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UNAVOIDABLE ARRAYS

KLAS MARKSTRÖM AND LARS-DANIEL ÖHMAN

Abstract. An n × n array is avoidable if for each set of n symbols
there is a Latin square on these symbols which differs from the array in
every cell. We characterise all unavoidable square arrays with at most 2
symbols, and all unavoidable arrays of order at most 4. We also identify
a number of general families of unavoidable arrays, which we conjecture
to be a complete account of unavoidable arrays. Next, we investigate
arrays with multiple entries in each cell, and identify a number of families
of unavoidable multiple entry arrays. We also discuss fractional Latin
squares, and their connections to unavoidable arrays.

We note that when rephrasing our results as edge list-colourings of
complete bipartite graphs, we have a situation where the lists of available
colours are shorter than the length guaranteed by Galvin’s Theorem to
allow proper colourings.

1. Introduction

An n × n Latin square is an n × n array on n symbols, usually taken
to be [n] = {1, . . . , n}, such that each symbol occurs exactly once in each
row and each column. An array A is avoided by an array B of the same
order if entries in corresponding cells are different. An array A is avoidable
if for each set of n symbols, there is a Latin square on these symbols that
avoids A. We allow for empty cells, and symbols other than [n], though such
additional symbols can be disregarded. A multiple entry array is an array
where each cell can hold several symbols.

We say that two arrays are isotopic if one can be transformed into the
other by suitable permutations of the rows, the columns and/or the symbols.
In somewhat non-standard terminology, we shall also allow the columns and
rows to switch roles, and still use the term ‘isotopic’. Two arrays are con-
jugate if one can be transformed into the other by freely exchanging the
roles of rows, columns and symbols, and permuting elements within these
classes. Obviously, two isotopic arrays are conjugate. Any conjugate of
a (partial) Latin square is a (partial) Latin square, so when investigating
avoidable (multiple entry) arrays, we need really only consider distinct con-
jugacy classes.
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The question of which n×n arrays are avoidable was posed by Häggkvist
in 1989 [8]. It is not hard to produce examples of unavoidable arrays, but
no complete (nor even partial) characterisation is known. By results of
Chetwynd and Rhodes [4], Cavenagh [2], and Cavenagh and one of the
present authors [3], all partial Latin squares of order at least 4 are avoidable,
and there exist unavoidable partial Latin squares of order 2 and 3. We may
therefore restrict our search for unavoidable arrays to arrays that have at
least one repeated entry in some row or column.

As is well known, proper edge colourings of complete balanced bipartite
graphs correspond to Latin squares. Galvin’s Theorem [7] determines a
condition on how many colours must be available on each edge to ensure the
existence of a proper edge colouring using only allowed colours at each edge
of a general bipartite graph. In the edge colouring language, we investigate
what conditions we must place on the lists of available colours if we want
them to be slightly shorter than the length specified in Galvin’s Theorem.
This is a small special case of the more general interesting question of what
conditions must be placed on the lists in a general bipartite multigraph in
order to ensure colourability.

The present investigation is in the same spirit as [6], where Brooks’ bound
on the chromatic number, when odd cycles and ∆-cliques are excluded, is
improved on to ∆ − k for a range of k, by excluding more and more sub-
graphs. In our case, we find certain configurations of disallowed colours that
make proper colouring impossible, but when these specific configurations are
excluded, colouring is always possible.

We shall start by proving a characterisation of all unavoidable arrays on
exactly one or two symbols. Next, we list all small (orders 2, 3 and 4)
minimal unavoidable arrays, produced by exhaustive computer search. We
then investigate the avoidability of multiple entry arrays. Finally, we state
some conjectures as to the set of all unavoidable arrays.

2. Arrays with one or two distinct symbols

In what follows, a recurring configuration is an r × (n− r + 1) rectangle,
which we name a critical rectangle, and diagonals, which are just a set of n
cells, exactly one from each row and each column. We shall denote by A[σ]
the set of cells of A containing the symbol σ.

