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UNIQUELY CIRCULAR COLOURABLE AND UNIQUELY
FRACTIONAL COLOURABLE GRAPHS OF LARGE GIRTH

SHUYUAN LIN AND XUDING ZHU

ABSTRACT. Given any rational numbers r > ¥/ > 2 and an integer g, we
prove that there is a graph G of girth at least g, which is uniquely circular
r-colourable and uniquely fractional #’-colourable. Moreover, the graph
G has maximum degree bounded by a number which depends on r and
7' but does not depend on g.

1. INTRODUCTION

Suppose G is a graph with at least one edge and r > 2 is a rational
number. A circular r-colouring of G is a mapping f : V(G) — [0,r) such
that for any edge xy of G, 1 < |f(x) — f(y)| < r — 1. We say G is circular r-
colourable if there is a circular r-colouring of G. The circular chromatic number
of G is defined as

Xc(G) = inf{r: G is circular r-colourable}.

It is known that for any graph G, x(G) = [x.(G)]|. Hence the circular
chromatic number of a graph is a refinement of its chromatic number.

Suppose f is a circular r-colouring of G. Then for any ¢ € [0,7) and for
T e {1,-1}, g : V(G) — [0,r) defined as g(x) = [c + Tf(x)], is also a
circular r-colouring of G. (For a real number x and a positive real num-
ber r, we denote by [x], the remainder of x dividing 7, i.e., [x], € [0,7) is
the unique number for which x — [x], is a multiple of r.) If f and g are
r-colourings of G such that g(x) = [c + Tf(x)], for some ¢ € [0,7) and
T € {1,—1}, then we say f and g are equivalent circular r-colourings of G,
written as f = g. It is obvious that ‘2’ is an equivalence relation. A graph
G is called uniquely circular r-colourable if up to equivalence, there is only
one circular r-colouring of G. It is proved in [10] that for any rational r > 2,
for any integer g, there is a graph G of girth at least ¢ which is uniquely
circular r-colourbale.
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Let I(G) be the family of independent sets of G. A fractional colouring f
of G is an assignment of nonnegative weights to independent sets of G, i.e.,
amapping f : I(G) — R=?, such that for each x € V(G), Lcj e f(I) = 1.

A fractional colouring f is called a fractional r-colouring of G if the sum
Y.icr f(I) is equal to r. The fractional chromatic number of G, denoted by
Xf(G), is the least r such that G has a fractional r-colouring. We say that
a graph G is uniquely fractional r-colourable if there is exactly one fractional
r-colouring of G. Le., there is a fractional r-colouring f of G and if f" is a
fractional r-colouring of G, then f(I) = f'(I) for all I € I(G). It is proved
in [5] that for any rational r > 2, for any integer g, there is a uniquely
fractional r-colourable graph of girth at least g.

In this paper, we consider unique circular colourability and unique frac-
tional colourability simultaneously. It is known [12] that for any graph G,
Xf(G) < xc(G). On the other hand, it is not difficult to show that for any
rationals 2 < 7’ < 7, there is a graph G with x¢(G) = 7" and x.(G) = r.
In this paper, we prove that for any rationals 2 < r’ < r, for any integer
g, there is a graph G of girth at least ¢ such that G is uniquely fractional
r'-colourable, and at the same time, uniquely circular r-colourable. In par-
ticular, xs(G) =" and x.(G) =r.

Both circular chromatic number and fractional chromatic number of a
graph can be defined through graph homomorphisms. Suppose G and H
are graphs. A homomorphism of G to H is amapping f : V(G) — V(H) such
that {f(x), f(y)} € E(H) whenever {x,y} € E(G). A homomorphism
of G to H is also called an H-colouring of G. A graph G is said to be H-
colourable if there exists a homomorphism of G to H. A graph G is said to
be uniquely H-colourable, if there exists an H-colouring f of G such that f
is an onto homomorphism and for any other H-colouring f’ of G, f’ is the
composition f o ¢ of f with an automorphism ¢ of H.

Note that a Kj,-colouring of G is equivalent to an n-colouring of G, and
unique n-colourability of G is equivalent to unique Kj,-colourability of G.
So the study of the chromatic number of a graph and unique colourability
of a graph can be carried out in terms of graph homomorphisms. The same
is true for the circular colouring.

