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ON THE RIGIDITY OF REGULAR BICYCLE (n, k)-GONS

BALÁZS CSIKÓS

Abstract. Bicycle (n, k)-gons are equilateral n-gons whose k-diagonals
are equal. In this paper, the order of infinitesimal flexibility of the regu-
lar n-gon within the family of bicycle (n, k)-gons is studied. An equation
characterizing first order flexible regular bicycle (n, k)-gons were com-
puted by S. Tabachnikov in [7]. This equation was solved by R. Connelly
and the author in [3]. S. Tabachnikov has also constructed nontrivial
deformations of the regular bicycle (n, k)-gon for certain pairs (n, k).
The main result of the paper is that if the regular bicycle (n, k)-gon
is first order flexible, but is not among Tabachnikov’s examples of de-
formable regular bicycle (n, k)-gons, then this bicycle polygon is second
order flexible as well; however, it is third order rigid.

1. Introduction

Stanislav Ulam asked whether spheres are the only solids of uniform den-
sity which will float in water in equilibrium in any position (problem 19 in
the “The Scottish Book” [6]). The question, known as the floating body
problem makes sense in any dimension d ≥ 2. Assuming that the density
of the water is 1 and the density of the body is a given number 0 < ρ < 1,
the question is equivalent to the following geometric problem: Find all d-
dimensional bodies of volume V such that for every hyperplane which cuts
off a piece of volume ρV from the body, the segment connecting the cen-
ters of gravity of the body and the cut off portion is perpendicular to the
hyperplane.

In the paper [7], Sergei Tabachnikov studied diverse questions related to
the problem of how to determine the direction of a bicycle motion from the
tire tracks of the wheels. He calls a closed smooth curve Γ a bicycle curve,
if there is another closed curve γ, possibly with cusp singularities, such that
the information that Γ and γ are the tracks of the front and rear wheels
of a bicycle, respectively, is not enough to determine which way the bicycle
went. A bicycle curve of length l and perimetral density 0 < α < 1 can
be characterized by the property that the Euclidean distance between the
endpoints of the arcs of length αl of the curve is constant. Bicycle curves
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are closely related to the two-dimensional floating body problem. Namely,
a closed convex curve is a bicycle curve if and only if its convex hull D is a
solution of the floatation problem with a certain density.

The floating body problem is still open for most densities ρ, but there are
some known results in the plane. In 1938, H. Auerbach [1] constructed for
density ρ = 1/2 a non-circular convex disc in the plane which can float in
equilibrium in any position.

Bicycle curves with rational perimetral density are called Zindler curves.
For certain perimetral densities, existence and non-existence theorems of
non-circular Zindler curves were obtained by J. Bracho, L. Montejano and
D. Oliveros in [2] (see also the references given there).

It is a natural idea to look for non-circular solutions of the 2-dimensional
floatation problem among deformations of the circle. In [8], F. Wegner
considered the family of those solutions of the floatation problem which
have a p-fold rotational symmetry and studied whether the circle can be
deformed within this class. He gave explicit formulas in terms of elliptic
integrals for a one-parameter deformation of the circle within the family
of bicycle curves with p-fold rotational symmetry and proved the surprising
result that the curves he found solve the floatation problem for p−2 different
densities simultaneously.

The present paper deals with a discrete version of the bicycle curve prob-
lem proposed by S. Tabachnikov [7]. A bicycle (n, k)-gon is an equilat-
eral n-gon whose k-diagonals are equal. (A k-diagonal is a diagonal con-
necting a vertex to its kth neighbor.) An equilateral n-gon is obviously
a bicycle (n, 1)-gon and a bicycle (n, k)-gon is a bicycle (n, n − k)-gon
as well, therefore, we consider only the case 2 ≤ k ≤ n/2. We focus
on the higher order infinitesimal flexibility of the regular n-gons within
the family of bicycle (n, k)-gons. Concerning this question, S. Tabach-
nikov proved that the regular (n, k)-gon is flexible if (n, k) is in the set
A = {(n, k) | (n is even and k is odd) or n = 2k}. He also proved the fol-
lowing theorem.

