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CLASSIFICATION OF LINEAR CODES EXPLOITING AN

INVARIANT

STEFANO MARCUGINI, ALFREDO MILANI, AND FERNANDA PAMBIANCO

ABSTRACT. We consider the problem of computing the equivalence class-
es of a set of linear codes. This problem arises when new codes are ob-
tained extending codes of lower dimension. We propose a technique that,
exploiting a simply computed invariant, allows us to reduce the com-
putational complexity of the classification process. Using this technique
the [13, 5, 8]7, the [14, 5, 9]8 and the [15, 4, 11]9 codes have been classified.
These classifications enabled us to solve the packing problem for NMDS
codes for q = 7, 8, 9. The same technique can be applied to the problem
of the classification of other structures.

1. INTRODUCTION

Let Fn
q be the n−dimensional vector space over the Galois field Fq.

The Hamming distance between two vectors of Fn
q is defined as the num-

ber of coordinates in which they differ. A q−ary linear [n, k, d]q−code is a
k−dimensional linear subspace of Fn

q with minimum distance d. For linear

codes the minimum distance is equal to the minimum weight i.e. the mini-
mum number of coordinates different from zero of a non-zero codeword.

This paper deals with the problem of classifying sets of linear codes. This
problem arises, for example, using computer-based extension processes
that construct new codes of dimension d1 starting from codes of dimen-
sion d2, d2 < d1. For examples of papers using such technique see [2], [4],
[7] and [9]. In particular in [7] and [9], we constructed new near maximum-
distance separable (NMDS) codes adding new rows to the generating ma-
trix of NMDS codes of lower dimension. The starting step has been the
classification of NMDS codes of dimension three obtained by geometrical
means [8]. For a description of the properties of the NMDS codes see [3]
and [4].

When extending a code in this way, several equivalent copies of the same
code are obtained. A classification step allows us to compute the set of
nonequivalent codes, but, when the number of examples to classify is high,
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some strategy has to be adopted to reduce the computational complexity
of this phase.

The most direct and simple algorithm that can be used for the classifica-
tion of a set S of codes keeps a list L of nonequivalent codes. Initially L is
empty. All the codes C of S are considered: if there exists a code in L equiv-
alent to C, then C is neglected, otherwise C is included in L. At the end L
contains the set of representatives of the equivalence classes of S. The com-
putational complexity of this simple algorithm is O(|S| × |L|), therefore it
is practical only when |S| and |L| are relatively small. In [2], the program
described in [1] was used. It deals with the problem of computing equiv-
alence between codes exploiting invariants and signatures. In [6] a set of
invariants was introduced allowing the equivalence of three dimensional
binary codes to be determined.

To reduce the computational complexity of the classification step, we
propose a technique of preclassification based on the use of an invariant.
The condition on the invariant is that it must be easier to compute than the
equivalence between two codes. In our case we used the minimum weight
of the code.

Using the invariant in an opportune way, the set S is partitioned into
subsets Si such that C1 ∈ Si and C2 ∈ Sj are not equivalent if i 6= j. It is then
sufficient to classify the codes in each Si separately. If each Si contains only
one equivalence class, the computational complexity of the classification
step is O(|S|). In our practical applications, most Si’s contain only one or
few equivalence classes. There is an adjunctive cost, the computation of
the invariant for the codes of S and for several truncated codes. This cost is
negligible with respect to the cost of the classification phase.

Our technique is of general interest. In fact not only can different in-
variants be applied, but other computational classification problems can be
faced, as long as there is a way to construct substructures preserving the
invariant property.

The preclassification technique is described in Section 2. Section 3 con-
tains some experimental results concerning the classification of the [13,5,8]7,
of the [14, 5, 9]8 and of the [15, 4, 11]9 codes. Section 4 contains concluding
remarks regarding the general applicability of our preclassification tech-
nique and a list of results obtained. In particular we present a table de-
scribing the NMDS codes of maximal length for q ≤ 13. Starting from
the codes classified in this paper and applying fast extensions, duality and
shortening, we determine the maximal length of an NMDS code in all the
open cases for q = 7, 8, 9, solving therefore the packing problem in these
cases. Using extension we also determine the maximal length of an NMDS
code of dimension 4 for q = 11.
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2. PRECLASSIFICATION USING AN INVARIANT

Our aim is the classification of a set of codes S. We consider equiva-
lence in monomial sense, i.e. two [n, k, d]q codes C1 and C2, with respec-
tive generating matrices G1 and G2, are equivalent if there exist an invert-
ible (k, k)−matrix A, an (n, n)−permutation matrix P and a field automor-
phism ϕ such that G1 = ϕ(AG2P).