It is reasonable to expect that unavoidable arrays using few symbols are
not very common. In the next few results, we characterise those using
exactly one or exactly two distinct symbols. It is obvious that a critical
rectangle completely filled with a single symbol makes for an unavoidable
array. Any additional occurences of the symbol in the critical rectangle
are not necessary, and can be removed, to achieve minimality. It would
be conceivable, however, that there are other configurations using only one
symbol that are also unavoidable, but the next proposition, which is basically
just a corollary to Hall’s Theorem, rules this out.
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Proposition 2.1. Any unavoidable n× n array A using only the symbol 1
contains a critical rectangle R′ ⊂ A[1].

Proof. To produce a Latin square avoiding an array A with only the symbol
1, we need only find a diagonal of empty cells in the array. Here we can
enter the symbol 1, and the completion to a Latin square is trivial, since
no other symbols are prohibited. By Hall’s Theorem, an array A using only
one symbol has an empty diagonal if and only if for each set of rows R, the
number of columns C that have at least one empty cell in one of the rows
in R is at least r = |R|.

In other words, an unavoidable array using only one symbol must have,
for some r ≤ n, a set R of r rows, where the empty cells in these rows
occur in at most r− 1 distinct columns. Therefore, there is a set of at least
n − (r − 1) columns having no 1s in the rows of R. The intersection of R
with these columns gives us our critical rectangle. �

When looking at unavoidable arrays with two distinct symbols, we find
that we shall want to say when an avoidable array with one single symbol
forces the use of that symbol in all of a set of cells or in at least one of a set
of cells.

Lemma 2.2. Let A be an n × n avoidable array using only the symbol 1.
Suppose that any Latin square that avoids A must use the symbol 1 in each
of the cells in the set S. Then for each cell (i, j) ∈ S, A contains a critical
rectangle Ri,j 3 (i, j), such that Ri,j \ (i, j) ⊂ A[1].

Proof. If we are forced to place the symbol 1 in cell (i, j) when avoiding A,
it follows that adding a 1 to cell (i, j) results in an unavoidable array. By
Proposition 2.1 the array now contains a critical rectangle on the symbol 1.
Removing the added 1 from A results in the subarray claimed to exist. �

Lemma 2.3. Let A be an n× n avoidable array using only one symbol, 1.
Suppose that any Latin square that avoids A must use the symbol 1 in at least
one of the cells in the set of cells S. Then there is a nonempty subset T ⊂ S,
such that A contains a critical rectangle R ⊃ T such that R \ T ⊂ A[1].

Proof. We assume that there is no cell in S where the symbol 1 is forbidden,
for then we simply remove it from S. We form T in the following way: if we
add a forbidden 1 in each cell of S, we get an unavoidable array A?, which
must therefore contain a critical rectangle R ⊂ A?[1]. R intersects S, for the
removal of the added 1s in the cells of S would result in an avoidable array,
and this can therefore not contain a critical rectangle on the symbol 1. If
we set T = R ∩ S we see that R covers T , all cells of T are empty because
all cells of S are, and T ⊂ S. �

We are now in a position to prove a characterisation of unavoidable arrays
on two distinct symbols.
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Theorem 2.4. Let A be an n× n unavoidable array with two distinct sym-
bols, 1 and 2, that does not constitute an unavoidable array when either
symbol is completely removed. Then A contains one r × (n − r + 1) array
R1 and one (n − r + 1) × r array R2 as follows: R1 and R2 intersect in a
single cell {c} which is empty, and Ri \ {c} ⊂ A[i] for i = 1, 2.

Proof. Since we assume that neither the 1s nor the 2s constitute an un-
avoidable array in themselves, we can assume that we may place the 1s on
a diagonal, respecting the constraints set by the 1s in A. Then, no matter
how these 1s are placed, there is not enough room to place the 2s. If it were
possible to place the 2s, we could easily fill in the rest of the Latin square,
as there are no other symbols in A.

