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CONVOLUTION OVER LIE AND JORDAN ALGEBRAS

M. EL BACHRAOUI

ABSTRACT. Given a ternary relation C on a set U and an algebra A, we
present a construction of a convolution algebra A(U, C) of U = (U, C)
over A. This generalises both matrix algebras and algebras obtained from
convolution of monoids. To any class of algebras corresponds a class of
convolution structures. Our study cases are the classes of commutative,
associative, Lie, and Jordan algebras. In each of these classes we give
conditions on (U, C) under which A(U, C) is in the same class as A. It
turns out that in some situations these conditions are even necessary.

1. INTRODUCTION

The notion of convolution algebra over monoı̈ds is not new, it appears
for instance in [10]. The present construction is a generalisation to ternary
relations. A more general construction of convolution algebras of types over al-
gebras is recently given in [11, 12]. Our work on convolution structures and
algebras is motivated and inspired by Algebraic Logic. Roughly speak-
ing, vector spaces play the role of Boolean algebras, algebras the role of
Boolean algebras with operator, bases of vector spaces the role of atom sets
of Boolean algebras, and convolution structures the role of atom structures.
Furthermore, as matrices and groups are simply atom sets of the most stan-
dard relation algebras and the universes of matrix algebras and group al-
gebras are functions from matrices and groups respectively to algebras, it
is natural to consider functions from atom sets of relations algebras to al-
gebras. The duality between Boolean algebras with operators and their
atom structures provides us with an interplay between Boolean algebras
with operator and logic like the classical one between Boolean algebras and
propositional logic. We mention at this point that in our subsequent paper
[2] we have proved a structure theorem for algebras saying that any algebra
with a basis is isomorphic to the (generalised) convolution algebra of this
basis over the ring of scalars. This fact reveals that convolution algebras are
not as specialised as they might seem at first glance and at the same time
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it prepares the ground for an interplay between Algebras and convolution
structures.

We consider an algebra A together with a convolution structure (U, C)
with universe U equipped with a ternary relation C. The collection of
functions from U into A yields a new algebra A(U, C) with naturally de-
fined operations. For instance, two functions are multiplied by a convo-
lution that is defined by the ternary relation C. If the ternary relation
is the multiplication of a group G, we obtain the group algebra AG. If
U = {1, . . . , n} × {1, . . . , n} and C is the usual composition of pairs, we
obtain the matrix algebra Mn(A).

In§2 we introduce the notion of a convolution structure together with ba-
sic notions such as homomorphisms, substructures, products, and disjoint
unions. We also give some elementary properties of convolution structures
which will be needed for the paper. In §3 we present convolution algebras
and state some properties of such algebras. In particular, necessary condi-
tions on A and (U, C) are provided for the algebra A(U, C) to be simple. In
§4 with any class C of algebras we associate a class Con(C) of convolution
structures as follows:

Con(C) = {(U, C) : A(U, C) ∈ C provided A ∈ C}.

There are given results on homomorphic images, products, and disjoint
unions of elements of Con(C). In §5 and §6 we investigate convolutions
over the classes of commutative and associative algebras respectively. As
to noncommutative algebras we study the case of Lie algebras in §7. Fi-
nally, in §8 we deal with convolutions over the class of Jordan algebras: an
important class of nonassociative algebras.

2. CONVOLUTION STRUCTURES

Definition 2.1. A convolution structure U = (U, C) consists of a non-empty
set U together with a ternary relation C on U such that for any x, y ∈ U
the set {z ∈ U : (x, y, z) ∈ C} of outputs of (x, y) is finite. The set U is
the universe of (U, C) and the relation C is the composition of (U, C). If the
composition C is empty, we say that (U, C) is trivial.

The sets of outputs are required to be finite in order to define properly
the multiplication in convolution algebras, see Def. 3.2 below.

Examples 2.2. (1) Structures with a binary operation: Any structure U
with a binary operation ”·” can be made into a convolution structure in a
natural way by defining a ternary relation C as follows:

C = {(x, y, z) ∈ U × U × U : x · y = z}.

The convolution structure obtained from a group G in this way will be
called the group convolution structure of G. Clearly a ternary relation on a
set comes from a binary operation iff the sets of outputs are singletons.
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(2) Matrix convolution structures: Let V be a non-empty set. We can
construct the V-matrix convolution structure (or the n-matrix convolution
structure if V is a finite set with n elements) as follows. The universe is
taken as U = V × V and C is taken as the familiar pair composition:

C = {
(

(i, j), (j, k), (i, k)
)

: i, j, k ∈ V}.

(3) Products: The product of an indexed family {(Ui, Ci) : i ∈ I} of con-
volution structures is ∏i∈I(Ui, Ci) = (∏i∈I Ui, C) where ∏i∈I Ui is the set
theoretical Cartesian product of {Ui : i ∈ I} and C is defined coordinate-
wisely:

(

(xi)i∈I , (yi)i∈I , (zi)i∈I

)

∈ C iff (xi, yi, zi) ∈ Ci ∀i ∈ I.

Clearly (∏i∈I Ui, C) is a convolution structure if its factors are.
(3) Disjoint unions: The disjoint union of an indexed family {(Ui, Ci) :

i ∈ I} of pairwise disjoint convolution structures is

⊎

i∈I

(Ui, Ci) = (∪i∈IUi,∪i∈ICi).

Note that (x, y, z) ∈ ∪i∈ICi iff there is exactly one index i ∈ I such that
(x, y, z) ∈ Ci. This structure is easily seen to be a convolution structure.

We now introduce the notion of homomorphism of convolution struc-
tures.

Definition 2.3. Let U1 = (U1, C1) and U2 = (U2, C2) be two convolution
structures and let h : U1 → U2 be a mapping. We say that h is a homomor-
phism provided the following condition is satisfied:

(x, y, z) ∈ C1 →
(

h(x), h(y), h(z)
)

∈ C2.(2.1)

We say that h is an embedding if it is an injective homomorphism which
satisfies the following stronger version of (2.1):

(x, y, z) ∈ C1 ↔
(

h(x), h(y), h(z)
)

∈ C2.(2.2)

If h is a surjective embedding, then it is called an isomorphism. We say that
(U1, C1) and (U2, C2) are isomorphic, in symbols (U1, C1) ≡ (U2, C2), if there
exists an isomorphism from U1 to U2. Clearly, being isomorphic is an equiv-
alence relation over the class of convolution structures. Furthermore, if h is
a homomorphism which is injective, surjective, or bijective, then so is the
induced mapping h′ : C1 → C2, (x1, y1, z1) 7→

(

h(x1), h(y1), h(z1)
)

. Finally,
we say that U1 is a convolution substructure of U2 provided U1 is a subset of
U2 and the inclusion mapping is an embedding.

