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AN EXPLICIT TREATMENT OF BIQUADRATIC

FUNCTION FIELDS

QINGQUAN WU AND RENATE SCHEIDLER

Abstract. We provide a comprehensive description of biquadratic func-
tion fields and their properties, including a characterization of the cyclic
and radical cases as well as the constant field. For the cyclic scenario,
we provide simple explicit formulas for the ramification index of any
rational place, the field discriminant, the genus, and an algorithmically
suitable integral basis. In terms of computation, we only require square
and fourth power testing of constants, extended gcd computations of
polynomials, and the squarefree factorization of polynomials over the
base field.

1. Introduction

Efficient computation in algebraic function fields can be quite challenging.
While there exist theoretical results for finding quantities such as signatures
and constant fields, these methods can be complicated or do not lend them-
selves well to explicit computation. With the exception of quadratic and,
to some extent, certain other types of fields (such as cubic, superelliptic,
and Artin-Schreier extensions), there are very few effective descriptions or
explicit formulas available.

In this paper, we provide a comprehensive description of biquadratic func-
tion fields, including explicit formulas and characterizations. These fields
are degree 4 extensions of a rational function field (of characteristic differ-
ent from 2) that have an intermediate quadratic subfield; they include all
quartic Galois extensions. We first give a method for finding a computa-
tionally suitable minimal polynomial of a biquadratic extension. From this
so-called standard form, it is possible to determine the constant field and
characterize cyclic and radical extensions completely and explicitly. Fur-
thermore, for the cyclic scenario (and a perfect base field), we can find the
ramification index of any rational place, and use this quantity to develop
simple formulas for the discriminant and the genus, and ultimately, to state
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explicitly a computationally suitable triangular integral basis of our exten-
sion. “Triangular” here means that if we write our biquadratic field in the
form K = k(t, ρ), then the transformation matrix with respect to the basis
{1, ρ, ρ2, ρ3} of the extension K/k(t) is triangular, and is in fact sparse, i.e.
every row has only one or two non-zero entries.

Methods for computing an integral basis of a field extension, such as the
Round 2 algorithm and its variants, were given in [17] and [3], and have
been implemented in Magma [2] [13] and KANT [11]. Integral bases for
certain types of quartic number fields were given in [10] and [9]. For func-
tion fields over algebraically closed fields of characteristic 0, we refer to [20],
and function fields over the rationals were discussed in [21]. For global sep-
arable function fields, a result of Chistov [4] implies that an integral basis
can be computed in time that is polynomial in the extension degree and
the coefficient degrees of the minimal polynomial. In fact, by adapting the
above mentioned algorithm given in [3], Chistov’s result extends to almost
all fields, with some minor extra conditions on the base field if the degree of
the extension exceeds the characteristic, see [8]. However, Chistov’s method
is complicated, whereas our technique is simple and straightforward. More-
over, our integral basis construction does not require any algorithm such as
the ones cited above, and it has the added advantage that we can derive a
very explicit complexity result, namely that the running time is at the very
worst cubic (and frequently significantly better than cubic) in the number
of operations in the base field.

The only restriction on our base field k is that its characteristic be different
from 2; for Sections 7 and 8, we also require k to be perfect. All our results
can be obtained solely and directly from the defining polynomial of our
biquadratic extension. All that is needed are a few squarefree factorizations
and extended gcd’s (the latter only for the integral basis) of polynomials
over k, as well as square and fourth power tests on constants in k. No other
algorithms are required. Moreover, the type of sparse integral basis that we
provide here for a biquadratic function field need not exist in a biquadratic
number field.

2. Overview and Notation

A general introduction to function fields can be found in [19] and [18]; we
only summarize some basic terminology and standard results here. Through-
out this paper, let k be a field and t a fixed transcendental element over k.
A function field K is a finite extension of k(t). We assume that the charac-
teristic of k, denoted by char(k), is either 0 or not a divisor of the extension
degree n = [K : k(t)], so K/k(t) is separable. The constant field k ′ of K
is the set of elements in K that are algebraic over k; note that [k ′ : k] di-
vides n. If k′ = k, or equivalently, any minimal polynomial of the extension
K/k(t) is absolutely irreducible, then k ′ is the full constant field of k. The
integral closure OK of k[t] is the maximal order or coordinate ring of K;
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it is a subring of K and a free k[t]-module of rank n whose discriminant
is referred to as the discriminant of K/k(t) and is denoted by disc(K). A
k[t]-basis of OK is called an integral basis of K.