For i = 1, 2 let Mi be the set of cells where A[i] forces us to use the
symbol i, i.e. the set of cells that all diagonals that avoid A[i] intersect.
By Lemma 2.2, Mi consists only of cells {c} such that {c} ∪A[i] contains a
critical rectangle. We shall prove that M1∩M2 6= ∅, so that by Lemma 2.2,
for each cell {c} ∈M1 ∩M2 we find the critical rectangles claimed.

By Proposition 2.1, for any diagonal D with D ∩ A[1] = ∅, A[2] ∪ D
contains a critical rectangle, for otherwise we could find a suitable diagonal
to place 2s in, which would contradict unavoidability.

Thus each diagonal D ∩ A[1] = ∅ contributes to some critical rectangles
in A[2] ∪ D. Suppose there is some diagonal D1 whose contribution to all
critical rectangles in A[2] ∪D1 is at least two cells.

Then we claim that we can form a new diagonal D′
1 such that D′

1 ∪ A[2]
does not contain any critical rectangle. Indeed, we can, separately for each
critical rectangle R ⊂ D1 ∪A[2], pick out two cells in D1 ∩R and reform D1

so that R no longer lies in the union of A[2] and the reformed diagonal. This
process is illustrated in Figure 1, where we read “a/b” as a being forbidden,
and b being used in that cell, and ∅ indicates an empty cell.

Since the change from D1 to D′
1 only involves moving two 1s into A[2],

this reformation produces no new critical rectangles, so after a number of
such single reformations, we find a diagonal D′

1 such that D′
1∪A[2] contains

no critical rectangles. Thus there is some critical rectangle to which D1 only
contributes one cell, {c}, so that {c} ∈ M2. Thus M2, and by symmetry,
M1 are non-empty.

We now prove that any diagonal D1 that avoids A[1] intersects M2 and
vice versa. If there were a diagonal D2 avoiding A[2] ∪ D1, we could fill
Di with symbol i and easily complete this to a Latin square, contradicting
the unavoidability of A. Therefore, A[2]∪D1 contains critical rectangles R.
Suppose now that D1 ∩M2 = ∅. Then D1 contributes at least 2 cells to
each critical rectangle in A[1] ∪ D1. If this were the case, we could, as in
Figure 1, reform D1 to find a new diagonal D′

1 such that A[1]∪D′
1 contains

no critical rectangles, which would contradict the unavoidability of A.
Since every diagonal D1 ∩ A[1] intersects M2, by Lemma 2.3, there is a

nonempty set T ⊂M2 such that A[1] ∪ T contains a critical rectangle.
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∅/1 · · · 2/∅

· · · · · ·

2/∅ · · · ∅/1

−→

∅/∅ · · · 2/1

· · · · · ·

2/1 · · · ∅/∅

Figure 1: Forming D′
1.

We now consider |T |. If |T | = 1, it is obvious that T ⊂ M1. If it were
the case that |T | ≥ 2, we would not be forced to use symbol 2 in any of the
cells of T , contradicting the fact that T ⊂ M2. To see why this is so, we
take two distinct cells in T . Figure 2 shows how the 2s claimed to be forced
in the these two cells of T can be moved.

1/∅ · · · ∅/2

· · · · · ·

∅/2 · · · 1/∅

−→

1/2 · · · ∅/∅

· · · · · ·

∅/∅ · · · 1/2

Figure 2: Avoiding 2 cells of T .

Thus |T | = 1 and therefore T ⊂M1, so that T ⊂M1∩M2. This completes
the proof. �

We now properly define arrays of type An,r and Bn,r, and note again that
we have a complete characterisation of unavoidable arrays on one or two
symbols. We state the characterisation as a theorem.

Definition 2.5. We denote by An,r the n × n unavoidable 1-symbol array
that has an r × (n− r + 1) subarray filled with that symbol.

By Bn,r we denote the n × n unavoidable 2-symbol array that has an
r × (n − r + 1) subarray R1 filled with 1s except for one cell c, and an
(n− r + 1)× r subarray R2 filled with 2s except for the cell c = R1 ∩R2.