One more stronger notion of a homomorphism which is important for
our purposes is given in the following definition.



CONVOLUTION OVER LIE AND JORDAN ALGEBRAS 109

Definition 2.4. A homomorphism h : (U1, C1) → (U2, C2) is called a strong
homomorphism if the following condition is satisfied:

(x2, y2, h(z1)) ∈ C2 → ∃!(x1, y1) ∈ U1 × U1 :

h(x1) = x2 ∧ h(y1) = y2 ∧ (x1, y1, z1) ∈ C1.(2.3)

Note that ”∃!(x1, y1)” means the uniqueness of the pair (x1, y1). We say that
h is a strong isomorphism provided h is a bijective strong homomorphism.

Examples 2.5. (1) If {(Ui, Ci) : i ∈ I} is an indexed family of convolu-
tion structures, then the projection pi : ∏i∈I Ui → Ui is a homomorphism
which is surjective since no Ui is empty. Furthermore it is easily seen that
pj is strong iff for any j ∈ I, the composition Cj has exactly one element. If
all the factors of the product ∏i∈I(Ui, Ci) are equal to some fixed convolu-
tion structure (U, C) (i.e. Ui = U and Ci = C for all i), then the diagonal
mapping U → ∏i∈I U is an embedding.

(2) Let U1 = {a1, b1, c1}, C1 = {(a1, b1, c1)} and let U2 = {a2, b2}, C2 =
{(a2, a2, a2)}. Then the constant mapping h : U1 → U2 with value a2 is a
strong homomorphism which is neither injective nor surjective.

The following proposition states that the notions of isomorphism and
strong isomorphism coincide.

Proposition 2.6. A homomorphism h : (U1, C1) → (U2, C2) is an isomorphism
iff it is a strong isomorphism.

Proof. The proof is routine and follows straightforwardly from the defini-
tions. �

The following lemma gives conditions on a convolution structure under
which any strong homomorphism into this structure must be a surjective
one.

Lemma 2.7. Let U1 = (U1, C1) and U2 = (U2, C2) be two convolution struc-
tures and let h : U1 → U2 be any strong homomorphism. If U2 satisfies one of the
following two formulae:

(S1) ∀x2, z2 ∈ U2 ∃u2, v2, w2 ∈ U2 : (u2, v2, z2) ∈ C2 ∧ (x2, w2, v2) ∈ C2

(S2) ∀x2, z2 ∈ U2 ∃u2, v2, w2 ∈ U2 : (u2, v2, z2) ∈ C2 ∧ (x2, v2, w2) ∈ C2,

then h is surjective.

Proof. Assume that U2 satisfies (S1). Let x2 ∈ U2 be arbitrary, let z1 ∈ U1,
and let z2 ∈ U2 be the h-image of z1. Then there are u2, v2, w2 ∈ U2 such
that

(u2, v2, z2) ∈ C2 ∧ (x2, w2, v2) ∈ C2.

As h is a strong homomorphism and z2 = h(z1) there is v1 ∈ U1 such that
v2 = h(v1). Applying the same argument to (x2, w2, v2) ∈ C2 we find that
x2 admits an h-inverse image. If U2 satisfies (S2) we proceed similarly. �

We have the following corollary for group and matrix convolution struc-
tures, refer to Examples 2.2(1,2).



110 M. EL BACHRAOUI

Corollary 2.8. The following statements are valid:

(1) Any strong homomorphism into a group convolution structure is surjective.
(2) Any strong homomorphism into a matrix convolution structure is surjective.

Proof. As to part (1), it is trivially checked that any group satisfies both (S1)
and (S2) in Lemma 2.7. As to part (2) let V be a non-empty set, let (V ×V, C)
be the V-matrix convolution structure, and let (i, j) and (k, l) arbitrary from
V × V. Then evidently

(

(i, k), (k, j), (i, j)
)

∈ C ∧
(

(k, l), (l, j), (k, j)
)

∈ C.

This implies that V × V satisfies (S1). Hence by virtue of Lemma 2.7 the
result follows. �

3. CONVOLUTION ALGEBRAS

We start this section by recalling the definition of an algebra.

Definition 3.1. Let A be a vector space over a commutative ring R. We
say that A is an algebra over R if it is equipped with a bilinear multiplica-
tion (x, y) 7→ xy. Bilinearity of multiplication means the right and left dis-
tributive laws z(x + y) = zx + zy and (x + y)z = xz + yz, and the scalar
condition α(xy) = (αx)y = x(αy). The algebra A is:

• trivial if xy = 0 for all x, y ∈ A.
• commutative if xy = yx for all x, y ∈ A.
• associative if (xy)z = x(yz) for all x, y, z ∈ A.

We now give a construction of convolution algebras.

Definition 3.2. Let A be an algebra and let U = (U, C) be a convolution
structure. Let

A(U, C) = { f ∈ AU : f (u) 6= 0 for only finitely many u ∈ U}.

Note that if U is finite, then A(U, C) is the set AU of all functions from U to
A.

• The sum in A(U, C) is pointwise and the zero-element is the con-
stant function with value 0.

• If f ∈ A(U, C) and α ∈ R, then we define

α f : U → A, u 7→ α
(

f (u)
)

.

• If f , g ∈ A(U, C), then their multiplication is 0 if (U, C) is trivial
(that is C = ∅), and otherwise

( f · g)(z) = ∑
x,y∈U

{ f (x)g(y) : (x, y, z) ∈ C}.

Notice that A(U, C) is closed under multiplication since the sets of out-
puts are assumed to be finite, see Def. 2.1. We shall see in Thm. 3.3 below
that A(U, C) is an algebra. We refer to A(U, C) as the convolution algebra of
(U, C) over A. This extends the terminology used in the literature when U
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is a monoid, see [10]. In particular, if (U, C) = (G, C) is a group convolu-
tion structure, then A(G, C) is the group algebra AG and if (U, C) is the n-
matrix convolution structure, then A(U, C) is the n-matrix algebra Mn(A).
We shall often write [xy : z] to mean (x, y, z) ∈ C. If u1, . . . , un ∈ U and
a1, . . . , an ∈ A, we shall use χ

u1,...,un
a1,...,an

to denote the element of A(U, C) which
maps ui to ai and maps any other element of U to 0. Clearly f ∈ A(U, C)
iff f is of the form χ

u1,...,un
a1,...,an

.

Theorem 3.3. If A is an algebra over R and U is a convolution structure, then
A(U, C) is an algebra over R.

Proof. Routine verifications. �

As to trivial algebras we have:

Proposition 3.4. The algebra A(U, C) is trivial iff U is trivial or A is trivial.

