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SZEMERÉDI’S REGULARITY LEMMA REVISITED

TERENCE TAO

ABSTRACT. Szemerédi’s regularity lemma is a basic tool in graph theory,
and also plays an important role in additive combinatorics, most notably
in proving Szemerédi’s theorem on arithmetic progressions [19], [18]. In
this note we revisit this lemma from the perspective of probability theory
and information theory instead of graph theory, and observe a slightly
stronger variant of this lemma, related to similar strengthenings of that
lemma in [1]. This stronger version of the regularity lemma was extended
in [21] to reprove the analogous regularity lemma for hypergraphs.

1. INTRODUCTION

Szemerédi’s regularity lemma, introduced by Szemerédi in [19], is a fun-
damental tool in graph theory, and more precisely in the theory of very
large, dense graphs. Roughly speaking, it asserts that given any such large
dense graph G, and given an error tolerance 0 < ε ≪ 1, one can approxi-
mate G by a much simpler object, namely a partition of the vertex set into
Oε(1) classes, together with some edge densities between atoms of this par-
tition, such that the approximation is “ε-regular” on most pairs of this par-
tition; we will formalize these notations shortly. This lemma can thus be
viewed as a structure theorem for large dense graphs, approximating such
graphs to any specified accuracy by objects whose complexity is bounded
independently of the number of vertices in the original graph.

The regularity lemma has had many applications in graph theory, com-
puter science, discrete geometry and in additive combinatorics, see [10] for
a survey. In particular, this lemma and its variants play an important role
in Szemerédi’s celebrated theorem [19] that any subset of the integers of
positive density contain arbitrarily long arithmetic progressions. A vari-
ant of this structure theorem (also borrowing heavily from ideas in ergodic
theory) was also crucial in showing in [11] that the primes contained ar-
bitrarily long arithmetic progressions. The lemma has also had a number
of generalizations to hypergraphs of varying degrees of strength, see [3],
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[4], [5], [13], [14], [15], [9], [21]. The more recent formulations of the hyper-
graph lemma are in fact strong enough to rather easily imply Szemerédi’s
theorem on arithmetic progressions, as well as a multidimensional version
due to Furstenberg and Katznelson [7]. They were also used in the recent
paper [22] establishing infinitely many constellations of any given shape in
the Gaussian primes.

The proof of Szemerédi’s lemma is now standard in the literature. How-
ever, this standard proof is difficult to extend to the hypergraph case; a di-
rect application of the argument does give fairly easily a regularity lemma
for hypergraphs (see [3], [4]), but that lemma does not seem to be strong
enough for applications such as Szemerédi’s theorem or the Furstenberg-

Katznelson theorem1, except when concerning progressions or constella-
tions consisting of at most three points (see [17]).

In this paper we shall present a slightly different way of looking at Sze-
merédi’s regularity lemma, which we used in [21] to obtain a hypergraph
regularity lemma with sufficient strength for applications to Szemerédi-
type theorems. In this new perspective, one views the regularity lemma
not as a structure theorem for large dense graphs, but rather as a structure
theorem for events or random variables in a product probability space. This
change of perspective is analogous to Furstenberg’s highly successful ap-
proach to Szemerédi’s theorem in [6], in which the purely combinatorial
result of Szemerédi was recast as a statement about recurrence for arbi-
trary events or random variables in a probability-preserving system. Just
as Furstenberg’s change of perspective allowed the powerful techniques of
ergodic theory to be brought to bear on the problem, the change of per-
spective here allows one to employ tools from probability theory and in-
formation theory to clarify the regularity lemma. In particular we will use
three very useful concepts from those theories, namely σ-algebras (parti-
tions), conditional expectation (relative density), and entropy (complexity). As
the parenthetical comments suggest, each of these concepts has a combina-
torial analogue, however the author believes that there is some conceptual
advantage to be gained by using a probabilistic and information-theoretic

perspective rather than a graph-theoretic one2. One byproduct of this new

1The difficulty is that in the hypergraph situation, there are several levels of regularity
or discrepancy that need to be controlled in order to yield a useful bound for arithmetic
progressions or similar structures, and the lemma in [3] or [4] controls only one of these
discrepancies. Later regularity lemmas control all of the relevant discrepancies, but there
are some non-trivial technical issues concerning the relative sizes of the error estimates, as
certain losses coming from one level of approximation must be compensated for by gains
from the discrepancy bounds in other levels of approximation.

2The situation is somewhat analogous to that of the probabilistic method in combina-
torics. While every probabilistic argument could, in principle, be written in a deterministic
way (replacing expectations by averages, etc.), it is undeniable that there are significant
conceptual benefits in using a “probabilistic way of thinking” to approach combinatorial
problems.
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perspective is that one discovers a stronger and more flexible version of the
regularity lemma hiding underneath the standard one. This stronger ver-
sion is difficult to state here without the requisite notational setup, but let
us just say for now that it is closely related to a similar improvement of the

regularity lemma discovered recently3 in [14], in which it was observed that
the regularity of the large dense graph G relative to the partition given by
that lemma can be vastly improved after adding or removing a small num-
ber of edges from G. This strengthened version of the regularity lemma
turns out to be quite amenable for iterating, and thus gives a relatively
painless proof of the hypergraph regularity lemma; see [21].

We will turn to the details in later sections, but for now let us just give an
informal discussion which already shows that the regularity lemma can be
viewed in information theoretic terms rather than graph theoretic terms. It
will be convenient to work with bipartite graphs. Let G = (V1, V2, E) be a
large dense bipartite graph. Let x1 and x2 be two vertices selected indepen-
dently and uniformly at random from V1 and V2 respectively; thus x1 and
x2 are independent random variables, taking values in V1 and V2 respec-
tively. The edge set E can now be re-interpreted as a probabilistic event,
namely the event that the pair (x1, x2) lies in E. We shall abuse notation
and refer to this event also as E, thus E is now some event determined by
the random variables x1, x2 (or more precisely, it lies in the σ-algebra gen-
erated by the random variables x1 and x2). Many of the important statistics
about the edge set E can now be recast in terms of the event E; for instance,
the edge density of the edge set E is equal to the probability of the event E,
or equivalently the expectation of the indicator random variable 1E. Simi-
larly one can view relative edge densities of E as conditional expectations
of 1E.