Theorem 1. The regular n-gon is first-order rigid as a bicycle (n, k)-gon if

and only if the equation

(1)
sin(k(r + 1)π/n)

sin((r + 1)π/n)
=

sin(k(r − 1)π/n)

sin((r − 1)π/n)

has no integer solution in r belonging to the range 2 ≤ r ≤ n/2.

Integer solutions of equation (1) were described by R. Connelly and the
author in [3]. It turned out that if the regular (n, k)-gon is first order flexible,
then either (n, k) ∈ A or

(n, k) ∈ B := {(n, k) | n and k are even and n divides (k+1)(n/2−k+1)}.

For (n, k) ∈ B, the unique solution 2 ≤ r ≤ n/2 of (1) is r = n/2− k. Since
first order rigidity implies rigidity and infinitesimal rigidity of any order, the
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above results give complete answer to the rigidity question of regular bicycle
(n, k)-gons whenever (n, k) /∈ B. Our main contribution to these results is
the proof of the fact that if (n, k) ∈ B, then the regular n-gon is second
order flexible but third order rigid in the class of bicycle (n, k)-gons.

2. Preliminaries

We shall use the notation φ = π/n, η = eiφ, ξ = η2 = e2iφ throughout
this paper.

R
2 will be identified with the complex plane C and we denote by 〈x, y〉 =

Re(xȳ) the standard dot product on R
2. An n-tuple of points or vectors in

the plane is just an element of C
n. It will be convenient to identify C

n with
the group algebra C[Zn] of the cyclic group Zn = Z/nZ. This means that we
shall think of a vector (z1, . . . , zn) ∈ C

n both as a complex valued function
on Zn and as an n-periodic complex valued function on Z. In particular,
we define zj for integer values of j by the periodicity rule zj+n = zj, ∀j ∈
Z. There are two multiplicative operations on the group algebra C[Zn].
The product a · b of two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) is
the pointwise product a · b = (a1b1, . . . , anbn). The convolution a ∗ b =
(c1, . . . , cn) of them is defined by cj =

∑n
s=1 asbj−s. The two operations

are related to one another by the discrete Fourier transform F : C
n → C

n.
Recall that the jth coordinate of F(a) is F(a)j =

∑n
s=1 asξ

−sj. According to
the convolution theorem, we have F(a∗b) = F(a) ·F(b). F is an invertible
linear transformation. It transforms the standard basis δ∗1, . . . , δ∗n of C

n

(δ∗j is the jth row of the n × n unit matrix) into the basis χ−1, . . . , χ−n

consisting of the irreducible characters χs = (ξs, ξ2s, . . . , ξsn) of Zn. We also
have F(χs) = nδ∗s.

Define the support of the discrete Fourier transform of a function a ∈
C[Zn] as the set:

suppF(a) = {j ∈ Zn | F(a)j 6= 0}.

We have the following simple relations for linear combinations, products and
convolutions of functions:

(2)

suppF(αa + βb) ⊂ suppF(a) ∪ suppF(b),

suppF(a · b) ⊂ suppF(a) + suppF(b),

suppF(a ∗ b) = suppF(a) ∩ suppF(b).

In particular, the regular representation of Zn on the group algebra C[Zn]
preserves the support of the discrete Fourier transform, i.e.,

(3) suppF(a ∗ δ∗k) = suppF(a) for all k.

It will be used frequently that if aj = cos(2jsφ + φ0), then

suppF(a1, . . . , an) = {±s}.

The points xi = ξi, (i = 1, . . . , n) are the vertices of a regular n-gon.
Regular n-gons are bicycle (n, k)-gons for any 2 ≤ k ≤ n/2. When x is
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a vector valued function on an interval, the qth derivative of the squared
length d2 = 〈x, x〉 is expressed as

(d2)(q) =

q
∑

s=0

(

q

s

)

〈x(s), x(q−s)〉.