Proof. The implication from right to left is evident. For the converse assume
that both A and U are non-trivial. Then there are a, b ∈ A such that ab 6= 0
and there are u, v, w ∈ U such that (u, v, w) ∈ C. It follows that

(χu
a · χv

b)(w) = χu
a (u)χv

b(v) = ab 6= 0.

Hence A(U, C) is not trivial. �

Definition 3.5. Let U = (U, C) be a convolution structure, let A1 and A2 be
algebras, and let ϕ : A1 → A2 be a mapping. Then we define the following
natural mapping:

ϕ(U, C) : A1(U, C) → A2(U, C), f 7→ ϕ f (composite function).

Proposition 3.6. The following statements are true:

(1) If ϕ : A1 → A2 is a homomorphism of algebras, then so is ϕ(U, C).
(2) If ϕ is a (proper) embedding, then so is ϕ(U, C).
(3) If ϕ is an isomorphism, then so is ϕ(U, C).
(4) In the category of algebras, (U, C) can be seen as a covariant functor.

Proof. Parts (1) and (4) are directly verified. It is also easy to prove that
if ϕ is an embedding then so is ϕ(U, C). Assume now that ϕ is a proper
embedding. Then there is x2 ∈ A2 with no ϕ-inverse image. Then for
any u ∈ U it is true that χu

x2
has no ϕ(U, C)-inverse image. Hence part

(2) follows. As to part (3) we only need to show that ϕ(U, C) is surjective
if ϕ is an isomorphism. Let g ∈ A2(U, C), say g = χ

u1,...,un
a1,...,an

. For each
i = 1, . . . , n let xi ∈ A1 be the unique element such that ϕ(xi) = g(ui).
Then ϕ(U, C)(χ

u1,...,un
x1,...,xn

) = g and so ϕ(U, C) is surjective. �

Definition 3.7. Let A be an algebra, let (U1, C1) and (U2, C2) be two con-
volution structures, and let φ : U1 → U2 be a mapping. Then we define a
natural mapping A(φ) of algebras as follows:

A(φ) : A(U2, C2) → A(U1, C1), f 7→ f φ (composite function).
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In the following result strong homomorphism is required.

Proposition 3.8. Let A be an algebra, let (U1, C1) and (U2, C2) be two convo-
lution structures, and let φ : U1 → U2 be a strong homomorphism. Then the
following statements are true:

(1) The mapping A(φ) is an algebra homomorphism.
(2) If A 6= {0}, then A(φ) is an algebra embedding iff φ is surjective.
(3) If φ is an isomorphism, then A(φ) is an algebra isomorphism.
(4) The algebra A can be seen as a contravariant functor from the category of

convolution structures with strong homomorphisms as morphisms to the
category of algebras with algebra homomorphisms as morphisms.

Proof. (1) It easy to check that A(φ) is a linear transformation. To show that
it preserves products let f , g ∈ A(U2, C2) and let w1 ∈ U1. Then we find:

A(φ)( f · g)(w1) = ( f · g)φ(w1)

= ∑
u2,v2

{ f (u2)g(v2) : (u2, v2, φ(w1)) ∈ C2}

= ∑
u1,v1

{ f
(

φ(u1)
)

g
(

φ(v1)
)

: (u1, v1, w1) ∈ C1}

=
(

A(φ)( f ) · A(φ)(g)
)

(w1),

where the third equality follows as φ is a strong homomorphism.
(2) Suppose that φ is a surjective strong homomorphism. Then by part (1)

A(φ) is a homomorphism. To show that A(φ) is injective let f ∈ A(U, C)
such that A(φ)( f ) = 0. Let u2 ∈ U2 and let u1 ∈ U1 be the φ-inverse image
of u2. Then we have:

f (u2) = f
(

φ(u1)
)

= A(φ)( f )(u1) = 0.

This shows that f = 0 and A(φ) is injective. Conversely suppose that φ is
not surjective and let u2 be an element of U2 which has no φ-inverse image.
Then for any 0 6= x ∈ A we have χ

u2
x 6= 0 but A(φ)(χ

u2
x ) = χ

u2
x φ = 0. Hence

A(φ) is not injective.
(3) Suppose that φ is a convolution isomorphism. Then by statements (1)

and (2), it suffices to show that A(φ) is surjective. Let g ∈ A(U1, C1), say
g = χ

u1,...,un
a1,...,an

and let v1, . . . , vn ∈ U2 be the φ-images of u1, . . . , un respec-
tively. Then A(φ)(χ

v1,...,vn
a1,...,an

) = g and so A(φ) is surjective.
(4) follows by routine verifications. �

Note that the implication from right to left in Prop. 3.8(2) is true even for
A = {0}. The following result states that an algebra has an ”exponential”
behaviour when applied to a convolution structure.

Proposition 3.9. Let A, A1, A2 be algebras and let (U, C), (U1, C1), and (U2, C2)
be convolution structures. Then each one of the following natural mappings is an
algebra isomorphism.

(1) F : (A1 × A2)(U, C) → A1(U, C) × A2(U, C), F( f )i(u) = f (u)i for i =
1, 2.
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(2) H : [A(U1, C1)](U2, C2) → A[(U1, C1) × (U2, C2)],
H( f )(u1, u2) = f (u2)(u1).

(3) G : A[(U1, C1)
⊎

(U2, C2)] → A(U1, C1) × A(U2, C2), G( f )i(ui) = f (ui)
for i = 1, 2 and ui ∈ Ui.

Proof. (1) It is immediately seen that F is an injective homomorphism of
vector spaces. To show F is surjective let (g1, g2) ∈ A1(U, C) × A2(U, C).
Then the function f ∈ (A1 × A2)(U, C) defined by f (u)i = gi(u) is ev-
idently an F-inverse image of g. It remains to check that F respects the
multiplication. Let f , g ∈ (A1 × A2)(U, C) and let w ∈ U. Then for i = 1, 2
we have:

F( f · g)i(w) = ( f · g)(w)i =
(

∑
u,v

[uv:w]

f (u)g(v)
)

i
=

∑
u,v

[uv:w]

f (u)ig(v)i = ∑
u,v

[uv:w]

F( f )i(u)F(g)i(v) = [F( f )i · F(g)i](w).

(2) We only show that H respects the multiplication as it is easily verified
that H is an isomorphism of vector spaces. Let f , g ∈ [A(U1, C1)](U2, C2)
and let (w1, w2) ∈ U1 × U2. Then we find:

H( f · g)(w1, w2) = [( f · g)(w2)](w1)

= ∑
u2,v2

[u2v2 :w2]

(

f (u2) · g(v2)
)

(w1)

= ∑
(u1,u2),(v1,v2)

[u1v1 :w1]∧[u2v2:w2]

f (u2)(u1)g(v2)(v1)

=
(

H( f ) · H(g)
)

(w1, w2).