We have already observed that E is, in principle, determined by x1 and
x2. However, from an information-theoretic perspective this determinism
relationship can be very “high-complexity” or “fine-scaled”, in a sense we
shall describe shortly. If the vertex sets V1, V2 have N elements, then the
random variables x1 and x2 have a Shannon entropy of log2 N (they can be
described by roughly log2 N bits each). On the other hand, the event E (or
the Boolean function 1E) has a Shannon entropy of at most log2 2 = 1 (it
can be described by one bit). If N is very large, we thus see that there is
much more information contained in the random variables x1 and x2 than
is contained in the event E. To put it another way, knowing that the event
E is true or false (i.e., that the pair (x1, x2) is an edge in G or not) does not
even begin to let one determine the exact values of x1 and x2. Indeed, in
the extreme case when the graph G is a random (or pseudorandom) graph,
the event E behaves almost as if it were independent of the random variables

3Note added in proof: a closely related version of this lemma was recently introduced
in [1], [2]. See also [12] for yet another perspective on the regularity lemma, this time from
functional analysis.
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x1 and x2, despite being actually determined by these variables. More pre-
cisely, if A1 is any event determined by x1 (thus A1 can be thought of as
the event that x1 lies in a fixed subset of V1, which by abuse of notation
we shall also call A1), and A2 is any event determined by x2, then in the
random or pseudorandom case the event E will be almost completely un-
correlated with the events A1, A2. This corresponds to the well-known fact
that when G is a random or pseudorandom graphs, the relative edge den-
sity between two large sets A1, A2 in V1, V2 will, with high probability, be
very close to the global edge density of G. (Note that if A1 and A2 were
small sets, i.e. events of very low probability, then the correlation, or more
precisely the mutual information, with E would automatically be small.)

Let us summarize the above discussion in information-theoretic terms. If
one is given all log2 N bits of x1, and all log2 N bits of x2, then the single-bit
event E is completely determined. But if G is random or pseudorandom,
and one is only given one bit of x1 (specifically, whether x1 lies in a fixed set
A1) and one bit of x2, one learns almost no information about the bit E. Let
us informally describe this by saying that E is approximately independent
of x1 and x2 at “coarse scales” - when only a few bits of x1 and x2 are known,
even though E is determined by x1 and x2 at “fine scales” - when most or
all of the bits of x1 and x2 are known.

Of course, if G is not pseudorandom, then E can be highly correlated
with a few special bits of x1 and x2. To take an extreme opposite case to
the pseudorandom case, suppose that G is a complete bipartite graph con-
necting all the vertices of a set A1 ⊆ V1 to that of a set A2 ⊆ V2, and not
connecting any other pairs of vertices. Then the event E is completely de-
termined by one bit of x1 (namely, whether it lies in A1) and one bit of x2

(namely, whether it lies in A2).
Furthermore, it is possible for G to be a hybrid between these two ex-

tremes. Suppose now that G is a pseudorandom subgraph of the complete
bipartite graph connecting A1 to A2. Then E is no longer determined by the
one special bit of x1 associated to A1, and the one special bit of x2 associated
to A2. However, it is now approximately independent at coarse scales of x1

and x2, conditioning on A1 and A2. In other words, once the events A1 and
A2 are known to be true or false, the event E is then approximately inde-
pendent to any further bits of information arising from x1 and x2. In graph
theory terms, this means that when restricting V1 to A1 or its complement,
and restricting V2 to A2 or its complement, the induced subgraph of G be-
haves pseudorandomly (with some edge density depending on which sets
were being restricted to).

The information-theoretic version of the Szemerédi regularity lemma is
an assertion, roughly speaking, that every event E is a hybrid of the two
extremes in the sense given above. Very informally, given any two high-
entropy random variables x1 and x2, and given any event E, it is possible to
find some low-entropy random variable Z1 determined by x1, and a low-
entropy random variable Z2 determined by x2, such that E is approximately
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independent of x1 and x2 conditioning on Z1 and Z2. Again being very
informal, this means that there exist a small number of bits from x1 and
x2 which correlate with E, and such that no further bits from x1 and x2

have much of a correlation with E. Interestingly, this formulation of the
regularity lemma requires no independence properties of x1 and x2, and
also does not require E to be determined by x1 and x2; but we do not know
any applications of this more general version.

One can view the low-entropy random variables Z1, Z2 discussed above
as “approximations” to the event E, where the approximation is in some
coarse information-theoretic sense. It turns out that the proof of the reg-
ularity lemma (see Lemma 4.3 below) in fact yields two such approxima-
tions, a “coarse approximation” Z1, Z2 and a “fine approximation” Z′

1, Z′
2.

The coarse approximation has low entropy. The fine approximation has sig-
nificantly higher entropy, but it is an exceedingly accurate approximation
to E; in particular, any error arising from this approximation can exceed
any losses coming from the entropy of the coarse approximation, in a way
which can be made precise using a “growth function” F : R+ → R+. Fi-
nally, the coarse and fine approximations will be close to each other, both in
an L2 sense, and also in an information theoretic sense. We will make these
statements more precise later, however we remark for now that the pres-
ence of the new parameter F, used to compare the accuracy of the fine ap-
proximation against the entropy of the coarse approximation, is very suit-
able for iteration purposes, and allows one to extend the regularity lemma
to the hypergraph setting, in which one has multiple random variables
x1, . . . , xd instead of just two, and furthermore one is interested in low-
entropy approximations to an event which arise not only from individual
random variables xi, but also from joint random variables such as (xi, xj)
(and the approximations coming from the joint random variables should
themselves be approximated by other, lower-order random variables). See
[21]. A closely related regularity lemma, which also involves an arbitrary
growth function F, has also recently appeared in [1] in applications to prop-
erty testing.

2. A PROBABILISTIC FORMULATION

Before we give the rigorous information-theoretic version of the Sze-
merédi regularity lemma, let us first give a standard formulation of the
lemma, and also a probabilistic formulation which can be viewed as bridg-

ing the graph-theoretic version and the information-theoretic version4 of

4We say a formulation is “probabilistic” if it involves such concepts as probability spaces,
σ-algebras, random variables, (conditional) expectation, and correlation. We say a formula-
tion is “information-theoretic” if it involves such concepts as probability spaces, σ-algebras,
random variables, (conditional) entropy, and mutual information. Clearly these two per-
spectives share much in common, for instance the concept of independence is important in
both.
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the lemma. We begin with the graph-theory version; again, it is convenient
to restrict ones attention to bipartite graphs.

We use O(X) to denote any quantity bounded in magnitude by CX for
some absolute constant C > 0, and more generally we use Oa1,...,ak

(X)
to denote any quantity bounded in magnitude by C(a1, . . . , ak)X, where
C(a1, . . . , ak) > 0 depends on the parameters a1, . . . , ak. We also use |A| to
denote the cardinality of a finite set A.