For a pair of positive integers p,q such that p > 29. Let K» be the

q
graph which has vertices {0,---,p — 1} and in which {i,} is an edge if
and only if g < |i — j| < p —g. A Kp-colouring of a graph G is also called a

q
(p, q)-colouring of G. It is known [12] and easy to see that for any graph G,
xc(G) = inf{s : G is Kp-colourable }. It is also easy to show that a graph G
q

. . E_ . . oy . _
is uniquely g colourable if and only if it is uniquely K»-colourable.

The fractional chromatic number of a graph can be defined through graph
homomorphisms to Kneser graphs. Suppose n > 2k are positive integers.

Let [n] = {0,1,2,--- ,n — 1} and denote by ([Z]) the set of all k-subsets of
[n]. The Kneser graph K(n, k) has vertex set V = ([Z]) in which two vertices
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A and B are adjacent if, when regarded as subsets of [1], they do not in-
tersect, i.e., AN B = &. A homomorphism f from a graph G to K(n, k) is
also called a k-tuple n-colouring of G. Such a homomorphism f assigns to
each vertex x of G a set f(x) of k colours, and if x and y are adjacent, then
f(x)N f(y) = G, i.e., no colour is assigned to two adjacent vertices. It is
known [9] that the fractional chromatic number of G is x¢(G) = min{{ : G
is K(n, k)-colourable }. However, unique fractional p/g-colourability is dif-
ferent from unique H-colourability for any graph H [5]. In particular, a
uniquely K(n, k)-colourable graph G maybe not uniquely fractional 7 /k-
colourable. This is due to the fact that a fractional n/k-colourable graph
may not be K(n, k)-colourable. On the other hand, it is proved in [5] that
if a graph G is uniquely K(pt, gt)-colourable for some integer f, and more-
over, for any integer t/, if G is K(pt’,qt’')-colourable, then G is uniquely
K(pt', qt")-colourable, then G is uniquely fractional p/g-colourable.

The purpose of this paper is to construct, for any 2 < 5—,/ < g, for any
integer g, a graph G of girth at least g such that (1): G is uniquely circular

g—colourable, and (2): G is uniquely fractional %—colourable.

2. MAIN RESULT AND SOME PRELIMINARIES
The main result of this paper is the following theorem:

Theorem 1. Given any two rational numbers 2 < ' < r, for any integer g,
there is a graph G of girth at least g such that G is uniquely circular r-colourable
and uniquely fractional v'-colourable. Moreover, the graph G has maximum degree
bounded by a number which depends on r and v’ but does not depend on g.

To prove Theorem 1, we shall first relax the condition on large girth and
prove that for any 2 < #' < r, there is a graph G’ which is uniquely circu-
lar r-colourable, and also uniquely fractional 7’-colourable. Assume r = g

! !
and ¥ = %. If g = %, then G’ = Ky is uniquely circular r-colourable
q

and uniquely fractional r-colourable. Assume % > Z—,/. The graph which is
uniquely circular r-colourable, and also uniquely fractional #’-colourable is
constructed through graph product. For graphs G and H, the categorical
product G x H has vertex set {(x,y) : x € V(G),y € V(H)}. Two vertices
(x,y) and (x’,y’) are adjacentin G x H if and only if x and x” are adjacent in
G, y and ' are adjacent in G. We shall prove that if ¢ is a large enough inte-
ger, then the categorical product graph K(p't, q't) x Kp is uniquely circular
q
r-colourable and uniquely fractional r’-colourable. The following lemma is
easy.

Lemma 2. Forany 2 < Z—,, < %, if t is a large enough integer, then K(p't, q't) x
Ky is uniquely circular g—coloumble.
q
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Proof. Suppose H is a core graph, i.e., a graph which admits no homo-
morphism to any of its proper subgraphs. Let C(H) be the graph whose
vertices are all the mappings f : V(H) — V(H) which are not automor-
phisms, and whose edges are pairs { f, g} such that for any {x,y} € E(H),
{f(x),g(y)} € E(H). Since H is a core graph and no vertex f of C(H) is
an automorphism, the graph C(H) is loopless. It is proved in [10] that if
X(G) > x(C(H)) then G x H is uniquely H-colourable. As x(K(p't,q't)) =
(p' —24")t + 2 [6], it follows that if t > (X(C(K%)) —2)/(p' —2q'), then

K(p't,q't) x Kp is uniquely Kp-colourable, and hence uniquely circular g—
q q
colourable. O
Lemma 3. Forany 2 < Z—,, < g and for any integer t, K(p't, q't) x Ky is uniquely
q

/
fractional %—coloumble.