(3) This part follows by similar reasoning as parts (1,2) combined with the
definition of disjoint unions. �

Remark 3.10. Prop. 3.9 can be extended to arbitrary indexed families of
algebras and convolution structures.

We close this section with a result on simple algebras.

Definition 3.11. A subalgebra B of an algebra A is an ideal of A, in symbols,
B � A, if xy ∈ B and yx ∈ B for all x ∈ B and all y ∈ A. Clearly A and {0}
are ideals. An ideal which is different from A and {0} is said to be proper.
An algebra is simple provided it is non-trivial and it has no proper ideals.

In the following result a necessary condition on (U, C) is given so that
the class of simple algebras is closed under convolution over (U, C).

Proposition 3.12. Let A be an algebra and let U = (U, C) be a convolution
structure. If A(U, C) is simple, then A is simple, U is not a disjoint union of
convolution structures, and any strong homomorphism into (U, C) is surjective.
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Proof. As a simple algebra is non-trivial we have that both A (as an alge-
bra) and (U, C) (as a convolution structure) are non-trivial by Prop. 3.4.
If A has a proper ideal B, then B(U, C) is a proper subalgebra of A(U, C)
by Prop. 3.6(2). Furthermore if f ∈ B(U, C) and g ∈ A(U, C), then it is
easy to check that both f g and g f are in B(U, C). Then B(U, C) is a proper
ideal of A(U, C), and so A(U, C) is not simple. By virtue of Prop. 3.9(3)
and Remark 3.10, it is evident that U is not a disjoint union whenever
A(U, C) is simple. Finally assume that there is a strong homomorphism
φ : (U1, C1) → (U, C) which is not surjective. By virtue of Prop. 3.8(2) the
mapping A(φ) : A(U, C) → A(U1, C1) defined in Def. 3.7 is a homomor-
phism which is not injective. This means that Ker A(φ) 6= {0}. But we also
have Ker A(φ) 6= A(U, C). Indeed, for any u1 ∈ U1 and any 0 6= x ∈ A we

have A(φ)(χ
φ(u1)
x )(u1) = x 6= 0. It follows that Ker A(φ) is a proper ideal

of A(U, C) and that A(U, C) is not simple. �

It is known that an n-matrix algebra over a simple algebra is simple too.
Then any strong homomorphism into the n-matrix convolution structure is
surjective by Prop. 3.12. This fact agrees with Cor. 2.8.

Problem 1. Which convolution structures respect the class of simple alge-
bras?

4. CONVOLUTION CLASSES

In this section we associate a class of convolution structures with any
non-empty class of algebras that is closed under isomorphisms in a natural
manner. First note that if A is any algebra and (U, C) = ({x}, {(x, x, x)}),
then the algebras A and A(U, C) are isomorphic.

Definition 4.1. Let C be a non-empty class of algebras which is closed un-
der isomorphisms. Then we define a class of convolution structures as fol-
lows:

Con(C) = {(U, C) : if A ∈ C then A(U, C) ∈ C}.

We refer to Con(C) as the convolution class corresponding to C. Observe that
by the previous note if a class of algebras is non-empty and is closed under
isomorphisms, then its corresponding convolution class in non-empty. For
instance, the convolution class corresponding to the class of trivial algebras
is the class of all convolution structures by Prop. 3.4.

We have the following universal-algebraic results for convolution classes.

Proposition 4.2. Let C be a non-empty class algebras which is closed under iso-
morphisms. Then the following statements are valid.

(1) The class Con(C) is closed under finite products.
(2) If C is closed under subalgebras, then Con(C) is closed under strong homo-

morphic images.
(3) If C is closed under products, then Con(C) is closed under disjoint unions.
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Proof. (1) This part is obtained by induction combined with Prop. 3.9(2).
(2) Let A ∈ C, let (U2, C2) ∈ Con(C), and let φ : (U2, C2) → (U1, C1) be a

strong homomorphism which is surjective. Then by Prop. 3.8 the mapping
A(φ) : A(U1, C1) → A(U2, C2) is an embedding. Hence A(U1, C1) ∈ C as C
is closed under subalgebras.

As to part (3), let A ∈ C and let {(Ui, Ci) : i ∈ I} be an indexed family of
pairwise disjoint elements of Con(C). Then by Prop. 3.9(3) and Remark 3.10
the algebra A[

⊎

i∈I(Ui, Ci)] is isomorphic to ∏i∈I A(Ui, Ci). As C is closed
under products we have that

⊎

i∈I(Ui, Ci) ∈ Con(C). �

5. COMMUTATIVE ALGEBRAS

Just as for algebras, the notion of being commutative is natural for con-
volution structures.

Definition 5.1. We say that a convolution structure U = (U, C) is commu-
tative if the following condition is satisfied:

(CCom) ∀x, y, z ∈ U [xy : z] → [yx : z].

For instance, the group convolution structure over an abelian group is
commutative. However, the n-matrix convolution structure is not com-
mutative unless n = 1. We now see that convolution over commutative
structures respects the class of commutative algebras.

Proposition 5.2. Let A be an algebra and U = (U, C) be a convolution structure.
Then the following statements are true:

(1) If A and U are commutative, then so is A(U, C).
(2) If A is a non-trivial commutative algebra, then A(U, C) is commutative iff U

is commutative.

Proof. (1) This part follows directly by the definitions. The implication from
right to left in part (2) is a special case of part (1). To show the other im-
plication, assume that U is not commutative and let u, v, w ∈ U such that
(u, v, w) ∈ C but (v, u, w) 6∈ C. As A is not trivial there are a, b ∈ A such
that ab 6= 0. Then we find:

(χu
a · χv

b)(w) = χu
a (u)χv

b(v) = ab 6= 0 = (χv
b · χu

a )(w).

So, A(U, C) is not commutative. �

An immediate consequence of Prop. 5.2(2) is the known fact that the va-
riety of commutative algebras is not closed under matrix forming for n > 1.

Corollary 5.3. If C is the class of commutative algebras and C is the class of
commutative convolution structures, then C ⊆ Con(C).

Proof. This is nothing else but Prop. 5.2(1). �

Corollary 5.4. If C ′ is the class of non-trivial commutative algebras and C′ is the
class of non-trivial commutative convolution structures, then C′ = Con(C ′).
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Proof. Let U = (U, C) ∈ C′ and let A ∈ C ′. Then A(U, C) is commutative
by Prop. 5.2(1). But A(U, C) is non-trivial by Prop. 3.4. It follows that U ∈
Con(C ′). Now let (U, C) ∈ Con(C ′) and let A ∈ C ′. On the one hand, U is
commutative by Prop. 5.2(2) as A(U, C) is. On the other hand, U is non-
trivial by Prop. 3.4 as A(U, C) is. Hence (U, C) ∈ C′. �

Problem 2. Let (U1, C1) and (U2, C2) be two finite commutative convolu-
tion structures such that the algebras Z(U1, C1) and Z(U2, C2) are isomor-
phic. Is it true that (U1, C1) and (U2, C2) are isomorphic?