In view of this, a qth-order variation of the regular n-gon within the family of

bicycle (n, k)-gons is given by (q + 1) collections of vectors (x
(s)
1 , . . . , x

(s)
n ) ∈

C
n, (s = 0, . . . , q) satisfying x

(0)
i = xi for all 1 ≤ i ≤ n,

(4)

p
∑

s=0

(

p

s

)

〈x
(s)
j+1 − x

(s)
j , x

(p−s)
j+1 − x

(p−s)
j 〉 = 0 for all 1 ≤ p ≤ q,

and

(5)

p
∑

s=0

(

p

s

)

〈x
(s)
j+k − x

(s)
j , x

(p−s)
j+k − x

(p−s)
j 〉 = c(p) for all 1 ≤ p ≤ q,

where the numbers c(p) ∈ R are some constants.
Two qth-order variations x

(p)
s and x̂

(p)
s are called equivalent up to con-

gruence if there is a smooth one-parameter family of isometries Φt, such
that

x̂(p)
s =

(

d

dt

)p



Φt





q
∑

j=0

x(j)
s

tj

j!









∣

∣

∣

∣

∣

∣

t=0

for all 0 ≤ p ≤ q.

A qth-order variation is trivial if it is equivalent up to congruence to the

qth-order variation x
(p)
s ≡ 0 for 1 ≤ q ≤ r and 1 ≤ s ≤ n. If a non-trivial

first order variation x
(1)
s exists, then there is a non-trivial qth-order variation

as well, it is given by x̂
(p)
s = 0 for 1 ≤ p < q and x̂

(q)
s = x

(1)
s , 1 ≤ s ≤ n. This

motivates the following definition of higher order rigidity and flexibility.
A system is qth-order rigid if for any qth-order variation of the system, the

first order variation obtained by forgetting the higher order terms is trivial.
A system is qth-order flexible if it is not qth-order rigid (see [4]).

There are several possibilities to factor out the action of congruences. We
could, for example, pin down two consecutive vertices, say x1 and x2, and

consider only qth-order variations for which x
(p)
1 = x

(p)
2 = 0 for 1 ≤ p ≤ q.

Another possibility, which preserves the logical symmetry of the vertices,
is to consider qth-order variations which leave the mass center of the set
of vertices at the origin and keep the angular momentum of the set of the
vertices with respect to the origin to be equal to 0. Thus we may restrict
our attention to qth-order variations for which

(6)

n
∑

s=1

x(p)
s = 0 for 1 ≤ p ≤ q,
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and

(7)

n
∑

s=1

p
∑

j=0

(

p

j

)

Ω(x(j)
s , x(p−j+1)

s ) = 0 for 0 ≤ p ≤ q,

where Ω is the standard symplectic form on C, which assigns to z1 = a1+ib1

and z2 = a2 + ib2 the signed area of the parallelogram spanned by them:

Ω(z1, z2) = det

(

a1 b1

a2 b2

)

= Im(z̄1 · z2).

3. Recursive formulae for higher order variations

Denote by ∆x
(p)
s the difference ∆x

(p)
s = x

(p)
s+1 − x

(p)
s . These differences

must satisfy

(8)

n
∑

j=1

∆x
(p)
j = 0.

In view of equation (6), the numbers x
(p)
s can be expressed with the help of

these differences as

x(p)
s =

n+s−1
∑

j=s

j + 1

n
∆x

(p)
j .

Thus, the system of equations (4), (5) and (7) can be rewritten in terms of

the differences ∆x
(p)
s .

The unit complex numbers ws = η2j+1 and iws form an orthonormal basis

of C over R. Express ∆x
(p)
s as a linear combination of this basis

∆x(p)
s = λ(p)

s ws + µ(p)
s iws, λ(p)

s , µ(p)
s ∈ R.

As ∆x
(0)
s = η2s+2 − η2s = 2 sin(φ)iws, we have

(9) λ(0)
s = 0 and µ(0)

s = 2 sin(φ) for 1 ≤ s ≤ n.

Suppose that 1 ≤ p ≤ q and we have already computed λ
(j)
s and µ

(j)
s for

1 ≤ s ≤ n and 0 ≤ j < p. Let us try to compute λ
(p)
s and µ

(p)
s .

