{p}{d}})$ or $U_x = \emptyset$.

Proof. Let $Y = \{x \in V(K(p't, q't)) : U_x = V(K_{\frac{p}{q}})\}$. By Claim 1, for all $x \in N(Y), U_x = \emptyset$. Let

$$U^* = U \cap (V(K(p't,q't)) - N[Y]) \times V(K_{\frac{p}{q}}).$$

Then U^* is an independent set of $(K(p't, q't) - N[Y]) \times K_{\frac{p}{q}}$. If $U^* = \emptyset$, then we are done. Assume $U^* \neq \emptyset$.

For each independent set *Z* of K(p't,q't) - N[Y], $Z \cup Y$ is an independent set of K(p't,q't), and hence has cardinality $|Z| + |Y| \le {p't-1 \choose q't-1}$. Therefore $\alpha(K(p't,q't) - N[Y]) \le {p't-1 \choose q't-1} - |Y|$. Since $\chi_f(K(p't,q't) - N[Y]) \le \chi_f(K(p't,q't)) = \frac{p'}{q'}$, it follows that

$$\begin{aligned} |V(K(p't,q't) - N[Y])| &\leq \alpha (K(p't,q't) - N[Y]) \chi_f(K(p't,q't) - N[Y]) \\ &\leq (\binom{p't-1}{q't-1} - |Y|) \frac{p'}{q'}. \end{aligned}$$

Since $\frac{p'}{q'} < \frac{p}{q}$, this implies that

$$|V(K(p't,q't) - N[Y])|q + |Y|p < \binom{p't-1}{q't-1}p = |I_i \times V(K_{\frac{p}{q}})|.$$
(1)

Let $\kappa = \max\{|U_x| : x \in K(p't, q't) - N[Y]\}$. By Claim 2 and the definition of *Y*, we know that $\kappa < 2q$. If $\kappa \le q$, then by (1),

$$|U| \leq |V(K(p't,q't) - N[Y])|q + |Y|p < |I_i \times V(K_{\frac{p}{q}})|$$

This is in contrary to the assumption that *U* is a maximum independent set of $K(p't, q't) \times K_{\frac{p}{2}}$.

Thus we may assume that $q < \kappa < 2q$. For $s = q + 1, q + 2, \dots, 2q - 1$, let $Y_s = \{x \in V(K(p't, q't)) - N[Y] : |U_x| = s\}$. Let $q + 1 \le s_0 < s_1 < \dots < s_m < 2q$ be the integers such that either

Let
$$q + 1 \leq s_0 < s_1 < \cdots < s_m < 2q$$
 be the integers such that elt $Y_{s_i} \neq \emptyset$ or $Y_{2q-s_i} \neq \emptyset$.

And let
$$Z_{s_i} = \{x \in V(K(p't,q't)) - N[Y] : |U_x| = 2q - s_i\}$$

 $Y_{s_i} = \{x \in V(K(p't,q't)) - N[Y] : |U_x| = s_i\}$
and $B = \{x \in V(K(p't,q't)) - N[Y] : |U_x| = q\}.$

Then

$$|U| = |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q - \sum_{i=0}^{m} (|Z_{s_i}| - |Y_{s_i}|)(s_i - q)$$

Now we need the following lemma which is slightly different from Lemma 4.5 of [13], but can be proved the same way.

Lemma 5. Suppose $\alpha_0, \dots, \alpha_m$ and β_0, \dots, β_m are positive real number such that $\frac{\beta_i}{\alpha_i} \geq \frac{\beta_{i+1}}{\alpha_{i+1}}$ for $i = 0, \dots, m-1$. If x_0, \dots, x_m are real numbers satisfying $\sum_{j=0}^{i} \alpha_j x_j > 0$ for all $0 \leq i \leq m$, then $\sum_{j=0}^{i} \beta_j x_j > 0$ for all $0 \leq i \leq m$.

Let $x_i = |Z_{s_i}| - |Y_{s_i}|$, $\beta_i = s_i - q$, $\alpha_i = 2q - s_i$. Then $\beta_i > 0$ and $\alpha_i > 0$ for all $i = 0, \dots, m$ and

$$|U| = |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q - \sum_{j=0}^{m} \beta_j x_j$$

If $\sum_{j=0}^{i} \alpha_j x_j > 0$ for all *i*, then by Lemma 5, $\sum_{j=0}^{i} \beta_j x_j > 0$. This implies that

$$\begin{aligned} |U| &= |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q - \sum_{j=0}^{m} \beta_j x_j \\ &< |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q \\ &\le |Y|p + |V(K(p't,q't) - N[Y])|q < |I_i \times V(K_{\frac{p}{2}})| \end{aligned}$$

This is in contrary to the assumption that *U* is a maximum independent set of $K(p't, q't) \times K_{\frac{p}{2}}$.