Proof. Foreachi € {0,1,---,p't —1},1let ; = {x € V(K(p't, q't)) : i € x}

( recall that each vertex of K(p't,q't) is a q't-subset of {0,1,---,p't — 1}

). Then I; is a maximum independent set of K(p't,q't) and I; x V(K») is
q

an independent set of K(p't,q't) x Ky. Let f : I(K(p't,q't) x K») — [0,1]
q q
be defined as f(I; x V(Kr)) = 1/4't for each i € {0,1,---,p't — 1} and
q
f(I) = 0 for any other independent set I of K(p't,q't) x K. Then f is
q

a Z—:—fractional colouring of K(p't,q't) x Kr. We need to prove that, up to
q

equivalence, f is the unique fractional Z—:—colouring of K(p't,q't) x K.
q

Lemma 4. The independent sets I; x V(Kp ) fori =0,1,-- -, p't — 1 are the only
q

maximum independent sets of K(p't, q't) x Kp.
q

We shall delay the proof of Lemma 4 for a little while. Now we use
Lemma 4 to show that up to equivalence, f is the unique fractional %-
colouring of K(p't,q't) x K».

q
Assume g is a fractional %—coloring of K(p't,q't) x Kr. We need to prove
q
that for any independent set U of K(p't,q't) x Ky,
q

1/q't ifU =1 x V(Kp) forsomei € {0,1,---,p't — 1}
(u) = q
0 otherwise.
— VG|
a(G)
and for any optimal fractional colouring f of G, f(I) = 0 if I is not a maxi-
mum independent set. By Lemma 4, [; x V(Ky) fori =0,1,--- ,p't — 1 are

Itis well-known [9] that for any vertex transitive graph G, x¢(G)

q
the only maximum independent sets. Therefore g(I) = 0if I # I; x V(K»)
q
forsomei € {0,1,---,p't —1}.
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Assume there exists I; such that g(I; x V(K v)) 7& 1/4't. Without loss of
generality, assume g(I; x V(K»)) > 1/4't. Smcez 0 el % V(Kp)) =
q

there exist I;; x V(Kp), I;, x V(Kp),- - i, % V(Kp) such that Zt lg(
q q
V(Kp)) < 1. Letx = {i;,---,ig:} € V(K(p't,q't)). SlnceI X V(Kp) L, x

?r

g) x lq, x V(K p) are the only maximum independent sets contam-
q

(K
ing (x,a) for any a € V(Kp) it follows that )7, ,c; (1) = Zt 1g(
(Kr)) < 1, in contrary to the assumption that g is a fractional colourmg
p't,q't) x K - Therefore,

1/q't fU =1 x V(Kp) forsomei € {0,1,---,p't —1}
g(U) = . ’
0 otherwise.

ie., K(p't,q't) x Ky is uniquely fractional Z—:—colourable.
q

3. THE PROOF OF LEMMA 4

Problems concerning independent sets of the categorical product of graphs
have been studied in many papers. For example, Frankl [3] determined
the maximum size of independent set of the categorical product of Kneser
graphs. Ahlswede , Aydinian and Khachatrian [1] determined the size of
the maximum independent set of the categorical product of certain gen-
eralized Kneser graphs. The size of the maximum independent set of the
categorical product of a Kneser graph with a circular complete graph also
follows from a result in [13] concerning the fractional chromatic number of
such graphs. In Lemma 4, besides the size of a maximum independent set,
we need to determine the structure of all maximum independent sets of the
product of a Kneser graph with a circular complete graph. The proof given
below is a refinement of the corresponding argument in [13].