G. Higman showed that the answer is positive if U1 and U2 are finite
abelian group convolution structures. See [4]. In general, isomorphism
of convolution algebras does not imply isomorphism of their convolution
structures as the following example shows. If A is a trivial algebra (i.e.
ab = 0 ∀a, b ∈ A) and U is a non-empty set, then for any two convolu-
tion structures (U, C1) and (U, C2) on U we have an isomorphism between
A(U, C1) and A(U, C2) given by the identity mapping.

6. ASSOCIATIVE ALGEBRAS

The notion of being an associative convolution structure is natural too.

Definition 6.1. We say that a convolution structure U = (U, C) is associative
if the following two implications hold:

(CAss1) ∀v, w, x, y, z ∈ U [vw : x] ∧ [xy : z] → ∃u [wy : u] ∧ [vu : z],
(CAss2) ∀u, v, w, y, z ∈ U [wy : u] ∧ [vu : z] → ∃x [vw : x] ∧ [xy : z].

For group convolution structures, (CAss1) and (CAss2) simply mean
that (vw)y = v(wy). As this is one of the group axioms we see that any
group convolution structure is associative. Moreover, matrix convolution
structures are associative too.

Proposition 6.2. The following statements are valid:

(1) If A and U are associative, then so is A(U, C).
(2) If A is associative with a ring of scalars having characteristic 0 and there

are a, b, c ∈ A such that abc 6= 0, then A(U, C) is associative iff U is
associative.
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Proof. (1) The result is clear if A or U is trivial. Otherwise, let f , g, h ∈
A(U, C) and let z ∈ U. Then we have:

(

( f · g) · h
)

(z) = ∑
x,y

{( f · g)(x)h(y) : [xy : z]}

= ∑
v,w,x,y

{
(

f (v)g(w)
)

h(y) : [vw : x] ∧ [xy : z]}

= ∑
v,w,x,y

{ f (v)
(

g(w)h(y)
)

: [vw : x] ∧ [xy : z]}

= ∑
v,w,u,y

{ f (v)
(

g(w)h(y)
)

: [wy : u] ∧ [vu : z]}

= f · (g · h)(z),

where the third equality follows by the associativity of A and the fourth
one follows from Def. 6.1.

(2) The implication from right to left is a consequence of the previous
part. Conversely suppose that U is not associative. If (CAss1) fails in U,
then there are v, w, x, y, z ∈ U such that

[vw : x] ∧ [xy : z] ∧ ∀u ∈ U : (¬[wy : u] ∨ ¬[vu : z].

Then on the one hand,
(

(χv
a · χw

b ) · χ
y
c

)

(z) = ∑
x

{χv
a(v)χw

b (w)χ
y
c (y) : [vw : x] ∧ [xy : z]}

= ∑
x

{abc : [vw : x] ∧ [xy : z]} 6= 0.

On the other hand,
(

χv
a · (χw

b · χ
y
c )

)

(z) = ∑
u

{χv
a(v)χw

b (w)χ
y
c (y) : [wy : u] ∧ [vu : z]} = 0.

Hence A(U, C) is not associative. Similar reasoning applies if U does not
satisfy (CAss2). �

Direct consequences of Prop. 6.2(1) are the known facts that the variety
of associative algebras is closed under matrix forming as well as under con-
volutions of monoids.

Corollary 6.3. If A is the class of associative algebras and A is the class of asso-
ciative convolution structures, then A ⊆ Con(A).

Proof. This is nothing else than Prop. 6.2(1). �

Corollary 6.4. Let R be a commutative ring with characteristic 0, let A′ be the
class of associative algebras over R satisfying the formula

∃a, b, c : abc 6= 0,

and let A′ be the class of associative convolution structures satisfying the formula:

∃v, w, x, y, z
(

([vw : x] ∧ [xy : z]) ∨ ([wy : x] ∧ [vx : z])
)

.

Then we have: A′ = Con(A′).
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Proof. Let U = (U, C) ∈ A′ and let A ∈ A′. Then A(U, C) is associative by
Prop. 6.2(1). Moreover for a, b, c ∈ A such that abc 6= 0 and v, w, x, y, z ∈ U
such that [vw : x] ∧ [xy : z] we have

(χv
a · χw

b · χ
y
c )(z) = ∑

t∈U
[vw:t]∧[ty:z]

abc 6= 0.

If [wy : x] ∧ [vx : z], we can find t ∈ U such that [vw : t] ∧ [ty : z] and

therefore we again find that (χv
a · χw

b · χ
y
c )(z) 6= 0. Consequently A(U, C) ∈

A′ and so U ∈ Con(A′). Now let U ∈ Con(A′). Then U is associative by
virtue of Prop. 6.2(2). Moreover (U, C) satisfies the required condition since
for any A ∈ A′ there are a, b, c ∈ A such that abc 6= 0. Then U ∈ A′ and the
equality of the two classes follows. �

7. LIE ALGEBRAS

Definition 7.1. An algebra L over a commutative ring R with multiplica-
tion (x, y) 7→ [x, y] is called a Lie algebra over R if the following axioms are
satisfied:

(L1) [x, x] = 0 ∀x ∈ L.
(L2) (Jacobi identity) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 ∀x, y, z ∈ L.

The multiplication (x, y) 7→ [x, y] is called the bracket operation. A trivial Lie
algebra (i.e. [x, y] = 0 ∀x, y) is called abelian. Finally, we call L 3-nilpotent if
[[x, y], z] = 0 ∀x, y, z ∈ L.

Note that (L1) and (L2) imply that the bracket operation is anticommuta-
tive (i.e. [x, y] = −[y, x] for all x, y ∈ L). We refer to [6, 7] for a survey on
Lie algebras.

Example 7.2. Any associative algebra A gives rise to a Lie algebra A−

whose bracket operation is defined by

[x, y] = xy − yx.

It is known that any Lie algebra over a field is a subalgebra of a Lie algebra
of the form A−. See [7, p. 159-162].

We now introduce the corresponding Lie formulae for convolution struc-
tures.

Definition 7.3. We say that a convolution structure U = (U, C) is Lie if the
following two conditions are satisfied:

(LC1) U is commutative (i.e. [xy : z] → [yx : z]).
(LC2) [vw : x] ∧ [xy : z] → ∃u [wy : u] ∧ [uv : z].