Thus we assume that $\sum_{j=0}^{i} \alpha_j x_j \leq 0$ for some $0 \leq i \leq m$. Let U' be the independent set of $K(p't, q't) \times K_{\frac{p}{q}}$ defined as

- $U'_x = V(K_{\frac{p}{a}})$ if $x \in Y_{s_j}$ for some $j \le i$;
- $U'_x = \emptyset$ if $x \in Z_{s_j}$ for some $j \le i$;
- $U'_x = U_x$ otherwise.

Then U' is an independent set of $K(p't, q't) \times K_{\frac{p}{a}}$, and

$$\begin{aligned} |U'| &= |U| - \sum_{j=0}^{i} |Z_{s_j}| (2q - s_j) + \sum_{j=0}^{i} |Y_{s_j}| (p - s_j) \\ &> |U| - \sum_{j=0}^{i} |Z_{s_j}| (2q - s_j) + \sum_{j=0}^{i} |Y_{s_j}| (2q - s_j) \\ &\ge |U|. \end{aligned}$$

This is again in contrary to the assumption that *U* is an maximum independent set of $K(p't, q't) \times K_{\frac{p}{2}}$.

It follows from Lemma 3 that $U = I \times V(K_{\frac{p}{q}})$ for some independent set I of K(p't, q't). Since U is a maximum independent set of $K(p't, q't) \times K_{\frac{p}{q}}$, we conclude that I is a maximum independent set of K(p't, q't) and hence I =

 I_i for some $i \in \{0, 1, \dots, p't - 1\}$, which is in contrary to our assumption. This completes the proof of Lemma 4.

4. The proof of Theorem 1

For arbitrary core graphs H, uniquely H-colourable graphs of large girth have been studied in many papers. As observed before, unique circular p/q-colourability of a graph is equivalent to the unique $K_{p/q}$ -colourability of the graph. However, unique fractional p'/q'-colourability is not equivalent to unique H-colourability for any graph H. As noted in [5], if t is large enough, then $K(p't,q't) \times K(p',q')$ is uniquely K(p',q')-colourable but not uniquely fractional p'/q'-colourable. For this reason, the existing results concerning uniquely H-colourable graphs of large girth cannot be applied directly to obtain Theorem 1. Nevertheless, the proof of Theorem 1 below is parallel to the existing probabilistic proofs concerning uniquely Hcolourable graphs of large girth.

Suppose *F* is an *n* vertex graph with vertices $0, 1, \dots, n-1$. Given a positive integer *m*, we denote by $F[m] = F[\overline{K_m}]$ the lexicographic product of *F* and $\overline{K_m}$. In other words, for each vertex *v* of *F*, let v[m] be a set of cardinality *m*. Then F[m] has vertex set $\bigcup_{v \in V(F)} v[m]$ such that $x \in v[m]$ is adjacent to $x' \in v'[m]$ if and only if $\{v, v'\}$ is an edge of *F*.

It is proved in [9, 5] that for any integer g, there exists an integer m, such that F[m] has a spanning subgraph G of girth at least g for which the following hold:

- (1) $V(G) = W_0 \cup W_1 \cup \cdots \cup W_{n-1}$ where $W_i = i[m]$ for each $i \in V(F)$.
- (2) For any edge $\{v, v'\}$ of *F*, for any $X \subseteq v[m]$, $Y \subseteq v'[m]$, if $|X| \ge m/40n$ and $|Y| \ge m/40n$, then there is an edge (in *G*) between *X* and *Y*.
- (3) For any edge $\{v, v'\}$ of *F*, for any $X \subseteq v[m]$, $Y \subseteq v'[m]$ with $n \leq |X| = n|Y| \leq \frac{m}{40}$, there are less than $|Y|n^{10}/2$ edges between *X* and *Y*.
- (4) For any edge $\{v, v'\}$ of *F*, for any vertex $x \in v[m]$, *x* has at least $n^{10}/2$ neighbours in v'[m].
- (5) Each vertex of *G* has degree at most $5|V(F)|^{13}$.