Definition 2.1. A bipartite graph is a triplet (V1, V2, E) where V1, V2 are two
finite non-empty sets, and E ⊂ V1 × V2. If ε > 0, we say that a bipartite
graph (V1, V2) is ε-regular if we have

(1) |E ∩ (A1 × A2)| =
|A1 × A2|

|V1 × V2|
|E| + O(ε|V1 × V2|)

for all A1 ⊆ V1 and A2 ⊆ V2.

Remark 2.2. While we assert that (1) holds for all subsets A1, A2 of V1, V2,
this condition is only non-trivial for large subsets; it holds trivially when
|A1 × A2| = O(ε|V1 ×V2|). Thus this definition of ε-regularity is essentially
equivalent to other formulations of regularity in the literature in which a
lower bound is imposed on the size of A1 and A2.

Theorem 2.3 (Szemerédi regularity lemma, graph-theoretic version). Let
(V1, V2, E) be a bipartite graph, and let 0 < ε ≤ 1. Assume that V1 and V2 are
large depending on ε, thus |V1|, |V2| ≥ Oε(1). Then there exists a positive integer
J = Oε(1) and decompositions

Vi = Vi,0 ∪ Vi,1 ∪ . . . ∪ Vi,J

for i = 1, 2 with the following properties:

• (Exceptional set) For all i = 1, 2, we have |Vi,0| = O(ε|Vi|).
• (Uniform partition) For all i = 1, 2 and 1 ≤ j ≤ J we have |Vi,j| = |Vi,j′ |.
• (Regularity) The induced bipartite graph (V1,j1 , V2,j2 , E ∩ (V1,j1 × V2,j2))

is ε-regular for all but O(εJ2) of the pairs 1 ≤ j1 ≤ M, 1 ≤ j2 ≤ J.

Remark 2.4. The bound J = Oε(1) is a little deceptive, as it conceals the fact
that J can in fact be extremely large depending on 1/ε, indeed there are
examples where J grows like an exponential tower of height equal to some
power of 1/ε (see [8]). However, the key point is that the bound on J does
not depend on the cardinality of V1 or V2. Indeed we shall shortly give a
probabilistic formulation in which V1 and V2 could be infinite (cf. [12]).

We now give a probabilistic generalization of the above regularity lemma.
We first recall some standard notation from probability theory.

Definition 2.5 (Probability space). A probability space is a triple (Ω,Bmax, P),

where Ω is a set (called the sample space), Bmax is a σ-algebra5 of sets of Ω

5A σ-algebra is a collection B of sets in the probability space Ω which is closed under
(countable) unions, intersections, and complements, and contains the empty set and Ω. In
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(the elements of Bmax being the events), and P is a probability measure on
Bmax (thus it is non-negative and has total mass one). A random variable is
any measurable map X : Ω → K to some space K (which will typically
either be a finite set, or the real line). We let L1(Bmax) denote the space
of real-valued, absolutely integrable random variables; as is customary we
identify two random variables if they agree outside of an event of zero
probability. If X ∈ L1(Bmax), we let E(X) denote the expectation of X. In
particular, if E is an event, then E(1E) = P(E).

Remark 2.6. For application to the regularity lemma, Ω will be a finite set,
and Bmax will be the algebra of all subsets of Ω, so there will be no issues
as to whether a random variable is measurable or integrable. However,
it is interesting to note that the arguments we give below extend with no
difficulty whatsoever to the case of infinite probability spaces.

Example 2.7. Our primary application will be to bipartite graphs, say be-
tween two vertex classes V1 and V2. In this case we can take Ω = V1 × V2,
Bmax to be the power set of Ω (thus all subsets of Ω are measurable events),
and P to be the uniform probability measure on Ω; this corresponds to
the operation of sampling two vertices x1 and x2 uniformly and indepen-
dently at random from V1 and V2 respectively. In this case, all functions
X : V1 × V2 → R are measurable, and the expectation is just the average
value on V1 × V2.

A crucial concept from probability theory is that of conditional expectation.

Definition 2.8 (Conditional expectation). Let (Ω,Bmax, P) be a probabil-
ity space, and let B be a sub-σ-algebra of Bmax. If we let L2(B) be the
Hilbert space of B-measurable, square-integrable real-valued random vari-

ables, with the usual norm ‖X‖L2(B) := E(|X|2)1/2, then L2(B) is a closed

subspace of L2(Bmax), and we let X 7→ E(X|B) be the associated orthogo-
nal projection map from L2(Bmax) to L2(B); thus for any square-integrable
random variable X ∈ L2(Bmax), E(X|B) will be a square-integrable B-
measurable random variable.

The conditional expectation can be defined explicitly in the case when B
is finite, which is in fact the only case we will need in this paper. In such
a case, the σ-algebra B is generated by a finite number of disjoint events
A1, . . . , An of positive probability, possibly together with some additional
events of zero probability which we can safely ignore. If X ∈ L2(Bmax), the
conditional expectation E(X|B) will be equal (almost surely) to E(X|Ai) :=

1
P(Ai)

E(X1Ai
) on each event Ai.

the our applications B will typically be finite, in which case it can be identified with a finite
partition Ω = Ω1 ∪ . . . ∪ ΩM of the underlying probability space. Indeed, the cells of this
partition are the atoms (minimal non-empty elements) of B, while B itself consists of all the
sets which are unions of zero or more atoms in the partition.
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Next, we define the complexity of a σ-algebra, which is a simplified ver-
sion of the Shannon entropy.

Definition 2.9 (Complexity). Let B be a finite σ-algebra in a probability
space (Ω,Bmax, P). Then the complexity complex(B) of B is defined as the
least number of events needed to generate B as a σ-algebra.

Informally, a finite σ-algebra of complexity M can be described using M
bits of information (equivalently, it contains at most 2M atoms).

If B,B′ are two sub-σ-algebras of Bmax, we let B ∨B′ denote the smallest
σ-algebra which contains both B and B′. Note that if B and B′ are finite,
then B ∨ B′ is also finite, with the sub-additivity property

complex(B ∨ B′) ≤ complex(B) + complex(B′).