Theorem 2.6. Let M be a minimal n×n unavoidable array on one or two
symbols. Then M ∈ {An,1, . . . , An,dn

2
e, Bn,1, Bn,3, . . . , Bn,dn

2
e}.

Unavoidable arrays with exactly one symbol are easily grasped. In Fig-
ure 3, we see, however, that B5,2 is not minimal, for it contains B5,1 as a
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subarray, and that B5,3 is minimal. Theorem 2.4 states that the minimal
unavoidable arrays with 2 distinct symbols are exactly the arrays of type B,
with the exception of Bn,2 for all n.

1

1

1

1

2 2 2 2

(a) B5,1

1 1

1 1

1 1

1 2 2 2

2 2 2 2

(b) B5,2

1 1 1

1 1 1

1 1 2 2

2 2 2

2 2 2

(c) B5,3

Figure 3: All 5× 5 arrays of type B.

We conclude this section by, for future reference, recording in the following
lemma when a 2-symbol array forces the use of one of these symbols in all
of a specified set of empty cells, and remark that the general case when the
cells in which a 1 or 2 is forced are not empty is considerably harder to make
sense of.

Lemma 2.7. Let A be an n × n avoidable array on symbols 1 and 2, and
suppose that cell c is empty and any Latin square that avoids A uses a 1 in
cell c. Then one of the following holds.

(a) There is an critical rectangle R1 covering c, with R1 \ {c} ⊂ A[1].
(b) There are two critical rectangles R1 and R2, c ∈ R1, R1 ∩ R2 = e,

cell e is empty, e 6= c, R1 \ {c, e} ⊂ A[1], and R2 \ {e} ⊂ A[2].

Proof. Placing an additional forbidden 1 in cell c produces an unavoidable
array, A?. If A? is unavoidable on account of the 1s alone, we have Case (a),
by Proposition 2.1. If both 1s and 2s play a part in making A? unavoidable,
then by Theorem 2.4 we have Case (b). �

3. Investigating small arrays

By Proposition 2.1 and Theorem 2.4, the only minimal unavoidable arrays
on one (labelled A with indexing subscripts) or two symbols (labelled B with
indexing subscripts) for 2 ≤ n ≤ 4 are, up to isotopism, those given in Fig-
ure 4. Note that these include both unavoidable 2× 2 minimal unavoidable
arrays.

Definition 3.1. We denote by Dn,r an n × n array where the first n − 1
cells of the i:th column is filled with symbol i for 1 ≤ i ≤ r− 1, and the last
n− r + 1 cells in the last row are filled with symbol r.
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We denote by Cn,1 the n×n array where the cells (1, 1), . . . , (n−1, 1) and
(n− 1, 3), . . . , (n− 1, n− 1) are filled with 1s, the cells (1, 2), . . . , (n− 2, 2)
and (n, 2), . . . , (n, n− 1) are filled with 2s and the cells (1, n), . . . , (n− 1, n)
are filled with 3s.

We denote by Cn,2 the n× n array where the n− 1 first cells in the first
row and first column are filled with 1s, the cells (n, 2), . . . , (n, n−1) are filled
with 2s and the cells (2, n), . . . , (n− 1, n) are filled with 3s.

The label Cn,3 is synonymous with Dn,3.

1 1

(a) A2,1, D2,1

1

2

(b) B2,1, D2,2

1 1 1

(c) A3,1, D3,1

1 1

1 1

(d) A3,2

1

1

2 2

(e) B3,1, D3,2

1 1 1 1

(f) A4,1, D4,1

1 1 1

1 1 1

(g) A4,2

1

1

1

2 2 2

(h) B4,1, D4,2

Figure 4: Minimal unavoidable arrays on one or two symbols.

All minimal unavoidable 3 × 3 arrays on 3 symbols (up to isotopism),
generated by computer, are given in Figure 5. The minimal unavoidable
non-isotopic 4 × 4 arrays on at least 3 symbols corresponding to these are
presented in Figure 6. Unexpected additions to the list of 4× 4 unavoidable
arrays, all using 4 symbols, are given in Figure 7.