If $\frac{p'}{q'} = \frac{p}{q}$, then let $F = K_{\frac{p}{q}}$. If $2 < \frac{p'}{q'} < \frac{p}{q}$, then let $F = K(p't,q't) \times K_{\frac{p}{q}}$, where *t* is large enough so that *F* is uniquely circular $\frac{p}{q}$ -colourable. To prove Theorem 1, we shall prove that the spanning subgraph *G* of *F*[*m*] with properties (1) and (4) listed above is uniquely circular $\frac{p}{q}$ -colourable and also uniquely fractional $\frac{p'}{q'}$ -colourable. Property (5) implies that the maximum degree of *G* is bounded by a number which does not depends on *g* (but depends on p/q and p'/q'). As unique circular $\frac{p}{q}$ -colourability

is equivalent to unique $K_{p/q}$ -colourability, the following lemma is a special case of Theorem 4 in [4].

Lemma 6. Suppose G is a spanning subgraph of F[m] with properties (1)-(4) listed above. Then G is uniquely circular $\frac{p}{a}$ -colourable.

Lemma 7. Suppose G is a spanning subgraph of F[m] with properties (1)-(4) *listed above. Then G is uniquely fractional* $\frac{p'}{a'}$ *-colourable.*

Proof. Since $G \subseteq F[m]$ and F is fractional $\frac{p'}{q'}$ -colourable, it follows that G is fractional $\frac{p'}{q'}$ -colourable. To prove that G is uniquely fractional $\frac{p'}{q'}$ -colourable, it suffices to show that each maximum independent set of G is of the form I[m] for a maximum independent set of I of F.

Let α_F and α_G be the size of the maximum independent set of *F* and *G*, respectively.

Since *G* is a spanning subgraph of *F*[*m*], we have $\alpha_G \ge \alpha_F m$. Assume $J \in I(G)$, $|J| = \alpha_G \ge \alpha_F m$. Let *v* be a vertex of *F*, we denote by $\varphi(v)$ the size of $v[m] \cap J$, i.e., $\varphi(v) = |J \cap v[m]|$. Then, there exists an order of V(F), $\{v_1, v_2, \dots, v_n\}$, such that $\varphi(v_1) \ge \varphi(v_2) \ge \dots \varphi(v_n) \ge 0$. Since $\sum_{i=1}^{n} \phi(v_i) \ge \alpha_F m$, we have $\varphi(v_1) \ge \frac{\alpha_F m}{n}$, $\varphi(v_2) \ge \frac{\alpha_F m - m}{n}$, \dots , $\varphi(v_{\alpha_F}) \ge \frac{\alpha_F m - (\alpha_F - 1)m}{n - (\alpha_F - 1)} \ge \frac{m}{n}$.

Let $I = \{v_1, v_2, \dots, v_{\alpha_F}\}$. First we show that I is an independent set of F. If not, then there exists $v_i, v_j \in I$ such that $\{v_i, v_j\} \in E(F)$. Since $v_i[m] \cap J$ has size $\varphi(v_i) \geq \frac{m}{n}$ and $v_j[m] \cap J$ has size $\varphi(v_j) \geq \frac{m}{n}$, there are subsets U of $v_i[m] \cap J$ and W of $v_j[m] \cap J$ such that $|U| = |W| = \lceil \frac{m}{40n} \rceil$. However, by Property (2), there exists an edge between U and W, contrary to the assumption that J is an independent set of G.

Next we show that $\varphi(x_{\alpha+1}) = 0$. Assume to the contrary that if $\varphi(x_{\alpha+1}) \neq 0$, i.e., $v_{\alpha+1}[m] \cap J \neq \emptyset$. Since $I \cup v_{\alpha+1}$ is not independent set of F, there exists a $v_i \in I$ such that $\{v_i, v_{\alpha+1}\}$ is an edge of F. By Property (3), each vertex in $J \cap v_{\alpha+1}[m]$ has at least $n^{10}/2$ neighbours in $v_i[m]$. As $J \cap v_{\alpha+1}[m] \neq \emptyset$ and J is independent in G, it follows that $|v_i[m] - J| \geq n^{10}/2$. Let $W = v_i[m] - J$ and let $\beta = |W|$. Let $\ell = \varphi(v_{\alpha+1})$. Since $\varphi(v_{\alpha+1}) \geq \varphi(v_j)$ for $j = \alpha + 1, \dots, n$, it follows that $\beta \leq \ell \cdot (n - \alpha) \leq \ell \cdot n$. So $\ell \geq \beta/n$. Let $U \subseteq v_{\alpha+1}[m] \cap J$ be a subset of size β/n . Since each vertex of U has at least $\frac{t^{10}}{2}|U|$ edges between U and W. This is in contrary to Property (3). Therefore $\varphi(v_{\alpha+1}) = 0$, i.e., if J is a maximum independent set of G, then J = I[m] for some maximum independent set I of F. And we have $I_i \times K_{\frac{p}{q}}$ for $i = 0, 1, \dots, p't - 1$ are the only maximum independent set of F with size $\binom{p't-1}{q't-1}p$. Therefore, $J = (I_i \times K_{\frac{p}{q}})[m]$ for some $i = 0, 1, \dots, p't - 1$.