Equation (4) is equivalent to the equation

(10)

p
∑

s=0

(

p

s

)

(λ
(s)
j λ

(p−s)
j + µ

(s)
j µ

(p−s)
j ) = 0,

which yields together with (9) a recursive formula for µ
(p)
j

(11) µ
(p)
j = −

1

4 sin(φ)

p−1
∑

s=1

(

p

s

)

(λ
(s)
j λ

(p−s)
j + µ

(s)
j µ

(p−s)
j ).
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The left-hand side of (5) is equivalent to
(12)

p
∑

s=0

(

p

s

)

〈

k−1
∑

l=0

(λ
(s)
j+lwj+l + µ

(s)
j+liwj+l),

k−1
∑

l=0

(λ
(p−s)
j+l wj+l + µ

(p−s)
j+l iwj+l)

〉

.

Since

〈wj , wl〉 = 〈iwj , iwl〉 = cos(2(j − l)φ)

and

〈iwj , wl〉 = −〈wj , iwl〉 = sin(2(l − j)φ),

equation (12) takes the form

(13)

k−1
∑

l1,l2=0

p
∑

s=0

(

p

s

)

[

(λ
(s)
j+l1

λ
(p−s)
j+l2

+ µ
(s)
j+l1

µ
(p−s)
j+l2

) cos(2(l1 − l2)φ)

+ (λ
(s)
j+l1

µ
(p−s)
j+l2

− µ
(s)
j+l1

λ
(p−s)
j+l2

) sin(2(l1 − l2)φ)
]

= c(p).

Rearranging (13) we obtain the following system of linear equations for the

λ
(p)
j ’s

(14)
k−1
∑

l1,l2=0

4 sin(φ)λ
(p)
j+l1

sin(2(l1 − l2)φ) = c(p) − R
(p)
j ,

where

(15)

R
(p)
j =

k−1
∑

l1,l2=0

[

4 sin(φ)µ
(p)
j+l1

cos(2(l1 − l2)φ)

+

p−1
∑

s=1

(

p

s

)

[

(λ
(s)
j+l1

λ
(p−s)
j+l2

+ µ
(s)
j+l1

µ
(p−s)
j+l2

) cos(2(l1 − l2)φ)

+ (λ
(s)
j+l1

µ
(p−s)
j+l2

− µ
(s)
j+l1

λ
(p−s)
j+l2

) sin(2(l1 − l2)φ)
]

]

.

Summation with respect to l2 on the left hand side of (14) can be brought
to a closed form, which yields

(16)
k−1
∑

l=0

λ
(p)
j+l4 sin(kφ) sin((2l − k + 1)φ) = c(p) − R

(p)
j .

Introducing the vectors Λ(p) = (λ
(p)
1 , . . . , λ

(p)
n ), R(p) = (R

(p)
1 , . . . , R

(p)
n )

and b = (b1, . . . , bn), where

bs =

{

0 if 1 ≤ s ≤ n − k,
4 sin(kφ) sin((1 − k − 2s)φ) if n − k + 1 ≤ s ≤ n,
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the system of equations (16) for j = 1, . . . , n can be written in a compact
form

(17) Λ(p) ∗ b = c(p)χn −R(p).

Applying the discrete Fourier transform to equation (17) we get

(18) F(Λ(p)) · F(b) = nc(p)δ∗n −F(R(p)).

When the jth coordinate F(b)j of F(b) is not zero, the jth coordinate of

F(Λ(p)) is uniquely given by

(19) F(Λ(p))j = F(c(p)χn −R(p))j/F(b)j .

However, whenever F(b)j = 0, F(c(p)χn−R(p))j must be 0 as well, otherwise
equation (18) has no solutions.

To write our formulas in a concise form, we introduce the notation

σj =
k−1
∑

s=0

η(k−1−2s)j =







k if j = 0,
sin(kjφ)

sin(jφ)
if 1 ≤ j ≤ n − 1.

It is important to note that we have σn+j = (−1)k−1σj , thus, unlike most of
the sequences appearing in this paper, the sequence (σj) may not be periodic
in n.

The discrete Fourier transform of b can be computed explicitly:

(20) F(b) =

n
∑

j=1

−2i sin(kφ)(σj+1 − σj−1)η
j(k−1)δ∗j .