Examples 7.4. (1) Abelian groups: Any abelian group can be made into a
Lie convolution structure in the usual way.
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(2) Non-empty sets: If a ∈ U then (U, {(a, a, a)}) is Lie. If a and b are
two distinct elements of U, then U equipped with each of the following
relations is Lie:

C1 = {(a, a, a), (a, a, b)}, C2 = {(a, a, a), (b, b, b), (a, b, a), (b, a, a)},

C3 = {(a, a, a), (b, b, b), (a, b, a), (b, a, a), (b, a, b), (a, b, b)}.

Solving the following problem may be useful to classify convolution al-
gebras over Lie structures.

Problem 3. Given a finite set U, classify the Lie convolution structures on
U up to isomorphism.

We have the following characterisation for Lie convolution structures:

Proposition 7.5. A convolution structure is Lie iff it is commutative and associa-
tive.

Proof. The proof follows straightforwardly from Defs. 5.1, 6.1, and 7.3. �

The main result of this section says among others that convolution with
respect to Lie convolution structures respects the class of Lie algebras:

Theorem 7.6. Let L be a Lie algebra over R and let U = (U, C) be a convolution
structure. Then we have:

(1) If U is Lie, then so is L(U, C).
(2) If U is non-trivial and L is non-abelian 3-nilpotent, then L(U, C) is Lie iff U

satisfies the commutative law (LC1).
(3) If there are a, b, c ∈ L such that n[[a, b], c] + m[[c, a], b] = 0 for no positive

integers m and n, then L(U, C) is a Lie algebra iff U is Lie.

Proof. (1) Suppose that U is Lie. Then by (L1) and (LC1) we find that
[ f , f ] = 0 for any f ∈ L(U, C), showing that L(U, C) satisfies (L1). As
to (L2) let f , g, h ∈ L(U, C) and let z ∈ U. Then we have:

[[ f , g], h] (z) = ∑
x,y

{[[ f , g](x), h(y)] : [xy : z]}

= ∑
v,w,x,y

{[[ f (v), g(w)], h(y)] : [vw : x] ∧ [xy : z]},

[[g, h], f ](z) = ∑
u,v

{[[g, h](u), f (v)] : [uv : z]}

= ∑
w,y,u,v

{[[g(w), h(y)], f (v)] : [wy : u] ∧ [uv : z]},

and

[[h, f ], g] (z) = ∑
t,w

{[[h, f ](t), g(w)] : [tw : z]}

= ∑
y,v,t,w

{[[h(y), f (v)], g(w)] : [yv : t] ∧ [tw : z]}.



120 M. EL BACHRAOUI

Now by (LC2) and Prop. 7.5, [[ f (v), g(w)], h(y)] occurs as a summand in
[[ f , g], h](z) iff [[g(w), h(y)], f (v)] occurs as a summand in [[g, h], f ](z) iff
[[h(y), f (v)], g(w)] occurs as a summand in [[h, f ], g](z). Then by (L2) ap-
plied to the algebra L we find that

[[ f , g], h](z) + [[g, h], f ](z) + [[h, f ], g](z) = 0.

Hence L(U, C) satisfies (L2) too and it is therefore a Lie algebra.
(2) Assume that U satisfies (LC1). On the one hand, evidently L(U, C) is

3-nilpotent as L is. Then L(U, C) satisfies (L2). On the other hand, (L1) and
(LC1) yield [ f , f ] = 0 for all f ∈ L(U, C). Then (L1) follows. Conversely,
assume that U does not satisfy the condition (LC1). Then there are u, v, w ∈
U such that (u, v, w) ∈ C but (v, u, w) 6∈ C. Since L is non-abelian there are
a, b ∈ L such that [a, b] 6= 0. Then we have:

[χu,v
a,b , χ

u,v
a,b ](w) = [χu,v

a,b (u), χ
u,v
a,b (v)] = [a, b] 6= 0.

It follows that L(U, C) is not a Lie algebra.
(3) The implication from right to left follows from part (1). Conversely,

assume that U is not Lie. Then U is non-trivial. Suppose that U does
not satisfy (LC1). Then there are u, v, w ∈ U such that (u, v, w) ∈ C but
(v, u, w) 6∈ C. The assumption on a, b and c yields that [a, b] 6= 0 or [c, a] 6= 0.
Without loss of generality, assume that [a, b] 6= 0. Then

[χu,v
a,b , χ

u,v
a,b ](w) = [χu,v

a,b (u), χ
u,v
a,b (v)] = [a, b] 6= 0.

So, L(U, C) is not Lie. Suppose now that U satisfies (LC1) but not (LC2).
Then there are v, w, x, y, z ∈ U such that

[vw : x] ∧ [xy : z] ∧ ∀u ∈ U : (¬[wy : u] ∨ ¬[uv : z]).

Let n be the number of elements t ∈ U such that [vw : t] ∧ [ty : z] and let m
be the number of elements t ∈ U such that [yv : t] ∧ [tw : z]. Then on the
one hand,

[[χv
a , χw

b ], χ
y
c ](z) = ∑

t

{[[χv
a , χw

b ](t), χ
y
c (y)] : [ty : z]} =

∑
t

{[[χv
a(v), χw

b (w)], χ
y
c (y)] : [vw : t] ∧ [ty : z]} = n[[a, b], c],

and

[[χ
y
c , χv

a ], χw
b ](z) = ∑

t

{[[χ
y
c , χv

a ](t), χw
b (w)] : [tw : z]} =

∑
t

{[[χ
y
c (y), χv

a(v)], χw
b (w)] : [yv : t] ∧ [tw : z]} = m[[c, a], b].

On the other hand,

[[χw
b , χ

y
c ], χv

a ](z) = ∑
u

{[[χw
b , χ

y
c ](u), χv

a(v)] : [uv : z]} =

∑
u

{[[χw
b (w), χ

y
c (y)], χv

a(v)] : [wy : u] ∧ [uv : z]} = 0.
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As n[[a, b], c] + m[[c, a], b] 6= 0 we have

[[χv
a , χw

b ], χ
y
c ] + [[χ

y
c , χv

a ], χw
b ] + [[χw

b , χ
y
c ], χv

a ] 6= 0,

showing that L(U, C) is not a Lie algebra. �

An important consequence of Thm. 7.6(1) is that if L is a Lie algebra and
G is an abelian group then the group algebra LG is a Lie algebra. Note also
that the consequence of Thm. 7.6(3) holds if in particular there are a, b, c ∈ L
such that [[a, b], c] and [[c, a], b] are linearly independent.

Corollary 7.7. If L is the class of Lie algebras and L is the class of Lie convolution
structures, then L ⊆ Con(L).