Assume that U is a maximum independent set of K(p't,q't) x K 2 and

U# I xKp foranyie€ {0,1,---,p't —1}.
q
For each vertex x of K(p't,q't), let Uy = {y € Ky : (x,y) € U}.
q

Claim 1. If {x,x'} € E(K(p't,q't)) and Uy # @, Uy # D, then |Uy| + |Uy| <
2q.

Proof. Assume {x,x'} € E(K(p't,q't)) and |Uy| + |U,| > 24. Since Uy # O
and U, # O, it is known [13] and easily to verify directly that there exist
a € Uy and b € Uy such that {a,b} € E(Ky). Then {(x,a),(x’,b)} €

q
E(K(p't,q't) x Kr), in contrary to the assumption that U is an independent
q
set of K(p't,q't) x Kp. O
q
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Claim 2. For any vertex x of K(p't,q't), either |Uy| < 2q or |Uy| = p.

Proof. Assume to the contrary that there exists x € V(K(p't,q't)) such that

2q < |Uy| < p. By Claim 1, for all y € N(x), U, = @. Therefore U’ =

UU{(x,a) :a € Kr — Uy} is an independent set of K(p't, q't) x K». Since
q q

|Uy| < p, U is strictly larger than U. This is in contrary to our assumption

that U is a maximum independent set. t

Claim 3. For any vertex x of K(p't,q't), either U, = V(Kp) or Uy, = @.
q

Proof. Let Y = {x € V(K(p't,q't)) : Uy = V(Kp)}. By Claim 1, for all
q
x € N(Y), Uy = @. Let
U*=un(V(K(p't,g't)) — N[Y]) x V(Ky).
q

Then U* is an independent set of (K(p't, q't) — N[Y]) x Kp. If U* = &, then
q

we are done. Assume U* # .
For each independent set Z of K(p't,q't) — N[Y], ZUY is an indepen-

dent set of K(p't, q't), and hence has cardinality |Z| + |Y| < (Z,Ifj) There-

fore a(K(p't,q't) — N[Y]) < (Z::j) —[Y]. Since x¢(K(p't,q't) — N[Y]) <

xf(K(p't,q't)) = Z—,/, it follows that
[V(K(p't,q't) = N[YD)| < a(K(p't,q't) = N[YD)xr(K(p't,q't) — N[Y])

/t _ 1 /
<((P421) -mE.
q't—1 q
Since Z—,/ < g, this implies that
/

VKt g) - NI+ Ivlp < (BT )p=lx vkl )

Let x = max{|Uy| : x € K(p't,q't) — N[Y]}. By Claim 2 and the defini-
tion of Y, we know that x < 2g. If x < g, then by (1),

ul < [VK(p'tq't) = NYDIg+ [Y[p <[l x V(Ky)].
This is in contrary to the assumption that U is a maximum independent set
of K(p't,q't) x Kp.
q

Thus we may assume that g < ¥ < 2q. Fors = g+1,9+2,---,29 -1,
letYs = {x € V(K(p't,q't)) — N[Y] : |Uy| = s}.

Letg+1 < sp <51 < --- < sy < 2q be the integers such that either
Y5, #Dor Yo, 5, # Q.

Andlet Z; ={xe€ V(K(p't,q't)) — N[Y]:|Ux| =29 —s;}
Y, ={x € V(K(p't,q't)) = N[Y] : |Ux| = s}
and B ={xe V(K(p't,g't)) — N[Y] : |Ux| = q}.

==
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Then

m

Ul = |Y|p+ [Blg + }_(IYs| +12ZsD)g = Y (1Zs] = [Ys, D (si — 9).

=0 =0
Now we need the following lemma which is slightly different from Lemma
4.5 of [13], but can be proved the same way.
Lemma 5. Suppose g, - -+ , &, and Bo,- - -, Bm are positive real number such
thqt % > %for i1=0,---,m—1. Ifxo,- -+, X are real numbers satisfying
Z}‘:o ajxj > 0 forall 0 < i < m, then Z}:o Bijxj > 0forall0 <i < m.