This formula shows that F(b)n = 0. Consequently, (18) can have a solution
only if

(21) c(p) =
1

n
F(R(p))n =

1

n

n
∑

j=1

R
(p)
j .

The coefficients ∓2i sin(kφ)(σ2 − k)η±(k−1) of δ∗1 and δ∗(n−1) in (20) are
never equal to 0 since σ2 is the sum of k complex numbers of unit length,
consequently |σ2| < k.

4. First order flexibility

When we apply the above general method to compute first order variations
of the regular n-gon in the family of bicycle (n, k)-gons, equations (11), (15)

and (21) give µ
(1)
j ≡ 0 for all 1 ≤ j ≤ n, R(1) = 0 and c(1) = 0.

Thus, (18) reduces to

(22) F(Λ(1)) · F(b) = 0.

If F(b)n is the only vanishing coefficient of F(b), then the general solution
of (22) is

Λ(1) = Aχn, (A ∈ R).



100 BALÁZS CSIKÓS

These are exactly those solutions which correspond to the trivial first order
variations. Consequently, a non-trivial first order variation exists if and only
if F(b) has at least two vanishing coefficients. In view of the explicit form
of F(b) presented in (20), this implies Theorem 1. This proof of Theorem
1 is essentially the same proof that was given by Tabachnikov in [7].

Suppose from now on that (n, k) ∈ B. Then r = n/2 − k is the unique

integer solution of (1) belonging to the interval [2, n/2], and Λ(1) solves (22)
if and only if it has the form

(23) Λ(1) = F−1(Aδ∗n + Bδ∗r + Cδ∗(n−r)) =
1

n
(Aχn + Bχr + Cχ(n−r)),

where A,B,C ∈ C. Since Λ(1) ∈ R
n, A must be real and B = C. If

B = |B|eiφ0 , then the speed vectors vj have the following explicit form

(24) x
(1)
j =

[

iωxj + (x
(1)
0 − iω)

]

+
2|B|

n

(

j−1
∑

s=0

cos(2srφ + φ0)ws

)

.

where ω = −A/(2n sin(φ)). We can reduce the number of parameters by the
additional conditions on the invariance of the mass center and the angular
momentum. In order to satisfy condition (6) on the invariance of the mass

center, x
(1)
0 must be equal to

(25) x
(1)
0 = iω +

|B|

n

(

eiφ0

ξr+1 − 1
+

e−iφ0

ξ1−r − 1

)

η

and then we also have

(26) x
(1)
j = iωξj +

|B|

n

(

eiφ0ξj(r+1)

ξr+1 − 1
+

e−iφ0ξj(1−r)

ξ1−r − 1

)

η.

The angular momentum condition (7) for q = 1 gives

n
∑

j=1

Ω(x
(0)
j , x

(1)
j ) = nω = 0.

The variation is trivial if and only if B = 0. Since we are interested in
non-trivial variations, we shall assume B 6= 0.

We call two qth-order variations x
(p)
s and x̂

(p)
s equivalent up to regular

reparameterization if there is a smooth map h : (−ε, ε) → R defined on a
neighborhood of 0, such that h(0) = 0, h′(0) 6= 0 and

x̂(p)
s =

(

d

dt

)p









q
∑

j=0

x(j)
s

h(t)j

j!









∣

∣

∣

∣

∣

∣

t=0

for all 0 ≤ p ≤ q.

If B 6= 0, then a regular reparameterization of the variation can rescale

the multiplier |B|/n in the formula for x
(1)
j to any non-zero number, so we



ON THE RIGIDITY OF REGULAR BICYCLE (n, k)-GONS 101

may assume without loss of generality that

(27) x
(1)
j =

(

eiφ0ξj(r+1)

ξr+1 − 1
+

e−iφ0ξj(1−r)

ξ1−r − 1

)

η

2
and ∆x

(1)
j = cos(2jrφ+φ0)wj .

5. Second order flexibility

Theorem 2. If (n, k) ∈ B, the non-trivial first order variation (27) can be

extended to a second order variation.