Proof. This is Thm. 7.6(1). �

Corollary 7.8. If L′ is the class of non-abelian 3-nilpotent Lie algebras and L′ is
the class of non-trivial commutative convolution structures, then L′ = Con(L′).

Proof. Let U = (U, C) ∈ L′ and let L ∈ L′. Then by Thm. 7.6(1) L(U, C) is
Lie. Moreover for a, b ∈ L such that [a, b] 6= [b, a] and (u, v, w) ∈ C we find:

[χu
a , χv

b ] 6= [χv
b , χu

a ],

showing that L(U, C) is non-abelian. Furthermore L(U, C) is clearly 3-
nilpotent as L is. Whence L(U, C) ∈ L′, hence (U, C) ∈ Con(L′). Assume
now that (U, C) ∈ Con(L′). Then evidently (U, C) is non-trivial. More-
over (U, C) is commutative by Thm. 7.6(2) as L(U, C) is Lie for any L ∈ L′.
Hence (U, C) ∈ L′. �

Corollary 7.9. Let L′′ be the class of Lie algebras satisfying the following condi-
tion:

∃a, b, c : m[[a, b], c] + n[[c, a], b] = 0 for no positive integers m and n

and let L′′ be the class of Lie convolution structures satisfying the following con-
dition:

∃v, w, y, z, t : [vw : t] ∧ [ty : z].

Then we have L′′ = Con(L′′).

Proof. Suppose that (U, C) ∈ L′′ and that L ∈ Con(L′′). Then by Thm. 7.6(1)
L(U, C) is Lie. Furthermore for a, b, c ∈ L such that m[[a, b], c] + n[[c, a], b] =
0 for no positive integers m and n and for v, w, y, z, t ∈ U such that [vw :
t] ∧ [ty : z] we find:

p[[χv
a , χw

b ], χ
y
c ] + q[[χ

y
c , χv

a ], χw
b ] = 0 for no positive integers p and q.

This implies that L(U, C) ∈ L′′ and so (U, C) ∈ Con(L′′). Assume now that
(U, C) ∈ Con(L′′). This means that for any L ∈ L′′ we have L(U, C) ∈ L′′.
On the one hand, (U, C) is Lie by Thm. 7.6(3). On the other hand, there are
v, w, y, t, z such that [vw : t] ∧ [ty : z] since otherwise [[ f , g], h] + [[h, f ], g] =
0 for any f , g, h ∈ L(U, C). Consequently (U, C) ∈ L′′. �
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We end this section by a result on Lie algebras of the form A−, refer to
Example 7.2.

Proposition 7.10. If A is an associative algebra and (U, C) is a Lie convolution
structure, then A(U, C)− = A−(U, C).

Proof. Note that A(U, C) is a associative by Props.7.5 and 6.2(1). Then
A(U, C)− is well-defined. Note also that A−(U, C) is a Lie algebra by
Thm. 7.6(1). To show the equality, let f , g ∈ A(U, C) and let z ∈ U. To
avoid confusion we let [ f · g] be the multiplication in A−(U, C) and keep
using the bracket notation [ , ] in both A− and A(U, C)−. Then we have the
following equalities:

[ f , g](z) = ( f · g − g · f )(z) = ∑
x,y

[xy:z]

(

f (x)g(y)− g(x) f (y)
)

=

∑
x,y

[xy:z]

f (x)g(y)− ∑
x,y

[xy:z]

g(x) f (y) = ∑
x,y

[xy:z]

f (x)g(y)− ∑
x,y

[xy:z]

g(y) f (x) =

∑
x,y

[xy:z]

(

f (x)g(y)− g(y) f (x)
)

= ∑
x,y

[xy:z]

[ f (x), g(y)] = [ f · g](z),

where the fourth equality follows by commutativity of (U, C). �

8. JORDAN ALGEBRAS

An important class of nonassociative algebras is the class of Jordan alge-
bras. Basic references on Jordan algebras are [8, 9].

Definition 8.1. An algebra J with multiplication (x, y) 7→ x • y is a Jordan
algebra if the following axioms are satisfied:

(J1) (Commutative law) x • y = y • x for all x, y ∈ J.
(J2) (Jordan identity) (x • x) • (y • x) =

(

(x • x) • y
)

• x for all x, y ∈ J.

Example 8.2. Just as for Lie algebras, any associative algebra A gives rise
to a Lie algebra A+ whose multiplication is defined by

x • y = xy + yx.

A Jordan algebra which is isomorphic to a subalgebra of an algebra of the
form A+ is called special. It is known that the class of special Jordan algebras
is a proper subclass of the class of Jordan algebras. See for instance [8, p.11
Thm. 2]. A Jordan algebra which is not special is said to be exceptional. It
is however still unknown whether the class of special Jordan algebras is
finitely based over the class of Jordan algebras.

As to convolution structures we have the following definition.

Definition 8.3. We say that a convolution structure U = (U, C) is Jordan
provided it satisfies the following conditions:

(JC1) U is commutative.
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(JC2) [st : x] ∧ [vw : y] ∧ [xy : z] → s = t = v ∧ [sy : z]∧
∃u[ss : u] ∧ [uw : y].

(JC3) [st : v] ∧ [vw : y] ∧ [xy : z] → s = t = x ∧ [sw : y]∧
∃u[ss : u] ∧ [uy : z].

Remark 8.4. We note that the axioms (JC1), (JC2), and (JC3) are indepen-
dent. Indeed:

(1) If a and b are distinct elements in U and C = {(a, b, b)}, then triv-
ially (U, C) is a noncommutative structure which satisfies both (JC2)
and (JC3).

(2) For the same U as in (1) and C = {(a, b, b), (b, a, b)} we have that (U, C)
is a model for (JC1) and (JC2) but not for (JC3). The latter statement
follows since [ab : b] ∧ [ba : b] ∧ [ab : b] but a 6= b.

(3) If U has three distinct elements a, b, c and C = {(a, a, b), (b, b, c)}, then
(U, C) satisfies (JC1) and (JC3) but not (JC2). Indeed we have [aa : b] ∧
[aa : b] ∧ [bb : c] but (a, b, c) 6∈ C.

It is also worth to mention that the axioms (JC1)-(JC3) do not entail associa-
tivity. To see this let U = {a, b, c, d} and let C = {(a, a, b), (b, c, d), (c, b, d)}.
Then (U, C) is a Jordan structure which is not associative.

We now collect some elementary consequences of the axioms (JC1-JC3).

Proposition 8.5. Let U = (U, C) be a Jordan convolution structure and a, b, c ∈
U. Then the following statements are valid.