Denote by PK the set of places of K. Every place of K corresponds to a
normalized discrete valuation vP : K → Z ∪ {∞}. All places of k(t), except
for the infinite place P∞, are said to be finite and can be bijectively identified
with the monic irreducible polynomials in k[t]. For non-zero F ∈ k[t] and
P ∈ Pk(t), vP (F ) is the exact power of P that divides F if P is finite, and
vP∞(F ) = −deg(F ).

Let L be any function field containing K with char(k) - [L : K], and
let P ∈ PK and P ′ ∈ PL. The tuple of pairs (e(P ′|P ), f(P ′|P )) with P ′

lying over P , usually sorted in lexicographical order, is the P -signature of
L/K; here, e(P ′|P ), f(P ′|P ) denote the ramification index and the relative
degree of P ′ | P , respectively. If L/K is Galois, then all P ′ | P have the
same ramification index and relative degree; for brevity, we denote these
quantities by e(P ) and f(P ), respectively, and the number of places lying
above P by r(P ). We have

∑

P ′|P e(P ′|P )f(P ′|P ) = [L : K]. The extension

L/K is tame if char(k) = 0 or char(k) - e(P ′|P ) for any place P ∈ PK and
any P ′ ∈ PL with P ′ | P . When L/K is tame, for any P ∈ PK , we define
the quantity

(1) δL/K(P ) =
∑

P ′|P

(e(P ′|P ) − 1)f(P ′|P ).

Returning to the case K/k(t), we simply write δK(P ) for δK/k(t)(P ). If k
is perfect, then δK(P ) = vP (disc(K)) for every finite place P of k(t). From
the Hurwitz genus formula (Theorem III.4.12, p. 88, of [19]), it then follows
that the genus g of K is given by

(2) g =
deg(disc(K)) + δK(P∞) − 2[K : k(t)]

2[k′ : k]
+ 1.

3. Biquadratic Function Fields

A biquadratic function field is a function field K = k(t)(ρ), where ρ is a
fixed root of f(Y ) = Y 4 +AY 2 +B = 0 with A, B ∈ k[t], f(Y ) is irreducible
over k(t), and char(k) 6= 2. Note that K/k(t) is separable and tame, and that

the roots of f(Y ) = 0 are the algebraic functions ±
√

(−A ±
√

A2 − 4B)/2;

here, as always, we fix one square-root out of the two candidates in a fixed
algebraic closure of K. We denote these four roots by ±ρ,±ω. Without loss
of generality, we can assume that there exists no Q ∈ k[t]\k such that Q2 | A
and Q4 | B. A function field K = k(t, ρ) with this property, and the minimal
polynomial f(Y ) of ρ, are said to be in standard form. Given A and B, one
can efficiently find A0, B0 ∈ k[t] such that f0(Y ) = Y 4+A0Y

2+B0 = 0 is in
standard form and defines a biquadratic function field that is k(t)-isomorphic
to K as follows:
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Algorithm 3.1 (Standard Form)

Inputs: A,B ∈ k[t] where f(Y ) = Y 4 + AY 2 + B is irreducible over k(t).
Outputs: A0, B0 ∈ k[t] so that the polynomial f0(Y ) = Y 4 +A0Y

2 + B0 is
in standard form and the respective biquadratic function fields defined
by f(Y ) and f0(Y ) are k(t)-isomorphic.

1: Set D = gcd(A,B).
2: Compute the squarefree factorizations of D and B, say D =

∏

i Ei
i ,

B = sgn(B)
∏

j F j
j .

3: Compute1 E =
∏

i E
bi/2c
i and F =

∏

j F
bj/4c
j . Set Q = gcd(E,F ),

A0 = A/Q2, B0 = B/Q4. Output A0, B0.