Since *G* is a spanning subgraph of F[m], *G* is fractional $\frac{p'}{q'}$ -colourable. As $|V(F)| = \binom{p't}{q't}p$, we have $|V(G)| = m\binom{p't}{q't}p$, $\alpha_G = \alpha_F m = \binom{p't-1}{q't-1}pm$, so $\chi_f(G) \ge \frac{|V(G)|}{\alpha_G} = \frac{p'}{q'}$. Thus we know that $\chi_f(G) = \frac{p'}{q'}$. Let J_i be the maximum independent set of *G* such that $J_i = (I_i \times K_{\frac{p}{q}})[m]$ for $i = 0, 1, \dots, p't - 1$.

Let
$$f: I(G) \rightarrow [0,1]$$
 such that

$$f(U) = \begin{cases} 1/q't & \text{if } U = J_i \text{ for some } i \in \{0, 1, \cdots, p't - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

then we know that *f* is a proper fractional $\frac{p'}{q'}$ -colouring of *G*.

Next we want to show that for any fractional $\frac{p'}{q'} \cdot g$ of G, g(I) = f(I) for any independent set I of G. As $\chi_f(G) = \frac{|V(G)|}{\alpha_G}$, for any optimal fractional colouring g of G, g(I) = 0 if I is not a maximum independent set. As J_i for $i = 0, 1, \dots, p't - 1$ are the only maximum independent sets of G, we have g(I) = 0 if $I \neq J_i$ for some $i \in \{0, 1, \dots, p't - 1\}$. It remains to show that for any fractional $\frac{p'}{q'}$ -colouring g of G.

$$g(U) = \begin{cases} 1/q't & \text{if } U = J_i \text{ for some } i \in \{0, 1, \cdots, p't - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

This part is similar to the proof of Lemma 3 and omitted.

REFERENCES

- R. Ahlswede, H. Aydinian and L.H. Khachatrian, The intersection theorem for direct products, *Europ. J. Combinatorics*, **19** (1998), 649–661.
- [2] T. Emden-Weibert, S. Hougardy and B. Kreuter, Uniquely colourable graphs and the hardness of colouring graphs of large girth, Combinatorics, *Probability and Computing* 7 (1998), 375–386.
- [3] P. Frankl, An Erdős-Ko-Rado Theorem for direct products, *Europ. J. Combinatorics* 17 (1996), 727–730.
- [4] H. Hajiabolhassan and X. Zhu, Sparse H-colourable graphs of bounded maximum degree, Graphs and Combinatorics 20 (2004) 65–71
- [5] S. Lin and X. Zhu, Uniquely fractional *r*-colourable graphs of bounded maximum, degree and large girth, March 2004.
- [6] L. Lovasz, Kneser's conjecture, chromatic number and homotopy, J. Comb. Theory, Ser. A 25 (1978), 319-324.
- [7] J. Nešetřil and X. Zhu, On Sparse Graphs with Given Colorings and Homomorphisms, J. Comb. Theory Series B 90 (2004), 161–172.
- [8] Z. Pan and X. Zhu, Graphs of large girth with prescribed circular coloring, *Graphs and Combinatorics* 21 (2005), 119–129.
- [9] E. R. Scheinerman, D. H. Ullman, Fractional Graph Theory, Wiley-Interscience Series in Discrete Mathematics and Optimization (John Wiley & Son, New York, 1997).
- [10] X. Zhu, Uniquely *H*-colorable graphs with large girth, *Journal of Graph Theory* 41 (1996), 33–41.

- [11] X. Zhu, Construction of Uniquely *H*-colorable Graphs, *Journal of Graph Theory* **30** (1999), 1–6.
- [12] X. Zhu, Circular chromatic number, a survey, *Taiwanese Journal of Mathematics* 4 (2000), 643–660.
- [13] X. Zhu, The Fractional chromatic number of the direct product of graphs, *Glasgow Math. J.* **44** (2002), 103–105.

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: zhu@math.nsysu.edu.tw

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KA-OHSIUNG 80424, TAIWAN, AND NATIONAL CENTER FOR THEORETICAL SCIENCES, ROC *E-mail address*: zhu@math.nsysu.edu.tw