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N-FREE EXTENSIONS OF POSETS. NOTE ON A THEOREM OF

P.A.GRILLET.

MAURICE POUZET AND NEJIB ZAGUIA

ABSTRACT. Let SN(P) be the poset obtained by adding a dummy ver-
tex on each diagonal edge of the N’s of a finite poset P. We show that
SN(SN(P)) is N-free. It follows that this poset is the smallest N-free
barycentric subdivision of the diagram of P, poset whose existence was
proved by P.A. Grillet. This is also the poset obtained by the algorithm
starting with P0 := P and consisting at step m of adding a dummy vertex
on a diagonal edge of some N in Pm, proving that the result of this algo-
rithm does not depend upon the particular choice of the diagonal edge
chosen at each step. These results are linked to drawing of posets.

1. INTRODUCTION

An N is a poset made of four vertices labeled a, b, c, d such that a < c, b <

c, b < d, b incomparable to a, a incomparable to d and d incomparable to
c (see Figure 1(a)). This simple poset plays an important role in the algo-
rithmic of posets [3]. It can be contained in a poset P in essentially two
ways, this fact leading to the characterization of two basic types of posets,
the series-parallel posets and the chain-antichain complete (or C.A.C) posets.

The first way is related to the comparability graph of P. An N can be con-
tained in P as an induced poset, that is P contains four vertices on which
the comparabilities are those indicated above. Finite posets with no in-
duced N are called series-parallel. Indeed, since their comparability graph
contains no induced P4 (a four vertices path ) they can be obtained from the
one element poset by direct and complete sums (a result which goes back
to Sumner [5], see also [6]). The second way is related to the (oriented)
diagram of P. This is the object of this note.

In order to describe this other way, let us recall that a covering pair in a
poset P is a pair (x, y) such that x < y and there is no z ∈ P such that
x < z < y. The (directed)diagram of P is the directed graph, denoted
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by Diag(P), whose vertex set is P and edges are the covering pairs of P
. If (x, y) is a covering pair, we say that x is covered by y, or y covers x, a
fact that we denote x ≺P y, or x ≺ y if there is no risk of confusion, or
(x, y) ∈ Diag(P). We denote by Inc(P) the set of pairs (x, y) formed of
incomparable elements.

Definition 1.1. Let a, b, c, and d four elements of P, we say that these elements
form:

(1) an N in P if b ≺ c, a ≺ c, b ≺ d, and (a, d) ∈ Inc(P);
(2) an N′ in P if b ≺ c, a < c, b < d, and (a, d) ∈ Inc(P);
(3) an N in Diag(P) if b ≺ c, a ≺ c, b ≺ d, and a 6≺ d;

An N in P is evidently an N′ in P. Provided that P is finite, an N′ in
P yields an N in P (indeed, if {a, b, c, d} forms an N′ as in (2), then pick
a′, b′ such that a ≤ a′ ≺ c and b ≺ d′ ≤ d. Clearly, the set {a′, b, c, d′} is
an N in P). An N in P induces an N in Diag(P); the converse is false: if
{a, b, c, d} is an N in Diag(P) as in (3) above, then a < d is possible, but
then -provided that P is finite- it contains an N, eg the 4 element subset
a′, a, c, b, where a ≺ a′ < d. Thus, if P is finite, it contains an N under one
of these three forms if it contains all. We say that P is N-free if it contains
no N. It was proved by P.A.Grillet [1] that a finite poset P is N-free if and
only if P is chain-antichain complete (or C.A.C) that is if every maximal chain of
P meets every maximal antichain of P (the formulation N-free in terms of the
N defined in (1) is due to Leclerc and Monjardet [2]).

FIGURE 1. Examples of posets containing an N.