These are minimal in the sense that the removal of any entry results in an
avoidable array. The list is complete in the sense that any unavoidable array
contains one of them as a subarray. We will refer our unavoidable arrays
as being of type A through D or S, as listed. Types A–D are evidently
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parts of larger families of unavoidable arrays, that have members for each
order. That “type” S generalises to any order is not as clear. In fact, we
conjecture that the arrays of type S presented here are exceptional examples,
hence the label S for ‘Sporadic’. This conjecture will be articulated more
precisely below.

1 2 3

1

2

(a) C3,1

1 1

1 3

2

(b) C3,2

1 2

1 2

3

(c) C3,3, D3,3

1 2 3

1 3 2

(d) S3,1

1 2 3

3 1

2 1

(e) S3,2

Figure 5: All minimal unavoidable 3× 3 arrays on 3 symbols.

In Figure 5 we find an old aquaintance from [8], namely S3,1, which was
identified as the only known example of an unavoidable row-latin array with
empty last row.

1 2 3

1 2 3

1 1

2 2

(a) C4,1

1 1 1

1 3

1 3

2 2

(b) C4,2

1 2

1 2

1 2

3 3

(c) C4,3, D4,3

1 2 3

1 2 3

1 2 3

4

(d) D4,4

1 1 2 3

1 1 3 2

2 2

3 3

(e) S4,1

1 2 2 3

3 4 4 1

3 4 4 1

2 1 1

(f) S4,2

Figure 6: Corresponding minimal unavoidable 4× 4 arrays.

The list of unavoidable 4× 4 arrays in Figures 4 through 7 was generated
by computer in the following manner.

First, the set of all avoidable arrays on the symbol 1 were generated, and
reduced with respect to isomorphism using Brendan McKay’s isomorphism
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1 1 2

1 1 2

3 2 2 4

2 4 2 3

(a) S4,3

1 1 2

1 1 2

3 3 2 4

4 4 2 3

(b) S4,4

1 1

1 1 2 2

2 3 2 4

4 2 2 3

(c) S4,5

1 1

1 1 2 2

3 3 2 4

4 4 2 3

(d) S4,6

1 1 1

1 1 2

2 3 2 4

4 2 2 3

(e) S4,7

1 1 1

1 1 2

3 3 2 4

4 4 2 3

(f) S4,8

1 1 1

1 3 4 3

2 2 2

2 3 3 4

(g) S4,9

Figure 7: All minimal unavoidable 4×4 arrays not included in Figures 4 or 6.

package Nauty [10]. Next, for each of the generated 1-symbol arrays, for-
bidden 2s were added, in each case fewer than or equal to the number of
already present 1s. Another run of Nauty reduced this list. In the same
manner, symbols 3 and 4 were added. The final reduced list was then tested
for avoidability and minimality using the SAT-solver UMSAT developed at
Ume̊a University [13].

We note that among the arrays in this section, those labelled with Cn,1,
Cn,2, Cn,3 and Dn,r can be generalised to any n, and that we have found
no general construction to extend any of the arrays of type S to arrays of
general size. We phrase this as a proposition.

Proposition 3.2. For n ≥ 3 there exist at least three distinctive types of
unavoidable arrays on three symbols: Cn,1, Cn,2 and Cn,3. Also, for any
r ≤ n there exist unavoidable arrays on r distinct symbols, namely the Dn,r.
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4. Multiple entry arrays

In [5] a rough counting method yielded some general results on avoidable
multiple entry arrays, but here we aim for precise descriptions of the border
between avoidable and unavoidable.

4.1. Entries in only one or two rows. If we allow ourselves to forbid
more than one symbol in each cell of an array, our list of unavoidable arrays
will evidently grow longer, but when all entries are in the first two rows, we
can, by taking conjugates, use Theorem 2.4 to obtain a full characterisation.
We omit the details.