Proof. Denote by M(p) the vector (µ
(p)
1 , . . . , µ

(p)
n ). Using the recursive for-

mulae of section 3 and the relations in (2), we obtain the following relations

for the support of the discrete Fourier transform of Λ(p), M(p) and R(p).

suppF(Λ(0)) = ∅, suppF(M(0)) = {0},

suppF(Λ(1)) = {±r}, suppF(M(1)) = ∅,

suppF(M(2)) ⊂ suppF(Λ(1)) + suppF(Λ(1)) = {0,±2r},

suppF(R(2)) ⊂ suppF(M(2)) ∪
(

suppF(Λ(1)) + suppF(Λ(1))
)

= {0,±2r}.

As {±r} is not in the support of F(R(2)), equation (18) can be solved for

Λ(2). Any solution Λ(2) yields a second order extension of the non-trivial
first order variation (27). To see this we have to check that condition (8) is

fulfilled for p = 2. Indeed, (n−1) /∈ suppF(Λ(2)) and (n−1) /∈ suppF(M(2))
imply

n
∑

j=1

∆x
(2)
j =

n
∑

j=1

(λ
(2)
j wj + µ

(2)
j iwj) =

(

F(Λ(2))n−1 + iF(M(2))n−1

)

η = 0.

�

Although the above proof avoids the explicit computation of the second
order variation, we shall need the explicit formulas for the proof of third
order rigidity, so we work out the details.

Substituting into (11) yields

µ
(2)
j = −

cos2(2jrφ + φ0)

2 sin(φ)
.

The components of R(2) are computed by (15) as follows

(28)
R

(2)
j = 2

k−1
∑

l1,l2=0

cos(2(l1 − l2)φ)
[

− cos2(2(j + l1)rφ + φ0)

+ cos(2(j + l1)rφ + φ0) cos(2(j + l2)rφ + φ0)
]

.
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All the products of three cosines on the right hand side can be transformed
into the sum of four cosines using the identity

cos(α) cos(β) cos(γ) =
1

4
(cos(α + β + γ) + cos(α + β − γ)

+ cos(α − β + γ) + cos(−α + β + γ)).

This transformation leads to

(29)

R
(2)
j =

1

2

k−1
∑

l1,l2=0

[

− cos((4r + 2)φl1 − 2φl2 + (4jrφ + 2φ0))

− cos((4r − 2)φl1 + 2φl2 + (4jrφ + 2φ0))

− 2 cos(2φl1 − 2φl2)

+ cos((2r + 2)φl1 + (2r − 2)φl2 + (4jrφ + 2φ0))

+ cos((2r − 2)φl1 + (2r + 2)φl2 + (4jrφ + 2φ0))

+ cos((2r + 2)φl1 − (2r + 2)φl2)

+ cos((2 − 2r)φl1 + (2r − 2)φl2)
]

.

All the cosines on the right hand side have the form cos(αl1+βl2+γ). Thus,
with the help of the identity
(30)

k−1
∑

l1,l2=0

cos(αl1 + βl2 + γ) =
sin(kα/2)

sin(α/2)

sin(kβ/2)

sin(β/2)
cos

(

γ + (k − 1)
α + β

2

)

,

R
(2)
j can be brought to the closed form

R
(2)
j =

[

1 − σ2
1

]

+

[

1 −

(

σ2r+1 + σ2r−1

2

)

σ1

]

cos((4j + 2k − 2)rφ + 2φ0).

By (21), we have

c(2) = 1 − σ2
1.

Remark. Since c(2) = 1 − σ2
1 < 0, our computation yields that for

any infinitesimal variation of the regular bicycle (n, k)-gon with fixed side
lengths, the first derivative of the squared length of the k-diagonals must be
0, and its second derivative must be negative. This result is in accordance
with G. Lükő’s theorem (Theorem II in [5]) claiming that the arithmetical
mean of the lengths of the k-diagonals of an n-gon with unit length of sides
is maximized by the regular n-gon.