FIGURE 2. Examples of N-free posets

A barycentric subdivision of the diagram of a poset P consists to add fi-
nitely many vertices, possibly none, on each edge of the diagram of P.
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These vertices added to those of P provides a new poset in which P is em-
bedded. We denote by S(P) the poset obtained by adding just one vertex
on each edge of the diagram of P. As it is immediate to see, this poset is
N-free. In his embedding theorem (Theorem 7 [1]) P.A.Grillet proves that
among the N-free posets obtained as barycentric subdivisions of a finite

poset P there is one, denoted P, which is minimum. In this note, we pro-

vide a simple description of P and give some consequences.
If A := {a, b, c, d} is an N in P as in (1) of Definition 1.1, we say that the

pair (b, c) is the diagonal edge of this N. Let Ndiag(P) be the set of diagonal
edges of all the N’s in P and let SN(P) be the poset obtained by adding a
dummy vertex on each edge in Ndiag(P).

Theorem 1.2. Let P be a finite poset. Then SN(SN(P)) is N-free. In fact this is the
smallest N-free poset P which comes from a barycentric subdivision of Diag(P).

This result translates to an algorithm which transforms a poset into an
N-free poset: execute twice the algorithm consisting to add simultaneously
a vertex on each N of a poset. Figure 3 shows an execution of this algo-
rithm. Two dummy elements 6 and 7 are created during the first execution.
Another two, 8 and 9, are produced during the second execution. After
the second execution, the resulting poset does not contain an N. Instead

FIGURE 3. Execution of the algorithm

of adding simultaneously the dummy vertices, we may add them succes-
sively.

Theorem 1.3. The algorithm starting with P0 := P and adding at step m a
dummy vertex on a diagonal edge of some N in Pm stops on P. Hence the re-
sult and the number of steps does not depends upon the particular choice of the
diagonal edges choosen at each step.

Remarks 1.4. (1) If instead of the diagonal edges of P we consider those of
Diag(P), one get the same conclusion as in Theorem 1.2 and Theorem 1.3
(see Remark 2.6 below ).
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(2) A poset P can be embedded into an N-free poset which does not come from
a barycentric extension of its diagram, but a minimal one is not necessarily
isomorphic to P. The posets represented in (a) and (c) of Figure 4 are the

minimal N-free barycentric extensions A of A and B of B respectively; the
posets represented in (b) and d) are minimal N-free extensions of A and

B. There are quotients of A and B. We do not know if a minimal N-free
extensions of a poset P is necessarily a quotient of P.

(3) P.A. Grillet considered infinite posets satisfying some regularity condition.
We restricted ourselves to finite posets. We do not know how our results
translate to the infinite.

FIGURE 4. Minimal N-free extensions

The motivation for this research came from drawing of posets. A good
drawing solution that works for all posets is clearly out of reach. However,
if every poset can be embedded into another with a particular structure,
and at the same time these particular structures can be nicely drawn, then
this can lead to an interesting approximation of general ordered set draw-
ing. In [4] was presented an approach for drawing N-free posets. The algo-
rithm, called LR-drawing (LR for left-right), consists of three steps: The first
step is to convert P into an N-free poset Q. The second step is to apply the
LR-drawing to Q. The third and last step is to retrieve P from the drawing
of Q. The first part of the algorithm requiring to look at the possible ex-
tensions of a poset into an N-free one, this suggested an other look at the
barycentric extensions of a poset and lead to the present results.
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2. PROOFS

In this section, we consider a finite poset P. A basic ingredient of the
proofs is the set A(P) of pairs (b, c) ∈ Diag(P) \ Ndiag(P) for which there
are two vertices a, d ∈ P such that a < c, b < d, (a, b), (c, d) ∈ Inc(P), and
either (a, c) ∈ Ndiag(P) or (b, d) ∈ Ndiag(P). In our definition of members of
A(P), we could have supposed a ≺ c and b ≺ d. The definition we choose
is closer to the one considered in Lemma 11 of Grillet’s paper.

An important feature of a barycentric subdivision is that each new ele-
ment has a unique upper cover and a unique lower cover. This fact is at the
root of the following lemma.