4.2. Entries only on a diagonal. Making use of the following characteri-
sation by G. J. Chang, cited (and again proved) in [9], of completable partial
Latin squares having all their entries on a diagonal, we can characterise all
unavoidable multiple entry arrays with entries only on a diagonal.

Theorem 4.1. Let D be an n × n array with entries on a diagonal. D is
completable if and only if no symbol occurs exactly n− 1 times.

When applied to avoidability, Theorem 4.1 implies that if we exclude the
trivial case of when all symbols are forbidden in some single cell, a multiple
entry array with entries only on the diagonal is unavoidable exactly when
it forces us to use one symbol exactly n − 1 times, and a different symbol
in the last cell on the diagonal. It may seem that a direct description of
the unavoidable arrays presently considered is trivial, but it turns out that
there is one twist to the story. It is fairly obvious that if symbols, say,
1, . . . , (n−1) are all forbidden in the n−1 first cells along the diagonal, and
symbol n is fobidden in the last cell, then we have an unavoidable array, by
Theorem 4.1, but, as made clear in Figure 8, there is one other array that
is unavoidable. However, c3,1 is the only exception to the rule, as is easily
checked.

1,2

1,3

1

(a) c3,1

1,2

1,2

3

(b) c3,3, d3,3

Figure 8: 3 × 3 unavoidable multiple entry arrays with entries only on the
diagonal.
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4.3. Multiple entry 3 × 3 arrays. For n = 3, the list of all unavoidable
multiple entry arrays, produced by case analysis by hand, is presented in
Figure 9. This case analysis isn’t too demanding, if one starts with fixing
symbols 1 and 2 in cell (1, 1), and observes that this implies that no minimal
unavoidable array can ever hold another forbidden 3 in some other cell in
the first row or column.

1,2,3

(a) a3,1

1,2 1,2

(b) a3,2

1,2

3 3

(c) b3,1, d3,2

1,2

1,3

1

(d) c3,1

1,2 1

3

2

(e) c3,2

1,2

1,2

3

(f) c3,3, d3,3

1,2

1 2

2 1

(g) s3,1

1,2 1

2 3

(h) x3,1

1,2 1

1 2

(i) x3,2

1,2 1

1,3

(j) y3,1

1,2 1

2

1

(k) y3,2

1,2 1

3

1

(l) z3,1

1,2 1

1

2

(m) z3,2

1,2 1

3

2

(n) w3,1

1,2 1

3

1

(o) w3,2

Figure 9: All minimal unavoidable 3× 3 multiple entry arrays.

The arrays in Figure 9 are labelled such that lower case a, b, c, d, s are
conjugates of arrays labelled with upper case A,B,C,D, S. The rest of the
arrays are paired as conjugates, so that for instance x3,1 is conjugate to x3,2.

4.4. Multiple entry 4× 4 arrays on two symbols. Figures 10 through
13 show all nonisotopic 4 × 4 multiple entry arrays on two symbols, i.e.
where there is at least one cell in which both symbols are forbidden. The
list was generated by computer in the following manner:
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First, the set of all avoidable 1-symbol arrays (with the symbol 1) were
generated, and reduced with respect to isotopism using Nauty. Next, for
each of the generated 1-symbol arrays, forbidden 2s were added, in each
case fewer than or equal to the number of already present 1s. Another
run of Nauty reduced this list. This final reduced list was then tested for
avoidability and minimality using UMSAT.

4.4.1. Type I unavoidable multiple entry 4 × 4 arrays on two symbols. The
alert reader will notice that the mechanism that makes all the arrays in
Figure 10 unavoidable is that there exists a single cell in which the forbidden
1s force us to place a 1, and the forbidden 2s then forces the use of a 2 in
the same cell.

1,2 1,2 1,2 1 1 1

1,2 1,2 2

1 1 1,2

1 1

2

2

1 1 1

1,2 1,2

2 2 2

1 1 1

1 1,2 2

2 2 2

1 1,2 1,2

1 1,2

2

2

Figure 10: All type I unavoidable 4×4 multiple entry arrays on two symbols.