Example 2.10. We continue the running example in Example 2.7. Any par-
tition V1 = V1,1 ∪ . . . ∪ V1,M of the first vertex class induces a partition V1 ×
V2 = (V1,1 × V2) ∪ . . . ∪ (V1,M × V2) of the probability space Ω and hence
creates a sub-σ-algebra B1 of Bmax, which in information-theoretic terms
captures the information of which cell of the partition the first vertex x1 be-
longs to. The complexity of B1 is essentially log2 M. If we have another par-
tition V2 = V2,1 ∪ . . . ∪ V2,M of the second vertex class we can form another
σ-algebra B2, and thence create the joint σ-algebra B1 ∨ B2, whose atoms
are pairs V1,i × V2,j and whose complexity is essentially 2 log2 M (assuming
for sake of discussion that all the cells in the partitions are non-empty). If
X : V1 ×V2 → R is any random variable (which one can think of as a weight
function assigning a number to each putative edge (x1, x2)), the conditional
expectation E(X|B1 ∨ B2) is then the function which on each pair of cells

V1,i ×V2,j is equal to the relative density 1
|V1,i ||V2,j|

∑x1∈V1,i
∑x2∈V2,j

X(x1, x2) of

X on this pair of cells. We remark that when X is the indicator function
X = 1E of a graph, the L2 norm of this conditional expectation (which we
shall refer to here as the energy) is a familiar concept in the standard treat-
ment of the regularity lemma and is usually referred to as the index of the
partitions B1,B2.

We now give a probabilistic Szemerédi regularity lemma, which we state
in considerably more generality than we need to establish Theorem 2.3.

Theorem 2.11 (Szemerédi regularity lemma, probabilistic version).
Let (Ω,Bmax, P) be a probability space, let (Bi,max)i∈I be a finite collection of sub-
σ-algebras of Bmax, and let X ∈ L2(Bmax) be a random variable with ‖X‖L2(Bmax)

≤ 1. Let ε > 0 be a number, let m ≥ 0, and let F : R+ → R+ be an arbitrary
monotone increasing function. Then there exists finite sub-σ-algebras Bi ⊆ B′

i ⊆

Bi,max for each i ∈ I, and a non-negative real number6 M, obeying the following
bounds:

6It may be helpful to the reader to think of M as simply being the quantity
maxi∈I(m, complex(Bi)). Thus the upper bound on M translates to an upper bound on
the complexity of the coarse partitions Bi, while the estimate (3) asserts, roughly speaking,
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• (Size of M) We have M ≥ m and M = Oε,F,m(1).
• (Complexity bound) We have complex(Bi) ≤ M for all i ∈ I.
• (Coarse and fine approximations are close) We have

(2)

∥

∥

∥

∥

∥

E(X|
∨

i∈I

B′
i) − E(X|

∨

i∈I

Bi)

∥

∥

∥

∥

∥

L2(Bmax)

≤ ε.

• (Fine approximation is extremely accurate) For any collection (Ai)i∈I of
events with Ai ∈ Bi,max for all i ∈ I, we have

(3)

∣

∣

∣

∣

∣

E

(

(

X − E(X|
∨

i∈I

B′
i)
)

∏
i∈I

1Ai

)∣

∣

∣

∣

∣

≤
1

F(M)
.

Remark 2.12. In the application to Theorem 2.3, we will only need this the-
orem in the special case when X = 1E is an indicator function, when I =
{1, 2}, when B1,max, B2,max are finite and independent, with each atom hav-
ing equal probability, F is essentially the exponential function, and Bmax =
B1,max ∨ B2,max. However the more general version above is no harder to
prove than this special case. One can also generalize to the case when
X = (X1, . . . , Xn) is vector-valued, taking values in Rn; on the graph level,
this would correspond to regularizing n graphs simultaneously using a sin-
gle partitioning of the vertex classes. This vector-valued generalization is
useful for iteration purposes, in order to easily obtain the corresponding
hypergraph regularity lemma; this generalization is implicit in [21].

Remark 2.13. Informally, this theorem starts with a square-integrable ran-
dom variable X, and some reference σ-algebras Bi,max. It then creates two
approximations to X, namely a coarse approximation E(X|

∨

i∈I Bi) and a
fine approximation E(X|

∨

i∈I B
′
i). The coarse approximation depends on

only M “bits” of information from each of the Bi,max, where M is a quantity
for which we have some bounds. The fine approximation is rather close
to the coarse approximation in L2(Bmax) norm. Finally, the fine approxi-
mation is extremely accurate, in the sense that adding an additional bit of
information from each of the Bi,max can only create an additional correlation
of at most 1/F(M), where F(M) is a function of M which can be specified
in advance to be as rapidly growing as one pleases. (Of course, there is a
price to pay in selecting a function F which grows too rapidly, which is that
the upper bound on M will deteriorate.) Somewhat remarkably, no inde-
pendence or dependence assumptions between X and the Bi,max need to be
made in order for this theorem to be applicable.

We will prove Theorem 2.11 in the next section. For the remainder of this
section, we show how Theorem 2.11 implies Theorem 2.3.

that the accuracy of the fine partitions exceeds the complexity of the coarse partitions (and
also exceeds any specified constant m) by an arbitrary growth function F.
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Proof of Theorem 2.3 assuming Theorem 2.11. Let G = (V1, V2, E) be a bipar-
tite graph, thus E can be viewed as a subset of V1 × V2. We then define
a probability space by setting the sample space Ω := V1 × V2, setting the
σ-algebra Bmax = 2Ω be the space of all subsets of Ω, and setting P be the
uniform probability measure on Ω. In particular, E is now an event in Bmax.
As mentioned in the introduction, this probability space corresponds to the
space generated by selecting vertices x1, x2 from V1, V2 independently and
uniformly. We then set I := {1, 2}, and set B1,max := {A1 × V2 : A1 ⊆ V1}
and B2,max := {V1 × A2 : A2 ⊆ V2}, thus B1,max and B2,max are the σ-
algebras generated by the random variables x1 and x2 respectively. We set
X := 1E; clearly ‖X‖L2(Bmax) ≤ 1.

We now apply Theorem 2.11, with the growth function F : R+ → R+

to be chosen later, and ε replaced by ε
3/2. This gives us some σ-algebras

B1 ⊆ B′
1 ⊆ B1,max and B2 ⊆ B′

2 ⊆ B2,max and a non-negative quantity
M = OF,ε(1) such that

complex(B1), complex(B2) ≤ M(4)

‖E(1E|B
′
1 ∨ B′

2) − E(1E|B1 ∨ B2)‖L2(Bmax) ≤ ε
3/2(5)

∣

∣E
((

1E − E(1E|B
′
1 ∨ B′

2)
)

1A1×A2

)∣

∣ ≤
1

F(M)
(6)

for all A1 ⊆ V1, A2 ⊆ V2.
Now let J be a large integer to be chosen later; we will eventually show

J = Oε(1). By hypothesis we may take |V1|, |V2| > J. For each i ∈ {1, 2},
the finite σ-algebras Bi consists of at most 2M atoms, thanks to (4). Then we

can subdivide each of these atoms arbitrarily into sets of size ⌊ |Vi |
(1+O(ε))J

⌋,

plus an error of size O(|Vi|/J). Combining all of the errors into a single
exceptional set Vi,0, we obtain a partition

Vi = Vi,0 ∪ Vi,1 ∪ . . . Vi,J ,

where the sets Vi,1, . . . , Vi,J all have the same cardinality (comparable to
|Vi|/J), and each lies in an atom of Bi, and the exceptional set Vi,0 obeys
the bounds

|Vi,0| = O(ε|Vi|) + O(2M|Vi|/J).