Lemma 2.1. Let P′ be a barycentric subdivision of P and a, b, c, d ∈ P′. If
a < c, b < d, (b, c) ∈ Diag(P′) and (a, b), (d, c) ∈ Inc(P′) then b, c ∈ P;
if, moreover, (a, c), (b, d) ∈ Diag(P′) and a < d then a, d ∈ P.

Proof. If b or c is not in P then (b, c) is a new edge, hence either b, or c,
is a dummy vertex. If b is a dummy vertex, we have c < d, whereas if c
is a dummy vertex we have a < b, contradicting our hypothesis. If a 6∈ P
then (a, c) is a new edge and, since (a, c) ∈ Diag(P′), a is a dummy vertex
on some edge (a′, c) ∈ Diag(P); from a < d, we get c < d, a contradiction.

Applying this to the dual poset Pdual we get d ∈ P.

Lemma 2.2. Let {a, b, c, d} four elements of P such that (a, c), (b, d) ∈ Diag(P),
(b, c) ∈ Diag(P) \ Ndiag(P).

(1) a < d and if (a, d) 6∈ Diag(P) then (a, c), (b, d) ∈ Ndiag(P);

(2) If (a, c) ∈ Ndiag(P) then

(a) (x, b) ∈ Inc(P) for every x ∈ P such that (a, x) ∈Diag (P) and
{a, c, x, y} witnesses the fact that (a, c) ∈ Ndiag(P) for some y ∈ P;

(b) (a, d) ∈ Ndiag(P) iff (a, d) ∈ Diag(P).

(3) (a, c) ∈ Ndiag(P) if and only if there is some x ∈ P such that (a, x) ∈
Diag(P) and (x, b) ∈ Inc(P).

Proof. (1) If a 6< d then {a, b, c, d} is an N in P hence (b, c) ∈ Ndiag(P)
contradicting the fact that (b, c) ∈ Diag(P) \ Ndiag(P). Let x ∈ P such that
a ≺ x ≤ d. Then {x, a, c, b} is an N in P hence (a, c) ∈ Ndiag(P). With this

argument applied to Pdual we get (b, d) ∈ Ndiag(P).
(2) Suppose (a, c) ∈ Ndiag(P). Let us prove (a). Let x, y such that

(a, x), (y, c) ∈ Diag(P) such that {x, a, c, y} witnesses that (a, c) ∈ Ndiag(P).

If (x, b) 6∈ Inc(P) then b < x. Let b′ ∈ P such that b ≺ b′ ≤ x. Then
{y, c, b′, b} is an N in P thus (b, c) ∈ Ndiag(P) contradicting our hypothe-
sis. Let us prove (b). Suppose (a, d) ∈ Diag(P). Let x, y as above. Since
(x, b) ∈ Inc(P), {x, a, d, b} is an N in P, hence (a, d) ∈ Ndiag(P). The con-
verse is obvious.

(3) follows immediately from (2 − a).

Lemma 2.3. Ndiag(SN(P)) = A(P)
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Proof. Set P′ := SN(P).
(a) Ndiag(P′) ⊆ A(P). Let (b, c) ∈ Ndiag(P′).

Claim 1 (b, c) ∈ Diag(P) \ Ndiag(P). Moreover, if A := {a, b, c, d} is an N

in P′ with a ≺P′ c and b ≺P′ d then a or d are in P′ \ P.
Proof of Claim 1 According to Lemma 2.1 we have b, c ∈ P. Since (b, c) ∈

Diag(P′), it follows (b, c) ∈ Diag(P) \ Ndiag(P). Since b, c ∈ P, if a and d are
in P then {a, b, c, d} is an N in P and thus (b, c) has been subdivided, hence
(b, c) 6∈ Diag(P′) a contradiction.