4.4.2. Type II unavoidable multiple entry 4 × 4 arrays on two symbols. In
Figure 11, the list continues, but the mechanism is now a set of two cells in
each of which the forbidden 1s force us to place a 1, and the forbidden 2s
force us to place at least one 2 in these cells.

Arrays of types I and II can be described in full for any array size by
applying Theorem 2.4.

4.4.3. Type III unavoidable multiple entry 4×4 arrays on two symbols. The
unavoidable arrays in Figure 12 are a bit more complicated. They fall under
neither of the two above descriptions, but instead, there is some essential
interplay between the two symbols in forcing the use of certain symbols in
certain cells, eventually leading to a conflict. If we take the first of the arrays
in Figure 12 as an example, we see that a 1 is forced in cell (1, 4), then 2s are
forced in cell (3, 1) and (4, 4), then a 1 is forced in (3, 1) and consecutively
in (2, 3). After this, a 2 is forced in (4, 3), which is in conflict with the 2
already forced in (4, 4).
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1 1,2 1,2

1 1,2 2

1 1 1,2

1 1 2

2 2

1 1 1

1,2 1,2

1,2 2

1 1 1

1,2 1,2

1

2 2

1,2 1 1,2

1,2 1

1

2

1 1 1

1,2 1

1,2 2

2

1 1 1

1,2 1 2

1

2 2

1,2 1,2 1

1

1

2 2

Figure 11: All type II unavoidable 4×4 multiple entry arrays on two symbols.

1 1 1,2

1 2

2 1,2 2

1,2 1,2 1

1,2 2

1

2

1,2 1,2 1

1,2 2

1 2

Figure 12: All type III unavoidable 4 × 4 multiple entry arrays on two
symbols.

If we apply the same typology to the list of unavoidable multiple entry
arrays in Figure 9, we see that arrays a3,2 and y3,2 are of type I, arrays x3,2

and z3,2 of type II and the array s3,1 does not belong to any of the three
types.

4.4.4. The two remaining unavoidable multiple entry 4 × 4 arrays on two
symbols. We will return to S4,{10} in the section on fractional relaxations.
For now, we only note that no single symbol is forced in place in any cell,
and that there is no obvious mechanism that makes S4,{10} unavoidable.
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1,2 1,2

1,2 1,2

1,2 1,2

(a) S4,G

1,2 1,2

1,2 1 2

1,2 2 1

(b) S4,{10}

Figure 13: The two remaining unavoidable 4 × 4 multiple entry arrays on
two symbols.

Regarding S4,G, however, there is an interesting thing to note, namely
that it has only the entries {1, 2} in each non-empty cell. Since we only
need to find a diagonal of 1s and a diagonal of 2s in order to be sure that
an array on symbols 1 and 2 is avoidable, in this case we can rephrase the
problem as finding a 2-factor (a 2-regular subgraph) in a certain bipartite
graph. The fact that only {1, 2} occurs as entries in the array means that
the edges are either free to use for either diagonal, or that they are not
available at all.

1,2 1,2

1,2 1,2

1,2 1,2
−→

Figure 14: The type III unavoidable 4 × 4 multiple entry array on two
symbols.

When this reformulation is possible, which is the case exactly when all
non-empty cells have exactly the same entries, we can use results from graph
theory to characterise the unavoidable arrays. For the 2-factor case (i.e.
when all entries are {1, 2}) we have the following theorem from [12], where
N(S) denotes the neighbour set of the set S ⊂ V .

Theorem 4.2. Let B = (V,E) be a bipartite graph. Then B has a 2-factor
if and only if |N(S)| ≥ 2|S| for each independent set S.