Thus, if we choose J to be the nearest integer to 2M/ε, we obtain |Vi,0| =
O(ε|Vi|) as desired. Also we observe that since M = OF,ε(1), we have
J = OF,ε(1).

Now consider an induced bipartite graph Gj1,j2 := (V1,j1 , V2,j2 , E∩ (V1,j1 ×
V2,j2)) where 1 ≤ j1, j2 ≤ J. Suppose we wish to show that Gj1,j2 is ε-regular,
thus

|E ∩ (A1 × A2)| =
|E ∩ (V1,j1 × V2,j2)|

|V1,j1 × V2,j2 |
|A1 × A2| + O(ε|V1,j1 ||V2,j2 |)

whenever A1 ⊆ V1,j1 and A2 ⊆ V2,j2 . By the triangle inequality (and by
specializing the estimate below to the case A1 = V1,j1 , A2 = V2,j2), it suffices
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to find a quantity d which is independent of A1, A2 (but which depends on
E, V1,j1 , V2,j2) such that

|E ∩ (A1 × A2)| = d|A1 × A2| + O(ε|V1,j1 ||V2,j2 |)

whenever A1 ⊆ V1,j1 and A2 ⊆ V2,j2 . Dividing by |V1||V2|, we can rewrite
this as

E((1E − d)1A1×A2
) = O(ε/J2).

Observe that A1 × A2 is contained in a single atom of B1 ∨ B2. Thus we
may take d := E(1E|B1 ∨ B2) on this atom. Our task is thus to establish

E((1E − E(1E|B1 ∨ B2))1A1×A2
) = O(ε/J2).

From (6) we have

E((1E − E(1E|B
′
1 ∨ B′

2))1A1×A2
) = O(1/F(M))

and so if we choose F(M) := 22M/ε
3 then we have

E((1E − E(1E|B
′
1 ∨ B′

2))1A1×A2
) = O(ε

3/22M) = O(ε/J2).

Note that we now have J = OF,ε(1) = Oε(1) as desired. Thus, in order to
establish ε-regularity of Gj1,j2 , it suffices by the triangle inequality to estab-
lish that

E(|E(1E|B
′
1 ∨ B′

2) − E(1E|B1 ∨ B2)|1V1,j1
×V2,j2

) = O(ε/J2).

Note that E(1V1,j1
×V2,j2

) = O(1/J2). Thus by Cauchy-Schwarz, it would thus

suffice to show that

(7) E(|E(1E|B
′
1 ∨ B′

2) − E(1E|B1 ∨ B2)|
21V1,j1

×V2,j2
) = O(ε

2/J2).

On the other hand, from (5) we have

E(|E(1E|B
′
1 ∨ B′

2) − E(1E|B1 ∨ B2)|
2) = O(ε

3).

Thus there are at most O(εJ2) pairs (j1, j2) for which (7) fails. Thus we have
ε-regularity for all but at most O(εJ2) pairs, as desired. �

Remark 2.14. It is clear from the argument that we can enforce a lower
bound on the number J of partitions, simply by setting the parameter m
equal to a large number rather than equal to zero, since this will give a
lower bound for M and hence for J. Of course, this will also increase the
lower bound required for |V1|, |V2|, although in applications the cases when
|V1| or |V2| are small tend to be fairly easy (and the regularity lemma is of
little use in such situations anyway). Also, by considering multiple vertex
sets (Vi)i∈I instead of just two, one can prove a version of hypergraph reg-
ularity lemma (similar to the early hypergraph lemma in [3]) by a similar
argument to the one given above; we omit the details. However to ob-
tain the stronger and more modern versions of the hypergraph regularity
lemma one needs to apply results such as the one above repeatedly; see [21]
for more details.
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3. PROOF OF THEOREM 2.11

We now give the proof of Theorem 2.11. Let us fix (Ω,Bmax, P), (Bi,max)i∈I ,
X, ε, m, F. A crucial concept in the proof (as in the standard proof of the
regularity lemma) will be that of the energy (or index) of a σ-algebra (or par-
tition). This energy has a particularly simple description in the language of
conditional expectation:

Definition 3.1. For any σ-algebra B ⊆ Bmax, we define the energy E(B) of
B to be the quantity

E(B) := ‖E(X|B)‖2
L2(Bmax)

.

Informally, E(B) measures how close the subspace L2(B) of the Hilbert
space L2(Bmax) gets to containing the vector X.

Remark 3.2. In the running example of Example 2.10, with X the indicator
function of a graph and B = B1 ∨ B2, the energy corresponds to the index
of the partitions associated to B1,B2, as used for instance in [19].

From the hypothesis ‖X‖L2(Bmax) ≤ 1, and the fact that X 7→ E(X|B) is
an orthonormal projection we observe the estimate

(8) 0 ≤ E(B) ≤ 1.

Also, if B ⊆ B′, then a simple application of Pythagoras’s theorem yields

(9) E(B′) = E(B) + ‖E(X|B′) − E(X|B)‖2
L2(Bmax)

.

In particular, finer σ-algebras have higher energy.
We shall prove the regularity lemma via an energy incrementation argu-

ment. We shall take some σ-algebras Bi,B
′
i and see if they verify the re-

quired properties of the lemma. If they do not, we will be able to replace
some of these σ-algebras by finer σ-algebras with slightly higher complex-
ity and somewhat larger energy. The bounds (8), (9) will be used to show
that this energy incrementation cannot continue indefinitely, and when it
does stop, we will establish the theorem.

The key step in the argument is the following.

Lemma 3.3 (Lack of regularity implies energy increment). Suppose we have
finite σ-algebras B′

i ⊆ Bi,max and events Ai ∈ Bi,max for each i ∈ I such that
∣

∣

∣

∣

∣

E

(

(

X − E(X|
∨

i∈I

B′
i)
)

∏
i∈I

1Ai

)∣

∣

∣

∣

∣

>
1

F(M)

for some M > 0. Then if we set

B′′
i := B′

i ∨ {∅, Ai, Ω\Ai, Ω} for all i ∈ I

(thus B′′
i is the σ-algebra generated by B′

i and Ai), then we have the complexity
increment

(10) complex(B′′
i ) ≤ complex(B′

i) + 1 for all i ∈ I
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and the energy increment

(11) E(
∨

i∈I

B′′
i ) ≥ E(

∨

i∈I

B′
i) +

1

F(M)2
.