(1) [ab : b] → a = b.
(2) [aa : a] ∧ [ba : c] → a = b.
(3) [aa : a] ∧ [bb : a] → a = b.
(4) [aa : b] ∧ [bb : a] → a = b.

Proof. (1) If [ab : b], then we must have [ba : b] by (JC1). Then applying
(JC3) to [ab : b] ∧ [ba : b] ∧ [ab : b], we find that a = b.

(2) Application of (JC3) for s = t = v = w = y = a, x = b, and z = c
yields that a = b.

(3) Let s = t = x = y = z = a and v = w = b and apply (JC2) to derive
a = b.

(4) Let s = t = v = x = y = a and v = w = z = b and apply (JC3) to find
[ab : a]. Then (JC1) and part (1) yield a = b. �

Example 8.6. Suppose that U = {a, b} where a 6= b. Then there are exactly
four non-isomorphic Jordan convolution structures on U. The correspond-
ing ternary relations are:

C1 = {(a, a, a)}, C2 = {(a, a, b)}, C3 = {(a, a, a), (b, b, b)}, and

C4 = {(a, a, a), (a, a, b)}.

Problem 4. Classify the Jordan convolution structures on a finite set U up
to isomorphism.
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We now give the main theorem of this section.

Theorem 8.7. If J is a Jordan algebra and U = (U, C) is a Jordan convolution
structure, then J(U, C) is a Jordan algebra.

Proof. If J and U are commutative, then so is A(U, C) by Prop. 5.2(1). To
show the Jordan identity (J2) let f , g ∈ A(U, C) and let z ∈ U. On the one
hand, we have

( f • f ) • ( f • g)(z) = ∑
x,y

{( f • f )(x) • ( f • g)(y) : [xy : z]} =

∑
s,t,x,v,w,y

{
(

f (s) • f (t)
)

•
(

f (v) • g(w)
)

: [st : x] ∧ [vw : y] ∧ [xy : z]} =

∑
s,w,x,y

{
(

f (s) • f (s)
)

•
(

f (s) • g(w)
)

: [ss : x] ∧ [sw : y] ∧ [xy : z]} =

∑
s,w,x,y

{ f (s) •
(

(

f (s) • f (s)
)

g(w)
)

: [ss : x] ∧ [sw : y] ∧ [xy : z]},

where the third equality follows from (JC2-JC2) and the fourth one follows
since J is Jordan. On the other hand, we have

f •
(

( f • f ) • g
)

(z) = ∑
x,y

{ f (x) •
(

( f • f ) • g
)

(y) : [xy : z]} =

∑
v,w,x,y

{ f (x) •
(

( f • f )(v) • g(w)
)

: [vw : y] ∧ [xy : z]} =

∑
s,t,v,w,x,y

{ f (x) •
(

(

f (s) • f (t)
)

• g(w)
)

: [st : v] ∧ [vw : y] ∧ [xy : z]} =

∑
s,v,w,y

{ f (s) •
(

(

f (s) • f (s)
)

• g(w)
)

: [ss : v] ∧ [vw : y] ∧ [sy : z]} =

∑
s,w,x,y

{ f (s) •
(

(

f (s) • f (s)
)

• g(w)
)

: [ss : x] ∧ [sw : y] ∧ [xy : z]},

where the fourth equality follows from (JC3) and the fifth equality follows
by virtue of (JC2-JC3). Hence we have:

( f • f ) • (g • f ) = f •
(

( f • f ) • g
)

=
(

( f • f ) • g
)

• f .

�

We were not able to find conditions under which a convolution structure
is necessary Jordan whenever a convolution algebra of this structure is a
Jordan algebra. As to special Jordan algebras, (see Example 8.2), we have
the following facts. The proof of the following result is omitted as it is
similar to the proof of Prop. 7.10.

Proposition 8.8. If A is an associative algebra and (U, C) is an associative Jordan
convolution structure, then we have that A(U, C)+ = A+(U, C).

Corollary 8.9. If J is a special Jordan algebra and (U, C) is an associative Jordan
convolution structure, then J(U, C) is a special Jordan algebra.
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Proof. Let A be an associative algebra such that J is (isomorphic to) a sub-
algebra of A+. Then J(U, C) is (isomorphic to) a subalgebra of A+(U, C)
by Prop. 3.6(2). But A+(U, C) = A(U, C)+ by virtue of Prop. 8.8. Hence
J(U, C) is special. �

The following three problems are suggested by Cor. 8.9.

Problems 5. Let J be a Jordan algebra and let (U, C) be a Jordan convolu-
tion structure.

(1) Assume that J is special and (U, C) is not associative. Is J(U, C) special?
(2) Assume that J(U, C) is exceptional and (U, C) is associative. Can we

conclude something about J(U, C)?
(3) The same question arises if J is exceptional and (U, C) is not associative.

9. CONCLUDING REMARKS

9.1. Connections with algebraic logic. Convolution algebras with units
and involutions can be obtained too. To this end, one needs structures of
type U = (U, C, r, I) where C ⊆ U × U × U, r is a unary function on U
called reverse, and I is a subset of U called the set of identities. Such struc-
tures are referred to as atom structures or frames and are very important in
algebraic logic and modal logic in particular. Atom structures give rise to
so-called Boolean algebras with operators and dually, the atom collection of a
complete atomic Boolean algebra with operators can be made into an atom
structure. This duality principle led to the study of Boolean algebras ”at
the frame level”, refer to [5, 1]. In [2] it is shown that a similar duality exist
between algebras and their bases. So, can algebras be studied at the ”basis
level” too?

It turns out that if an atom structure (U, C, r, I) satisfies the following
conditions:

• the reduct (U, C) is a convolution structure,
• the set I of identities is finite,
• if u, v ∈ U, then u = v iff there is a unique e ∈ I such that (u, e, v) ∈

C,

then convolution of U respects the class of algebras with units. If in addi-
tion it satisfies the following condition:

• (x, y, z) ∈ C iff (r(x), z, y) iff (z, r(y), x),

then convolution of this structure respects the class of algebras with invo-
lution. Atom structures of relation algebras satisfy each one of these condi-
tions, see [5].

9.2. A new variant of the isomorphism problem. In [4], G. Higman asked
whether the isomorphism of two group convolution algebras ZG and ZH
for finite G and H implies the isomorphism of the groups G and H. This
problem is referred to as the isomorphism problem for integral group rings.
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The question remained open until M. Hertweck recently gave a counter-
example showing that the answer is negative. Refer to [3]. The following
new variant of the isomorphism problem for integral group rings is sug-
gested to us by an anonymous referee in connection with an application
for a research grant.

Problem 6. Let C be a class of convolution structures and let A be a class of
algebras. To which extent is a convolution structure in C determined by its
convolution algebras constructed by means of algebras from A?
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