The discrete Fourier transform of c(2)χn −R(2) has only one pair of non-
zero coefficients at the ±(2r)th place and these coefficients are equal to

F(c(2)χn −R(2))±2r = −
n

2

[

1 −
(σ2r+1 + σ2r−1)σ1

2

]

e±((2k−2)rφ+2φ0)i.
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As F(b) has three vanishing coefficients, F(b)0 and F(b)±r, Λ(2) satisfies
(18) if and only if it has the form

(31) λ
(2)
j = A(2) + B(2) cos(2rj + φ1) + C(2) cos(4rj + 2φ0 − π/2),

where A(2), B(2) and φ1 are arbitrary real numbers,

(32) C(2) =
2 − (σ2r+1 + σ2r−1)σ1

4 sin(kφ)(σ2r+1 − σ2r−1)
.

6. Third order rigidity

Our goal in this section is to prove the following theorem

Theorem 3. For any (n, k) ∈ B, the regular n-gon is third order rigid in

the family of bicycle (n, k)-gons.

Proof. We shall prove the theorem by showing that (18) for p = 3 cannot

be solved due to the fact that F(b)±r = 0 but F(R(3))±r 6= 0. An explicit

formula for R(3) seems to be large, however, as we are interested only in the
±rth coefficient of its discrete Fourier transform, we are allowed to ignore
those terms that have no contribution to this Fourier coefficient. When two
expressions are equal modulo terms having no impact on the ±rth coefficient
of F(R(3)), we write the ≡ sign between them.

We have the following expression for µ
(3)
j

µ
(3)
j = −

3λ
(1)
j λ

(2)
j

2 sin(φ)

= −

3 cos(2jrφ + φ0)
(

A(2) + B(2) cos(2jrφ + φ1)

+ C(2) cos(4jrφ + 2φ0 −
π
2 )

)

2 sin(φ)

≡ −
3(A(2) cos(2jrφ + φ0) + C(2)

2 cos(2jrφ + φ0 −
π
2 ))

2 sin(φ)
.

When p = 3 the recursive formula for R(p) takes the form

(33)
R

(3)
j =

k−1
∑

l1,l2=0

[

(4 sin(φ)µ
(3)
j+l1

+ 6λ
(1)
j+l1

λ
(2)
j+l2

) cos(2(l1 − l2)φ)

+ 6λ
(1)
j+l1

µ
(2)
j+l2

sin(2(l1 − l2)φ)
]

]

.

Expanding the second and third terms we obtain

(34)

λ
(1)
j+l1

λ
(2)
j+l2

≡A(2) cos(2(j + l1)rφ + φ0)

+
C(2)

2
cos((2j + 4l2 − 2l1)r + φ0 − π/2)
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and

(35)

λ
(1)
j+l1

µ
(2)
j+l2

≡−
cos(2(j + l1)rφ + φ0)

4 sin(φ)

−
cos((2j + 4l2 − 2l1)rφ + φ0)

8 sin(φ)
.

Substituting (34) and (35) back into (33) we get
(36)

R
(3)
j ≡

k−1
∑

l1,l2=0

[

3C(2) cos((2j + 4l2 − 2l1)rφ + φ0 − π/2) cos(2(l1 − l2)φ)

− 3C(2) cos(2(j + l1)rφ + φ0 − π/2) cos(2(l1 − l2)φ)

−
3 cos(2(j + l1)rφ + φ0)

2 sin(φ)
sin(2(l1 − l2)φ)

−
3 cos((2j + 4l2 − 2l1)rφ + φ0)

4 sin(φ)
sin(2(l1 − l2)φ)

]

.

Products of sines and cosines can be transformed into linear combinations
of cosines using the identities

cos x cos y =

(

cos(x − y) − cos(x + y)
)

2

and

cos x sin y =

(

cos(x + y − π/2) − cos(x − y + π/2)
)

2
.