Proof. The complexity increment is immediate from the definition of com-
plexity. As for the energy increment, observe that ∏i∈I 1Ai

is measurable in
∨

i∈I B
′′
i . Thus we have

E

(

(X − E(X|
∨

i∈I

B′
i)) ∏

i∈I

1Ai

)

= E

(

(E(X|
∨

i∈I

B′′
i ) − E(X|

∨

i∈I

B′
i)) ∏

i∈I

1Ai

)

.

On the other hand, we clearly have E((∏i∈I 1Ai
)2) ≤ 1. Applying Cauchy-

Schwarz, we conclude
∣

∣

∣

∣

∣

E

(

(

X − E(X|
∨

i∈I

B′
i)
)

∏
i∈I

1Ai

)∣

∣

∣

∣

∣

2

≤

∥

∥

∥

∥

∥

E(X|
∨

i∈I

B′′
i ) − E(X|

∨

i∈I

B′
i)

∥

∥

∥

∥

∥

2

L2(Bmax)

.

By hypothesis, we thus have
∥

∥

∥

∥

∥

E(X|
∨

i∈I

B′′
i ) − E(X|

∨

i∈I

B′
i)

∥

∥

∥

∥

∥

2

L2(Bmax)

≥
1

F(M)2
.

The claim now follows from (9). �

We can now quickly prove Theorem 2.11. We shall run the following
double-loop algorithm to generate Bi, B

′
i , and M.

• Step 0: Initialize Bi = B′
i = {∅, Ω} to be the trivial σ-algebra for

each i ∈ I.
• Step 1: Set M to be the quantity

M := max

(

m, max
i∈I

complex(Bi)

)

.

Thus, for instance, the initial value of M will be m.
• Step 2: If (3) holds, then we halt the algorithm. Otherwise, we can

apply Lemma 3.3 to locate σ-algebras B′
i ⊆ B′′

i ⊆ Bi,max for i ∈ I
obeying (10) and (11).

• Step 3: If we have

E(
∨

i∈I

B′′
i ) ≤ E(

∨

i∈I

Bi) + ε
2

then we set B′
i equal to B′′

i for each i ∈ I, and return to Step 2.
Otherwise, we set Bi and B′

i both equal to B′′
i for each i ∈ I, and

return to Step 1.

The following observations about the above algorithm are easily verified
by induction:

• At every stage of the algorithm, we have Bi ⊆ B′
i ⊆ Bi,max for all

i ∈ I.
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• At every stage of the algorithm, we have

E(
∨

i∈I

B′
i) ≤ E(

∨

i∈I

Bi) + ε
2

and hence by (9) we have (2).
• At every stage of the algorithm we have m ≤ M and complex(Bi) ≤

M for all i ∈ I.

Thus, if the algorithm does halt (so that (3) holds), then we will have
achieved every objective of Theorem 2.11, except possibly for the upper
bound M = OF,ε,E(1) on M. Hence the only remaining task is to show that
the algorithm does indeed halt in finite time with the required bound on
M.

Let us first analyze the inner loop of the algorithm, which loops between
Step 2 and Step 3. At the start of this inner loop (i.e. when one enters
Step 2 from Step 1), the B′

i are equal to Bi. At each execution of this inner

loop, the energy E(
∨

i∈I B
′
i) increases by at least 1

F(M)2 , thanks to (11), while

the complexities complex(B′
i) increase by at most 1, thanks to (10). On the

other hand, if the energy E(
∨

i∈I B
′
i) ever increases by more than ε

2, then
we will end the inner loop and instead trigger the outer loop (returning
from Step 3 to Step 1). Thus for any fixed iteration of the outer loop, the
inner loop can run for at most F(M)2/ε

2 + 1 iterations, and the complexity
of the σ-algebras B′

i increase by at most F(M)2/ε
2 + 1 when doing so. In

particular, the inner loop always terminates in finite time.
Now we can analyze the outer loop. At the beginning of this loop, the

Bi are equal to the trivial algebra, and M is equal to m. After each iteration
of this outer loop, each Bi is replaced by a σ-algebra B′′

i whose complexity

is at most F(M)2/ε
2 + 1 more than the complexity of Bi. In particular, the

complexity of the new value of Bi is at most M + F(M)2/ε
2 + 1, which

causes the new value of M to be bounded by M + F(M)2/ε
2 + 1. Also, the

energy E(
∨

i∈I Bi) of Bi will increase by at least ε
2. From (8) we thus see that

the outer loop can execute at most ⌊1/ε
2⌋. Thus the algorithm terminates

in finite time, and the final value of M is bounded by the quantity obtained
by applying ⌊1/ε

2⌋ iterations of the map M 7→ M + F(M)2/ε
2 + 1 to m, so

in particular M = OF,ε,m(1). This completes the proof of Theorem 2.11.

Remark 3.4. The doubly-iterated nature of the argument, combined with
the desire for the growth function F to be exponential for the application to
Theorem 2.3, causes the final bounds on M (and hence on J) to be tower-
exponential in 1/ε

C for some absolute constant C. As discussed in [8],
this tower exponential bound cannot be significantly improved. However,
by lowering F to linear or polynomial growth one can obtain a somewhat
weaker regularity lemma, but with better bounds; see [10] for some further
discussion on how one can adjust the strength of the regularity lemma to
suit one’s application. In the converse direction, we will need to increase
F further, to tower-exponential or even faster, when we iterate this lemma
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to obtain hypergraph regularity lemmas7. The flexibility afforded by this
additional parameter F, which is not present in the usual formulation of
the regularity lemma, may hopefully be useful for other applications also.

4. AN ENTROPY VARIANT OF THE REGULARITY LEMMA

One can also give a variant of the above arguments, in which the L2 norm
is replaced by the Shannon entropy. In particular, the energy incrementa-
tion argument is replaced by an entropy incrementation argument, which
gives the lemma a much more information-theoretic flavour than before.
As always we fix an ambient probability space (Ω,Bmax, P).