We recall here that the squarefree factorization of a non-zero polynomial
F ∈ k[t] is the unique factorization of F of the form F = sgn(F )

∏

i H
i
i ,

where sgn(F ) is the leading coefficient of F and all the Hi ∈ k[t] are monic,
squarefree, and pairwise coprime. If d = deg(F ), then the squarefree factor-
ization of F can be found using at worst O(d2 max{d, log(q)}) operations in
k if k = Fq is a finite field, and O(d3) operations in k when char(k) = 0 (see
Algorithm 3.4.2, p. 125, of [6]); this asymptotic complexity can be consid-
erably improved in many cases.

Note that the polynomial f0(Y ) in Algorithm 3.1 is the minimal polyno-
mial of ρ/Q over k(t).

Henceforth, unless specified otherwise, we let K = k(t, ρ) be a biquadratic
function field in standard form, where ρ is a fixed root of f(Y ) = Y 4+AY 2+
B = 0 with A, B ∈ k[t]. We assume that we have computed the squarefree
parts of A2 − 4B and B, i.e. we have polynomials G,H, S, T ∈ k[t] with
G, H squarefree, S, T monic, and

(3) A2 − 4B = GS2, B = HT 2.

The polynomials G,S,H, T can be easily obtained from the squarefree fac-
torizations of A2−4B and B, respectively. Note that since f(Y ) is irreducible
over k(t), A2 − 4B, and hence G, cannot be a square in k[t].

The following result motivates the term “biquadratic”:

Proposition 3.1. (Biquadratic Characterization) Let K be a function field
with [K : k(t)] = 4 and char(k) 6= 2. Then K/k(t) is biquadratic if and only
if it contains a quadratic extension M/k(t).

Proof. If K is biquadratic, then K = k(t, ρ) where ρ is a fixed root of

Y 4 + AY 2 + B = 0 with A, B ∈ k[t]. Then M = k(t, ρ2) = k(t,
√

G) is an
extension of k(t) with minimal polynomial g(Z) = Z 2 + AZ + B over k(t),
so M/k(t) is our desired quadratic extension.

1As usual, brc and dre denote the floor and the ceiling, respectively, of r ∈ R, i.e. brc
is the maximal integer not exceeding r, and dre is the minimal integer no less than r.
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Conversely, suppose M is a subfield of K with [K : M ] = [M : k(t)] =
2. Write M = k(t, α) and K = M(θ) where α ∈ M and θ ∈ K. Since
char(k) 6= 2, we may assume that α2 ∈ k(t) and θ2 ∈ M . If we write
α2 = C and θ2 = D + Eα with C,D,E ∈ k(t), then it is easy to check that
g(Y ) = Y 4−2DY 2+D2−E2C ∈ k(t)[Y ] is the minimal polynomial of θ over
k(t). So K = k(t, θ). Let F be the lowest common denominator of D and
D2 −E2C. Then K = k(t, ρ) where ρ = Fθ, and the minimal polynomial of
ρ over k(t) is f(Y ) = F 4g(Y/F ) = Y 4 + AY 2 + B with A = −2DF 2 ∈ k[t]
and B = F 4(D2 − E2C) ∈ k[t]. Hence K/k(t) is biquadratic. �

In lieu of Proposition 3.1, many of the results on biquadratic function
field extensions K/k(t) that we present here can be derived by obtaining
corresponding results in the quadratic extension M/k(t) and the relative
quadratic extension K/M . In this sense, biquadratic function fields offer
non-trivial examples for relative function field extensions.

4. Constant Field

In many treatments of algebraic function fields K/k(t), it is tacitly as-
sumed that k is the full constant field of K. However, it may be tedious to
check this in practice, since determining the extension degree [k ′ : k] may
require factoring the minimal polynomial f(Y ) of K/k(t) over k(t), where
k is an algebraic closure of k. In general, if k = Fq is a finite field, this can
be done algorithmically, see [16] and [15]. In fact, it suffices to factor f over
Fqn(t) where n = [K : k(t)].