Letx; = |Zs,| — |Ys,|, Bi = si — g, ai = 29 — s;. Then B; > 0 and a; > O for
alli=0,---,mand

m m
Ul = [Y[p+[Blg+ ) (1Ys] +1Zs1)g = }_ Bjx;
i=0 j=0

If E}:o ajxj > 0 for all i, then by Lemma 5, Z;':o Bjxj > 0. This implies
that
Ul = [Ylp+ Blg + Lo (|Ys,| +1Zs1)g — Lo Bj%j
< |[Y[p +[Blg + LiZo(|Ys,| +1Z51)q
< [Ylp+[V(K(p't,q't) = N[Y])lg < |Ii x V(Kp)|.

This is in contrary to the assumption that U is a maximum independent
set of K(p't, q't) x K.
q .
Thus we assume that };_oa;x; < 0 for some 0 < i < m. Let U’ be the
independent set of K(p't, q't) x K, defined as
q
e U.=V(Kp)ifx € Y;; for some j < i;
q
o U =0Qifx e Zs, for some j < i;
e U/ = U, otherwise.
Then U’ is an independent set of K(p't,q't) x K, and
q

'l = juf- Z(;)IZsjl(Zq —sj) + ;)|Ysj|(l9_5j)
j= j=

> (U= 125129 —55) + ) [Y5[(29 = 55)
j=0 j=0

> |ul.

This is again in contrary to the assumption that U is an maximum indepen-
dent set of K(p't, q't) x K».
q

It follows from Lemma 3 that U = I x V(K7 ) for some independent set I
q
of K(p't,q't). Since U is a maximum independent set of K(p't, q't) x Kp, we
q

conclude that I is a maximum independent set of K(p’t, q't) and hence I =
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I forsomei € {0,1,---,p't — 1}, which is in contrary to our assumption.
This completes the proof of Lemma 4.
O

4. THE PROOF OF THEOREM 1

For arbitrary core graphs H, uniquely H-colourable graphs of large girth
have been studied in many papers. As observed before, unique circular
p/q-colourability of a graph is equivalent to the unique K, /,;-colourability
of the graph. However, unique fractional p’/g’-colourability is not equiva-
lent to unique H-colourability for any graph H. As noted in [5], if ¢ is large
enough, then K(p't, q't) x K(p',q’) is uniquely K(p’, 4’)-colourable but not
uniquely fractional p’/¢’-colourable. For this reason, the existing results
concerning uniquely H-colourable graphs of large girth cannot be applied
directly to obtain Theorem 1. Nevertheless, the proof of Theorem 1 be-
low is parallel to the existing probabilistic proofs concerning uniquely H-
colourable graphs of large girth.

Suppose F is an n vertex graph with vertices 0,1,--- ,n — 1. Given a
positive integer m, we denote by F[m] = F[K,] the lexicographic product
of F and K. In other words, for each vertex v of F, let v[m] be a set of
cardinality m. Then F[m] has vertex set Uycy(p)v[m] such that x € v[m] is
adjacent to x’ € v'[m] if and only if {v, v’} is an edge of F.

It is proved in [9, 5] that for any integer g, there exists an integer m,
such that F[m] has a spanning subgraph G of girth at least ¢ for which the
following hold:

(1) V(G) =Wy UWy U---UW,_1 where W; = i[m] for each i € V(F).

(2) For any edge {v,v'} of F, for any X C o[m|, Y C o'[m], if |X| >
m/40n and |Y| > m/40n, then there is an edge (in G) between X
and Y.

(3) For any edge {v,v'} of F, for any X C v[m], Y C ¢/[m] with n <
|X| = n|Y| < ¥, there are less than |Y|n'?/2 edges between X and
Y.

(4) For any edge {v,v'} of F, for any vertex x € v[m], x has at least
n' /2 neighbours in v'[m].

(5) Each vertex of G has degree at most 5|V (F)|*3.

If’;—,, = S’ thenlet F = Kp. If 2 < Z—: < g, then let F = K(p't,q't) x
q
Kr, where t is large enough so that F is uniquely circular g—colourable. To

q
prove Theorem 1, we shall prove that the spanning subgraph G of F[m]
with properties (1) and (4) listed above is uniquely circular %-colourable

and also uniquely fractional Z—:-colourable. Property (5) implies that the
maximum degree of G is bounded by a number which does not depends
on g (but depends on p/q and p’/q’). As unique circular g—colourability
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is equivalent to unique K, /,-colourability, the following lemma is a special
case of Theorem 4 in [4].