Let A as above.
Case 1. a ∈ P′ \ P. In this case a is a dummy vertex on some edge

(a′, c) ∈ Ndiag(P). Since (b, d) ∈ Diag(P′) there is some d′ ∈ P such that

b ≺P d′ and d ≤ d′ (d′ = d if d ∈ P, otherwise (b, d) ∈ Diag(P′) in which
case d is a dummy vertex on (b, d′)). Thus A′ := {a′, b, c, d′} witnesses the
fact that (b, c) ∈ A(P).

Case 2. d ∈ P′ \ P. This case reduces to Case (1) above by considering

the dual poset Pdual . From Claim 1 there is no other case. The proof of (a)
is complete.

(b) A(P) ⊆ Ndiag(P′). Let (b, c) ∈ A(P). Let {a, b, c, d}, with (a, c), (b, d) ∈
Diag(P), witnessing it. If (a, c) ∈ Ndiag(P), let u be a dummy vertex on

(a, c) then {u, c, b, d′}, where d′ := d if (b, d) 6∈ Ndiag(P) and d′ is a dummy

vertex on (b, d) otherwise, is an N in P′ hence (b, c) ∈ Ndiag(P′). If (b, d) ∈

Ndiag(P), apply the above case to Pdual .

Lemma 2.4. A(SN(P)) = ∅

Proof. Suppose the contrary. Set P′ := SN(P) and let (b, c) ∈ A(P′).
Let A := {a, b, c, d}, with (a, c), (b, d) ∈ Diag(P′), witnessing the fact that
(b, c) ∈ A(P′). According to (1) of Lemma 2.2 applied to P′, we have a < d.
Thus from Lemma 2.1, we have a, b, c, d ∈ P.

Case 1. (a, c) ∈ Ndiag(P′). According to (3) of Lemma 2.2 applied to P′

there is some x ∈ P′ such that (a, x) ∈ Diag(P′) and (x, b) ∈ Inc(P′).
Next, x ∈ P′ \ P. Indeed, {x, a, c, b} is an N in P′. Thus, if x ∈ P, this is

an N in P and (a, c) ∈ Ndiag(P), hence a dummy vertex is added on (a, c)
in P′ contradicting (a, c) ∈ Diag(P′). Finally, we consider two subcases:

Subcase 1.1. (a, d) ∈ Diag(P′). In this case, (x, d) ∈ Inc(P) and, since
x 6∈ P, (a, x) ∈ Diag(P′) \ Diag(P). Hence, there is x′ ∈ P such that x
is a dummy vertex of (a, x′) ∈ Ndiag(P). Let A′ := {x′, a, c, b}. We have

(a, c), (b, c) ∈ Diag(P) \ Ndiag(P) and (a, x′) ∈ Ndiag(P). Thus (a, c) ∈
A(P). According to (1) of Lemma 2.2 (b, x′) ∈ Diag(P). Next, accord-
ing to (3) of Lemma 2.2, there is some v ∈ P such that (v, x′) ∈ Diag(P)
and (v, c) ∈ Inc(P). It follows that {v, x′, b, c} is an N in P hence (b, x′) ∈
Ndiag(P). If b′ is a dummy vertex on (b, x′) then {b′, b, c, a} is an N in P′

hence (b, c) ∈ Ndiag(P′) contradicting (b, c) ∈ A(P′). Thus this subcase
leads to a contradiction.
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Subcase 2.2. (a, d) 6∈ Diag(P′). In this case, we may suppose x < d. In
fact (x, d) ∈ Diag(P′). Indeed, if (x, d) 6∈ Diag(P′) then there is d′ ∈ P such
that x <P′ d′ ≺P d. But, then {d′, d, c, b} is an N in P, thus (b, d) ∈ Ndiag(P)
proving that (b, d) 6∈ Diag(P′) a contradiction. It follows that x is a dummy
vertex added on (a, d) and that (a, d) ∈ Ndiag(P). Since (a, d) ∈ Ndiag(P),
(b, d) ∈ Diag(P) \ Ndiag(P) and (b, c) ∈ Diag(P), (b, d) ∈ A(P). Since
(a, c) ∈ Diag(P) it follows from (2 − b) of Lemma 2.2 that (a, c) ∈ Ndiag(P)
contradicting (a, c) ∈ Diag(P′). This subcase leads to a contradiction too.