Definition 4.1 (Entropy). If B ⊂ Bmax is a finite σ-algebra, we define the
Shannon entropy H(B) to be the quantity

H(B) := ∑
A

P(A) log2

1

P(A)

where A ranges over all the atoms of B and we adopt the convention that

0 log 1
0 = 0. If X is a random variable taking only finitely many values, we

define H(X) := H(BX), where BX is the σ-algebra generated by X. In other
words

H(X) := ∑
x

P(X = x) log2

1

P(X = x)
.

It is easy to verify that if X is a Boolean variable (only taking the values 0
and 1), then H(X) can be at most 1. More generally, we have the inequality

H(B) ≤ complex(B)

for any finite σ-algebra B. The quantity H(X) measures, roughly speak-
ing, how much information one could learn from X. It can be viewed as
a more refined version of the complexity, which is less sensitive to excep-
tional events of small probability than the complexity is.

In the probabilistic formulation of the regularity lemma, conditional ex-
pectation played a prominent role. In the entropy formulation, the analo-
gous concept is conditional entropy.

7Basically, to obtain a satisfactory regularity control on hypergraphs, say 3-uniform hy-
pergraphs, one has to first apply a result such as Theorem 2.11 with some growth function

F f ast to approximate some 3-uniform object by a collection of 2-uniform σ-algebras (i.e. par-
titions of complete graphs into incomplete graphs). One then applies Theorem 2.11 again
with another growth function F to approximate the atoms of those 2-uniform σ-algebras by
some 1-uniform objects (vertex partitions). In order for the error terms to be manageable, it

turns out that F f ast has to grow much faster than F, in fact it must essentially be an iterated
version of F. See [21] for further discussion.
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Definition 4.2 (Conditional entropy). If X, Y are random variables taking
finitely many values, we define the conditional entropy H(X|Y) by the for-
mula

H(X|Y) := ∑
y

P(Y = y)H(X|Y = y)

= ∑
y

P(Y = y) ∑
x

P(X = x|Y = y) log2

1

P(X = x|Y = y)
.

An equivalent definition is given by the Bayes identity

H(X|Y) = H(X, Y) − H(Y).

The quantity H(X|Y) measures, roughly speaking, how much new infor-
mation one could still learn from X if one already knew the value of Y (thus
for instance H(X|X) is always zero).

Another key quantity we need is the conditional mutual information I(X :
Y|Z) of three random variables X, Y, Z taking finitely many values, defined
by

I(X : Y|Z) := H(X|Z) − H(X|Y, Z) = H(Y|Z) − H(Y|X, Z);

informally, it measures how much knowing Y would tell one about X, or
vice versa, assuming that Z is already known. A handy (and intuitive) fact
is that the conditional mutual information is always non-negative; this is
equivalent to the submodularity inequality

H(X, Y, Z) + H(Z) ≤ H(X, Z) + H(Y, Z)

for entropy, and can be proven via Jensen’s inequality. A more quantitative
assertion of this fact is given in Lemma 4.4 below.

If X and Y are random variables, we write X 7→ Y, and say that Y is
determined by X, if BY ⊆ BX. If X and Y take only finite values, then X 7→ Y
is equivalent to the existence of a functional relationship Y = f (X) for some
deterministic function f , and is also equivalent (up to events of probability
zero) to the conditional entropy H(Y|X) vanishing.

We now give the information-theoretic analogue of Theorem 2.11. To
simplify the notation a little bit we will restrict to the case I = {1, 2}, al-
though the generalization to more than two reference σ-algebras is not dif-
ficult.

Lemma 4.3 (Information-theoretic regularity lemma). Let X1, X2, Y be ran-
dom variables taking finitely many values such that H(Y) ≤ m for some m ≥ 0.
Let F : R+ → R+ be an arbitrary function, and ε > 0. Then there exists random
variables Z1, Z2 (the “coarse approximation”) and Z′

1, Z′
2 (the “fine approxima-

tion”), also taking finitely many values, with the following properties.

• (Determinism) We have the determinism relations

(12) X1 7→ Z′
1 7→ Z1; X2 7→ Z′

2 7→ Z2.
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• (Coarse approximation has bounded entropy) We have

(13) H(Z1, Z2) ≤ H(Z′
1, Z′

2) = OF,ε,m(1).

• (Coarse and fine approximations are close) We have

(14) I(Y : Z′
1, Z′

2|Z1, Z2) ≤ ε.

• (Fine approximation is nearly optimal) For any random variables W1, W2

with X1 7→ W1 and X2 7→ W2 we have

(15) I(Y : W1, W2|Z
′
1, Z′

2) ≤
H(W1, W2)

F(H(Z1, Z2))
.

Proof. To construct Z1, Z2, Z′
1, Z′

2 we perform the following “entropy incre-
mentation” algorithm, which is closely analogous to the energy incremen-
tation algorithm used in the proof of Theorem 2.11.

• Step 0. Initialize Z1 = Z2 = 0 (one can of course replace 0 by any
other deterministic random variable).

• Step 1. Let Z′
1, Z′

2 be random variables which minimize the quantity

(16) H(Y|Z′
1, Z′

2) +
H(Z′

1, Z′
2)

F(H(Z1, Z2))

subject to the constraints X1 7→ Z′
1 7→ Z1 and X2 7→ Z′

2 7→ Z2. (If
there are several such minimizers, we select among them arbitrar-
ily.)

• Step 2. If we have

H(Y|Z1, Z2) − H(Y|Z′
1, Z′

2) > ε

then we replace Z1, Z2 with Z′
1, Z′

2 respectively, and return to Step
1. Otherwise, we terminate the algorithm.

We remark that because X1, X2 take only finitely many values, the num-
ber of possibilities for the random variables Z′

1, Z′
2 is finite up to equiva-

lence. Hence a minimizer to the quantity (16) always exists. Intuitively,
Z′

1, Z′
2 is constructed to capture as much information about Y as is possible

while remaining determined by X1, X2; the slight penalty term in (16) is de-
signed to keep some control of the entropy of Z′

1, Z′
2 (otherwise it would be

as large as that of X1, X2, for which we have no bounds). Observe that every
time we return from Step 2 to Step 1, the quantity H(Y|Z1, Z2) (which mea-
sures the amount of information in Y that remains to be captured by Z1, Z2)
decreases by at least ε. On the other hand, from Jensen’s inequality one can
verify that

0 ≤ H(Y|Z1, Z2) ≤ H(Y) ≤ m.

Thus the above algorithm must halt after at most m/ε iterations. It is also
clear that the random variables Z1, Z2, Z′

1, Z′
2 generated by this algorithm

will obey the determinism relationships (12) and (14).
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Also, if W1, W2 are any random variables determined by X1, X2 respectively,
then by comparing the minimizer Z′

1, Z′
2 against the competitor (Z′

1, W1),
(Z′

2, W2) (which obeys the required constraints), we have

H(Y|Z′
1, Z′

2) +
H(Z′

1, Z′
2)

F(H(Z1, Z2))
≤ H(Y|Z′

1, Z′
2, W1, W2) +

H(Z′
1, Z′

2, W1, W2)

F(H(Z1, Z2))
.