The application of this transformation to (36) yields
(37)

R
(3)
j ≡

k−1
∑

l1,l2=0

[

3
C(2)

2
cos((2 − 2r)φl1 + (4r − 2)φl2 + (2jr + φ0 −

π
2 ))

+ 3
C(2)

2
cos((−2 − 2r)φl1 + (4r + 2)φl2 + (2jr + φ0 −

π
2 ))

− 3
C(2)

2
cos((2r + 2)φl1 − 2φl2 + (2jr + φ0 −

π
2 ))

− 3
C(2)

2
cos((2r − 2)φl1 + 2φl2 + (2jr + φ0 −

π
2 ))

−
3

4 sin(φ)
cos((2r + 2)φl1 − 2φl2 + (2jr + φ0 −

π
2 ))

+
3

4 sin(φ)
cos((2r − 2)φl1 + 2φl2 + (2jr + φ0 −

π
2 ))

−
3

8 sin(φ)
cos((2 − 2r)φl1 + (4r − 2)φl2 + (2jr + φ0 −

π
2 ))

+
3

8 sin(φ)
cos((−2 − 2r)φl1 + (4r + 2)φl2 + (2jr + φ0 −

π
2 ))
]

.
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Summation over l1 and l2 can be brought to a closed form using identity
(30) and gives
(38)

R
(3)
j ≡

[

3
C(2)

2
(σr−1σ2r−1 + σr+1σ2r+1 − σr+1σ1 − σr−1σ1)

+
3

4 sin(φ)
(σr−1 − σr+1)σ1 −

3

8 sin(φ)
(σr−1σ2r−1 + σr+1σ2r+1)

]

× cos((2j + k − 1)rφ + φ0 −
π

2
).

The conclusion of this computation is that F(R(3))±r vanishes if and only
if the coefficient of cos((2j + k − 1)rφ + φ0 −

π
2 ) in (38) is 0. Since σr−1 =

σr+1 = ±1, as (n, k) ∈ B, this condition reduces to the equation

(39) 3
C(2)

2
(σ2r−1 + σ2r+1 − 2σ1) +

3

8 sin(φ)
(σ2r+1 − σ2r−1) = 0.

To prove that (39) never holds, we simplify its left hand side.

Lemma 1. If (n, k) ∈ B, r = n/2 − k as usual, then

(40) C(2)(σ2r−1+σ2r+1−2σ1)+
σ2r+1 − σ2r−1

4 sin(φ)
=

sin((k + 1)φ) sin(1 − k)φ

cos(kφ) sin(2φ)
.

Proof. The identity of the Lemma was obtained and can be verified with
the computer algebra software MuPAD. We describe the main steps of the
computation which give this identity. These steps can be executed by other
computer algebra softwares like Maple, Mathematica, etc. as well and should
produce the same result. In principle it is also possible to go through this
computation by hand, though it must be a tedious work.

Expressing C(2) with the help of (32) we obtain the following expression
for the left hand side of (40)

(41)
2 − (σ2r+1 + σ2r−1)σ1

4 sin(kφ)(σ2r+1 − σ2r−1)
(σ2r−1 + σ2r+1 − 2σ1) +

σ2r+1 − σ2r−1

4 sin(φ)
.

Introduce the new parameters x = kφ and y = φ. Then using the fact that
n = 2k+2r and that n divides (k+1)(r+1), σ1 and σ2r±1 can be expressed
as follows

(42) σ1 =
sin(x)

sin(y)
, σ2r+1 =

sin(2y − x)

sin(2x − y)
, σ2r−1 =

sin(x + 2y)

sin(2x + y)
.

Substituting (42) into (41) we can write the left hand side of (40) as a
rational function of trigonometric polynomials of x and y. With the expand
function of MuPAD, this can be written as a rational function of the variables
cos(x), sin(x), cos(y) and sin(y). If we apply the factor function to the
result of the previous step, both the numerator and the denominator will
be decomposed into the product of irreducible polynomials of cos(x), sin(x),
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cos(y) and sin(y). Removing the common factors of the numerator and the
denominator manually or using the simplify function, we obtain

cos2(y) − sin2(y) − cos2(x) + sin2(x)

2 cos(x) cos y sin(y)
,

which is exactly the right hand side of (40). �

It is clear that the right hand side of (40) cannot be 0. Thus, equation

(39) never holds, consequently, F(R(3))±r 6= 0, as we wanted to show. �

7. Concluding remarks

The present paper determines the order of infinitesimal flexibility of any
regular bicycle polygon. However, since there are examples of third order
rigid linkages which are flexible (see [4]), the following question is still open.

Question . Is the regular n-gon flexible in the family of bicycle (n, k)-gons

for (n, k) ∈ B?
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