Lemma 6. Suppose G is a spanning subgraph of F|m| with properties (1)-(4)
listed above. Then G is uniquely circular g—coloumble.

Lemma 7. Suppose G is a spanning subgraph of F[m| with properties (1)-(4)
listed above. Then G is uniquely fractional %—colourable.

Proof. Since G C F[m] and F is fractional %-colourable, it follows that

G is fractional Z—:—colourable. To prove that G is uniquely fractional Z—:—
colourable, it suffices to show that each maximum independent set of G
is of the form I[m] for a maximum independent set of I of F.

Let ar and a¢ be the size of the maximum independent set of F and G,
respectively.

Since G is a spanning subgraph of F[m]|, we have ag > apm. Assume
J € I(G), |J]| = ag > arm. Let v be a vertex of F, we denote by ¢(v)
the size of v[m| N ], i.e., ¢(v) = | Nov[m]|. Then, there exists an order of
V(F), {v1,v2,- -+, 0,4}, such that ¢(v1) > @(v2) > ---¢(v,) > 0. Since
Y (o) > apm, we have g(o1) > %, p(oy) > S o(o,) >
apm—(ap—1)m > m

n—(ap—1) = n°

Let I = {vy,v2,- -, 04, }. First we show that I is an independent set of F.
If not, then there exists v;,v; € I such that {v;,v;} € E(F). Since v;[m] N ]
has size ¢(v;) > % and v;[m]| N ] has size ¢(v;) > 7, there are subsets U
of vj[m] N ] and W of vj[m] N J such that [U| = |W| = [z ]. However,
by Property (2), there exists an edge between U and W, contrary to the
assumption that | is an independent set of G.

Next we show that ¢(x,41) = 0. Assume to the contrary thatif ¢(x,+1) #
0,i.e., vyp1[m] N ] # A. Since [ Uv,41 is not independent set of F, there ex-
ists a v; € I such that {v;, v,+1} is an edge of F. By Property (3), each vertex
in | N v,11[m] has at least n'/2 neighbours in v;[m]. As | Nv,1[m] # O
and | is independent in G, it follows that |v;[m] — J| > n'%/2. Let W =
vi[m| — ] and let B = |[W|. Let £ = ¢(v441). Since ¢(vay1) > @(v;) for
j=wa+1---,n it follows that p < ¢-(n—a) < £-n. So £ > B/n.
Let U C v,41[m] N ] be a subset of size B/n. Since each vertex of U has
at least % neighbours in v;[m] — ] = W, we conclude that there are at

least §|LI| edges between U and W. This is in contrary to Property (3).
Therefore ¢(v,41) = 0, i.e., if | is a maximum independent set of G, then
J = I[m] for some maximum independent set I of F. And we have I; x K»

q
fori =0,1,---,p't — 1 are the only maximum independent set of F with

=1 p. Therefore, | = (I; x K, )[m] for somei =0,1,---,p't — 1.
q

size (Z’tfl
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Since G is a spanning subgraph of F[m]|, G is fractional Z—,,—colourable.
As [V(F) = (5)p, we have [V(G)| = m(")p, ag = apm = (= )pm,
so xf(G) > % = %. Thus we know that x;(G) = . Let J; be
the maximum independent set of G such that J; = (I; x Ky )[m] for i =

q

0,1,---,pt—1
Let f : I(G) — [0,1] such that

B

FU) = 1/q't ifU = J; forsomei € {0,1,---,p't — 1},
10 otherwise.

then we know that f is a proper fractional %—colouring of G.

Next we want to show that for any fractional ’;—,,-g of G, g(I) = f(I) for

any independent set [ of G. As x¢(G) = %, for any optimal fractional
colouring g of G, g(I) = 0if I is not a maximum independent set. As J; for
i=0,1,---,p't — 1 are the only maximum independent sets of G, we have

g(I) =0if I # J; forsomei € {0,1,---,p't —1}. It remains to show that
for any fractional %-colouring gof G.

() = {1/q’t if U = J; forsomeic {0,1,---,p't — 1},

0 otherwise.
This part is similar to the proof of Lemma 3 and omitted. 0
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