Since H(Y|Z′
1, Z′

2) − H(Y|Z′
1, Z′

2, W1, W2) = I(Y : W1, W2|Z′
1, Z′

2) and
H(Z′

1, Z′
2, W1, W2) ≤ H(Z′

1, Z′
2) + H(W1, W2), we obtain (15) as desired

after some algebra.
Now we compare the entropies of Z1, Z2 and Z′

1, Z′
2. Since Z1, Z2 obeys

the constraints in the minimization problem (16), we have

H(Y|Z′
1, Z′

2) +
H(Z′

1, Z′
2)

F(H(Z1, Z2))
≤ H(Y|Z1, Z2) +

H(Z1, Z2)

F(H(Z1, Z2))
.

As observed earlier, the first summand on either side ranges between 0 and
m. Thus we have (after some rearranging)

H(Z′
1, Z′

2) ≤ H(Z1, Z2) + mF(H(Z1, Z2)).

In particular, every time we return from Step 2 to Step 1, the quantity
H(Z1, Z2) increases by at most mF(H(Z1, Z2)). From Step 0, the initial
value of H(Z1, Z2) is 0. Since the number of iterations is bounded by m/ε,
we see that the final value of H(Z1, Z2) is bounded by a finite (but ex-
tremely large) quantity Om,F,ε(1) or more explicitly the value obtained after
m/ε iterations of the map M 7→ M + mF(M) applied to 0. �

To pass from an entropy formulation to an expectation formulation, we
need a way to pass from control of entropy to control of expectations. A
clue to how to do this is provided by the following observation: if Y 7→ Y′

and I(X : Y|Y′) = 0, then X and Y are independent conditionally on Y′. In
particular, if X takes values in a vector space, this implies that E(X|Y) =
E(X|Y′). In other words, whenever I(X : Y|Y′) = H(X|Y′) − H(X|Y) is
zero, so is E(X|Y′)−E(X|Y). This may help motivate the following lemma,
which is a perturbative version of the above observation.

Lemma 4.4 (Relation between entropy and expectation). Let X, Y, Y′ be dis-
crete random variables with Y 7→ Y′, and with X taking values in the unit interval
{−1 ≤ x ≤ 1}. Then we have

E
(∣

∣E(X|Y′) − E(X|Y)
∣

∣

)

≤ 2I(X : Y|Y′)1/2.

More informally, this lemma asserts that approximate conditional inde-
pendence in the entropy sense implies approximate conditional indepen-

dence in an expectation sense. The bound 2I(X : Y|Y′)1/2 is not best pos-
sible, but any bound which decays to zero as I(X : Y|Y′) → 0 will be
sufficient for our purposes.

Proof. The basic idea is to exploit the observation that the function x log 1
x

is not only concave but also strictly concave on [0, 1]. Let us first verify
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the lemma in the special case when Y′ is deterministic (so the hypothesis
Y 7→ Y′ is vacuous), thus we wish to prove

E(|E(X)− E(X|Y)|) ≤ 2I(X : Y)1/2.

Let 1 ≤ x1, . . . , xn ≤ −1 be the essential range of X, and let y1, . . . , ym be
the essential range of Y. For any 1 ≤ i ≤ n and 1 ≤ j ≤ m, define the
probabilities

pij := P(X = xi|Y = yj)

qj := P(Y = yj)

pi :=
m

∑
j=1

qj pij = P(X = xi)

Then we observe that 0 ≤ pij, qj ≤ 1 and that ∑
m
j=1 qj = 1. If we define

f : [0, 1] → R to be the function f (x) := −x log x (with the convention
f (0) := 0), we thus have

I(X : Y) = H(X) − H(X|Y)

=
n

∑
i=1

( f (pi) −
m

∑
j=1

qj f (pij)).

Now observe that f is concave, indeed we have f ′′(x) = −1/x for all x ∈
(0, 1]. Thus by Taylor’s theorem with remainder,

f (pij) ≤ f (pi) + f ′(pi)(pij − pi) −
1

2
(pij − pi)

2/p∗ij

where p∗ij is a quantity between pij and pi. Inserting this into the preceding

estimate and noting that ∑
m
j=1 qj(pij − pi) = 0, we conclude that

m

∑
j=1

qj

n

∑
i=1

(pij − pi)
2/p∗ij ≤ 2I(X : Y).
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Now we compute using the boundedness of xi and Cauchy-Schwarz, as
well as the crude estimate p∗ij ≤ pi + pij,

E(|E(X)− E(X|Y)|) =
m

∑
j=1

qj|E(X)− E(X|Y = yj)|

=
m

∑
j=1

qj|
n

∑
i=1

xi(pi − pij)|

≤
m

∑
j=1

qj

n

∑
i=1

|pi − pij|

≤ (
m

∑
j=1

qj

n

∑
i=1

|pi − pij|
2/p∗ij)

1/2(
m

∑
j=1

qj

n

∑
i=1

p∗ij)
1/2

≤ [2I(X : Y)
m

∑
j=1

qj

n

∑
i=1

pi + pij]
1/2

= 2I(X : Y)1/2.

Now we consider the general case when Y′ is not deterministic. In that case
we write

E(|E(X|Y′)−E(X|Y)|) = ∑
y′

P(Y′ = y′)E(|E(X|Y′ = y′)−E(X|Y; Y′ = y′)|).

(Here we have taken advantage of the hypothesis Y 7→ Y′.) Applying the
preceding computation, we conclude

E(|E(X|Y′) − E(X|Y)|) ≤ ∑
y′

P(Y′ = y′)2I(X : Y|Y′ = y′)1/2.

Applying Cauchy-Schwarz again we conclude

E(|E(X|Y′) − E(X|Y)|) ≤ 2

√

∑
y′

P(Y′ = y′)I(X : Y|Y′ = y′)

= 2I(X : Y|Y′)1/2

as desired. �

By combining this with Lemma 4.3 it is possible to give a statement
closely resembling Theorem 2.11, and which is also sufficient to imply The-
orem 2.3. We omit the details.
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[16] V. Rödl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs,

preprint.
[17] J. Solymosi, Note on a generalization of Roth’s theorem, Discrete and computational

geometry, 825–827, Algorithms Combin. 25, Springer Verlag, 2003.
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