To reduce the number of the expensive computations of the equivalence
between two codes, we use a numeric invariant, the minimum weight of
the code. The problem of computing code minimum distance is known to
be NP-hard (see e.g.[5]); however, for codes of small length and dimension
(such as those considered here) the computation is easy.

We divide S into subsets Si such that each code in Si is of invariant value
i. As mentioned above, it is desirable for each Si to contain only one or
perhaps a few equivalence classes. If the invariant is simple this will not
be the case; however, we may use the same invariant to further subdivide
each Si. To do this, we exploit the fact that if C1 and C2 are equivalent [n, k]
codes and C1 is an [n − 1, k] code obtained by truncating C1, then there

exists a [n − 1, k] code C2 equivalent to C1 obtained by truncating C2. This
fact follows immediately from the definition of equivalence.

For each code C in each Si we compute a first level index defined as the
sum of the minimum weights of the n [n − 1, k] subcodes obtained truncat-
ing C by deleting a column of the generating matrix in all possible ways. If
two codes C1 and C2 have different first level index, then they are not equiv-
alent. In this way each Si can be divided in subsets Sij

such that C1 ∈ Sij

and C2 ∈ Sik
are not equivalent if j 6= k.

The process can be iterated, computing the second level index defined
as the sum of the minimum weights of the n ∗ (n − 1)/2 [n − 2, k] subcodes
obtained by truncating an [n, k] code C deleting two columns of the gen-
erating matrix in all possible ways, and so on. Exploiting the indices of
different levels, S is partitioned into subsets containing an ever-decreasing
number of equivalence classes.

The computational cost of computing the index of order i of an [n, k]
code is O

(

(n
i )

)

. In the practical application we verify that it is sufficient
to consider relatively small values of i to obtain sets of codes containing
one or just a few numbers of equivalence classes. We note that two codes
can have the same index of level i, but different indices of level j, j < i.
Therefore when doing the preclassification it is useful to consider all indices
belonging to the interval [1, i] and not only the index of maximum value i.

3. EXPERIMENTAL RESULTS

This section describes the application of our preclassification technique
for the classification of the [13, 5, 8]7, [14, 5, 9]8 and [15, 4, 11]9 codes.

All computations have been done using MAGMA, a computer algebra
package developed at the University of Sydney. The MAGMA function
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that verifies if two codes are equivalent is expensive, and the computa-
tional cost increases with the dimension of the codes. As our invariant we
used the minimum weight of a code. In [7], extending the 923 nonequiv-
alent [11, 3, 8]7 codes, we obtained 80326 examples of [13, 5, 8]7 codes such
that any other [13, 5, 8]7 code is equivalent to one of our examples. In an
analogous way we obtained 4331 examples of [14, 5, 9]8 codes and 69471 ex-
amples of [15, 4, 11]9 codes extending respectively the 4181 [12, 3, 9]8 codes
and the 105193 [14, 3, 11]9 codes found in [8].

Table 1 contains, for each set S of codes, the number of examples to clas-
sify, the number of classes obtained, the number of levels used in the pre-
classification step, the running time TP, in hours, of the preclassification
step, the running time TC, in hours, of the classification step, and the ratio
between the two running times. The duration of the preclassification does
not exceed the duration of the classification step. The computation was
done using a Sun Enterprise with a 450 MHz CPU.