For arrays with all entries {1, . . . k}, which in the graph theoretical for-
mulation amounts to finding k-factors in balanced bipartite graphs, we refer
the reader to [11].
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4.5. Constructing unavoidable multiple arrays of arbitrary order.
Given an n × n unavoidable array A on t symbols, there is a simple con-
struction of an unavoidable (n + r) × (n + r) multiple entry array for any
t ≥ r. The construction is illustrated in Figure 15, where B signifies an r×r
array that is entirely empty, and C signifies an r × n array, where symbols
1, . . . , r are forbidden in each cell. As an illustrating example, the array
S4,{10} padded with two rows is presented in the same figure.

B C

A

1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2

1,2 1,2

1,2 1 2

1,2 2 1

Figure 15: The general form of a padding construction, and S4,{10} padded
with two rows.

The added symbols in the subarray C can be distributed more evenly by
placing half of them, or rather d r

2e of them, in C, and the rest of them in
the subarray below B. For instance, an unavoidable 2-symbol single entry
array can be padded in such a way that it is still a single entry array. This
may seem to contradict Theorem 2.4, but the construction actually again
yields an unavoidable array with the structure described in that theorem.

5. Concluding remarks

Why do the sporadic unavoidable arrays of order 3 and 4 exist? They
seem to break the nice pattern the other unavoidable single entry arrays
make out. Is the key ingredient perhaps that they use (almost) all available
symbols, each one a large number of times, or do they exist because 3 and 4
are such small numbers? In the opinion of the present authors, the second
explanation is the correct one. For instance, we believe the list of arrays in
Figure 16 to be a complete list of minimal unavoidable 5 × 5 arrays on at
least three symbols, up to isotopism.

In general, we would like to propose the following conjecture.
Conjecture. For n ≥ 5, the following is a complete (up to isotopism) list
of minimal unavoidable n× n single entry arrays:

An,1, . . . , An,dn/2e, Bn,1, Bn,3, . . . , Bn,dn/2e, Cn,1, Cn,2, Cn,3, Dn,4, . . . , Dn,n
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1 2 3

1 2 3

1 2 3

1 1 1

2 2 2

(a) C5,1

1 1 1 1

1 3

1 3

1 3

2 2 2

(b) C5,2

1 2

1 2

1 2

1 2

3 3 3

(c) C5,3, D5,3

1 2 3

1 2 3

1 2 3

1 2 3

4 4

(d) D5,4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

(e) D5,5

Figure 16: Minimal unavoidable 5 × 5 arrays on at least 3 symbols, that
belong to known families.

In particular, we conjecture that any minimal unavoidable array on at
least k ≥ 5 symbols is a Dn,k. A more tractable problem might be the
following: if the only minimal unavoidable arrays on k symbols are the
Dn,k, show that the same holds for k + 1 ≤ n.

Conjecture 1 may seem rash, and we concede that it is based mainly
on the fact that no other families of unavoidable single entry arrays are
known. As mentioned in the introduction, however, there are phenomena
that provably only occur for very small arrays, for instance unavoidable
partial Latin squares, which exist for orders 2 and 3 only (see [2, 3, 4]). It
is not unreasonable that a similar result might hold for unavoidable single
entry arrays in general. Another instance where small arrays cause problems,
but larger arrays are more well-behaved is row-latin squares with empty last
row. Häggkvist [8] found a single unavoidable row-latin square with empty
last row, labelled S3,1 in the present article, and proved that no such arrays
exist for n = 2k. In other words, there are other phenomena in this area
of research where there exist some anomalous small cases, but for larger
size arrays, everything works as expected. Conjecture 1 is therefore not as
poorly grounded as one might believe at first glance.

By Proposition 2.1 and Theorem 2.4, all unavoidable single entry arrays
on one or two symbols are characterised. Recently, it was confirmed that
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the arrays of type C are the only unavoidable 3-symbol arrays of order 5 or
greater [1]. Hopefully, this issue will be revisited soon.

Where multiple entry arrays are concerned, the general problem of char-
acterising all unavoidable arrays is certainly an intractable problem, but we
are convinced that there are some interesting polynomial special instances.
We note also that Proposition 2.1 and Theorem 2.4 yield polynomial time
algorithms for recognising unavoidable arrays on one or two symbols.
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