Case 2. (b, d) ∈ Ndiag(P′). This case reduces to the previous one by

considering the dual poset Pdual . Hence, it leads to a contradiction.
Consequently A(P′) = ∅. The proof is complete.
Proof of Theorem 1.2. Set P′ := SN(P) and P′′ := SN(P′). We prove

first that P′′ is N-free. This amounts to prove that Ndiag(P′′) is empty. This
immediately follows from Lemma 2.3 and Lemma 2.4. Indeed, we have
Ndiag(P′′) := Ndiag(SN(P′)) = A(P′) = A(SN(P)) = ∅. Next, we prove

that P′′ is minimum. Let Q be a barycentric subdivision of Diag(P) which
is N-free. Then, clearly, Q include SN(P). Since Q is also a barycentric
subdivision of Diag(P′), Q includes also SN(P′). Thus P′′ is the smallest
N-free poset obtained as a barycentric subdivision of Diag(P). It coincides

with the poset P constructed by P.A.Grillet.

Lemma 2.5. Let P′ with P ⊆ P′ ⊆ SN(SN(P)); then Ndiag(P′) ⊆ Ndiag(P) ∪
A(P).

Proof. Let (b, c) ∈ Ndiag(P′). Suppose (b, c) 6∈ Ndiag(P) ∪ A(P). Let Q :=
SN(SN(P)). We claim that (b, c) ∈ Ndiag(Q). Let A := {a, b, c, d} be an

N of P′ witnessing the fact that (b, c) ∈ Ndiag(P′). Since, from Lemma 2.3

(b, c) 6∈ Ndiag(P) ∪ Ndiag(SN(P)), (b, c) ∈ Diag(Q) thus A′ := {a′, b, c, d′}
where a ≤ a′ ≺Q c and b ≺Q d′ is an N in Q proving our claim. Next, with
(b, c) ∈ Ndiag(Q) and Q := SN(SN(P)), we get from Lemma 2.3 that (b, c) ∈
A(SN(P)). Since, from Lemma 2.4, A(SN(P)) = ∅, we get a contradiction.
This proves the lemma.

Proof of Theorem 1.3 An immediate induction using Lemma 2.5 shows
that each Pm is a subset of Q := SN(SN(P)). Since Q is the least N-free
subset of S(P) containing P the algorithm stops on Q. The number of steps
is the size of Ndiag(P) ∪ A(P).

Remarks 2.6. (1) If A := {a, b, c, d} is an N in Diag(P) as in (3) of De-
finition 1.1, we say that the pair (b, c) is the diagonal edge of this N.
Let Ndiag(Diag(P)) be the set of diagonal edges of all the N’s in Diag(P)
and let SN(Diag(P)) be the poset obtained by adding a dummy vertex on
each edge in Ndiag(Diag(P)). Clearly, Ndiag(Diag(P)) ⊆ Ndiag(P) ∪
A(P). Thus, with the same proof as for Theorem 1.3, we obtain that
the algorithm consisting to add at step m a dummy vertex on an edge



N-FREE EXTENSIONS OF POSETS. NOTE ON A THEOREM OF P.A.GRILLET. 87

of some N in Diag(Pm) ends on P. Similarly, with Lemma 2.5 we get that
SN(Diag(SN(Diag(P)))) = P;

(2) The fact that the algorithm given in Theorem 1.3 stops is obvious: at each
step, Pm is a subset of S(P). The fact that the number of steps in inde-
pendent of the choosen edges is more significant. This suggests a deepest
investigation. We just note that if Pm contains just one N then Pm+1 is
N-free (we leave the proof to the reader).
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RECHERCHE [B], 50 AVENUE TONY-GARNIER, F69365 LYON CEDEX 07, FRANCE

E-mail address: pouzet@univ-lyon1.fr
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