Code |S| Classes Levels TP TC Ratio
[13, 5, 8]7 80326 988 6 111 600 18.5%
[14, 5, 9]8 4331 58 4 3.5 48 7.3%
[15, 4, 11]9 69471 6585 5 140 168 83.3%
Table 1: Running time of the classification of the codes

Table 2 contains, for each set S of codes, the number of sets obtained in
each level of the preclassification step. In the first and in the second case
the preclassification was stopped when the number of sets obtained at the
current level is almost equal to the number of codes of the previous level.
Consequently, as seen in Table 3, most sets contained only one class. The
computational cost associated with testing code equivalence is dependent
on code dimension. The code in row 3 is of dimension 4, as such it was
deemed inefficient to carry on the preclassification stage for this code past
level 4. Cardinality is another index that can suggest whether or not a set
contains many classes. At deeper levels only the sets whose cardinality
exceeds a certain threshold could be further expanded. The threshold could
be estimated considering the cardinalities of the smaller sets at the previous
level. In this first implementation of this algorithm we did not use this
feature.

Level
0 1 2 3 4 5

[13, 5, 8]7 13 156 343 565 664 690
Code [14, 5, 9]8 13 39 49 55

[15, 4, 11]9 16 196 681 1464 2570
Table 2: Number of sets obtained at level k

Table 3 contains, for each set S of codes, the number of sets, obtained
in the last step of the preclassification, containing k classes. In the first
and second cases most sets contained one class. In the third case most sets
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contained a small number of classes. Hence, in all cases the computational
cost of the classification step is near O(|S|).

Classes
1 2 3 4 − 10 11 − 20 21 − 89

[13, 5, 8]7 571 67 17 30 5
Code [14, 5, 9]8 52 3

[15, 4, 11]9 1690 365 160 262 56 37
Table 3: Number of sets of maximum level containing k classes

Table 4 shows the classification time expressed in hours, for the case of
the fifty-two [14, 5, 9]8 codes varying the number of levels of preclassifi-
cation. The classification time in column 1 (where no preclassification is
performed) is 58 times that in column 3. This corresponds exactly to the
theoretic prevision. This computation has been done using a Pentium IV
with a 2 GHz CPU.

Levels
no preclas-
sification

0 1 2 3

Time 831.27 109 28.36 19.26 14.35
Table 4: Classification of the [14, 5, 9]8 codes

using different levels of preclassification

4. CONCLUSIONS

We have proposed a technique for the classification of linear codes ex-
ploiting an invariant. As invariant we used the minimum weight of the
code, but any invariant could be used in the same way. This technique
could be also used for the classification of other structures, as far as there is
a way to construct substructures preserving the invariant property. In this
sense this is a general technique.

The classifications performed in this paper allowed us to determine the
maximal length of an NMDS code for q=7,8,9 in all the remaining open
cases, using extensions, duality and shortening. Starting from the classifi-
cation of the 15 non-equivalent [20, 3, 17]11 NMDS codes, we also demon-
strated using an extension process that no [21, 4, 17]11 code exists. Therefore
the maximal length of an NMDS code of dimension 4 for q = 11 is 20.

The following table contains what is currently known regarding the func-
tion m′(k, q), representing the maximum length n for which there exists an
[n, k]q NMDS code, for small values of k and q. The superscripts indicate
the number of nonequivalent NMDS codes with the given parameters. The
codes obtained in this paper and some other codes will be described in a
forthcoming paper. See[9],[10] and [11] for the other references.
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q
k 2 3 4 5 7 8 9 11 13

2 61 81 101 121 161 181 201 241 281

3 71 91 93 112 151 1519 174 212 237

4 81 101 102 121 143 162 1619 20 21 − 24
5 111 111 1160 13988 153 161 18 − 21 21 − 25
6 121 121 1231 13 14 16 18 − 22 21 − 26
7 91 116 14 15 17 18 − 23 21 − 27
8 101 121 13988 16 18 18 − 24 21 − 28
9 111 13294 1458 19 19 − 25 21 − 29
10 121 143 153 20 20 − 26 21 − 30
11 144 154 161 18 − 27 21 − 31
12 151 162 1619 18 − 28 21 − 32
13 151 152 16382 18 − 29 21 − 33
14 161 162 174 18 − 30 21 − 34
15 171 172 18 − 31 21 − 35
16 181 182 20 − 32 21 − 36

Bounds on m′(k, q)
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