For the biquadratic scenario, however, we can find the degree [k ′ : k] in a
much more straight-forward manner; in particular, when K/k(t) is cyclic, we
have k′ = k if and only if G as given in (3) is not a constant, see Corollary
5.2. We will therefore investigate the field of constants of a biquadratic
function field in more detail. This has two advantages. Not only does it
allow us to include constant field extensions in our discussion, but we are
also able to provide a computationally simple characterization, in terms of
f(Y ), for the case k′ = k. Furthermore, in view of (2), we also require the
extension degree [k′ : k] to find the genus of a biquadratic function field.

We let k′ be the constant field of a biquadratic function field K = k(t, ρ).
Since [k′ : k] divides [K : k(t)] = 4, we have [k′ : k] ∈ {1, 2, 4}. Note that
[k′ : k] = 4 if and only if K = k′(t) is a rational function field, and [k ′ : k] = 2
if and only if K is a quadratic extension of k ′(t). Before we determine [k′ : k]
explicitly, we first provide some simple sufficient conditions under which an
irreducible polynomial f(Y ) = Y 4 + AY 2 + B with A,B ∈ k[t] is absolutely
irreducible, i.e. defines a biquadratic function field with full constant field k.

Proposition 4.1. Let f(Y ) = Y 4+AY 2+B with A,B ∈ k[t] irreducible over
k(t). Then f is absolutely irreducible under any of the following conditions:

(1) There exists P ∈ Pk(t) \ {P∞} with vP (A) ≥ vP (B) ≥ 1 and vP (B)
is odd;
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(2) deg(B) is odd and deg(B) − deg(A) ≥ 2ddeg(B)/4e;
(3) deg(A) is odd and deg(A) ≥ deg(B) ≥ 0.

Proof. Parts 1 and 2 follow from Eisenstein’s Criterion (Proposition III.1.14,
pp. 66-67, of [19]), applied to an irreducible divisor P in k[t] of P and to P∞,
respectively. For part 3, direct computation using symbolic factorization
reveals that f is absolutely irreducible. �

Conditions 2 and 3 of Proposition 4.1 are easily verifiable, and condition
1 is simple to check, provided gcd(A,B) can be factored quickly. Unfor-
tunately, the above conditions are not necessary for f to be absolutely ir-
reducible; for example, f(Y ) = Y 4 + Y 2 + t4 does not satisfy any of the
conditions of Proposition 4.1, but is easily seen to be absolutely irreducible
over any field of characteristic different from 2.

To find the full constant field k′ of K, we make use of the following:

Lemma 4.2. Let l be any field of characteristic different from 2 and let
L = l(t, θ) with θ2 = F ∈ l[t] be a quadratic extension of l(t). Then l is the
full constant field of L if and only of there exists P ∈ Pl(t) with vP (F ) odd.

Proof. We have that vP (F ) is even for all P ∈ Pl(t) if and only if the square-
free part a of F is a constant in l. Since [L : l(t)] = 2, a cannot be a square
in k, but it has a square root in the full constant field l ′ of L. Thus, a is
constant if and only if [l′ : l] = 2. �

Proposition 4.3. Let K = k(t, ρ) be a biquadratic function field. Then
[k′ : k] = 4 if and only if G is a non-square in k∗ and ρ2 is the product of a

non-square in k(
√

G)∗ and a square in k(
√

G)[t].

Proof. Let M = k(t, ρ2) = k(t,
√

G), and let k′′ be the constant field of M .
Then [k′ : k] = 4 if and only if [k′ : k′′] = [k′′ : k] = 2. Now [k′′ : k] = 2 if and
only if vP (G) is even for all P ∈ Pk(t) by Lemma 4.2. Since G is squarefree,
this is equivalent to G being constant, and hence a non-square in k∗ by the
irreducibility of f(Y ) = Y 4 + AY 2 + B over k(t).

Furthermore, this is exactly the case when k ′′ = k(
√

G), M = k′′(t), and

K = M(ρ) = k′′(t, ρ) with ρ2 ∈ k′′[t] where we have ρ2 = (−A ± S
√

G)/2
for one choice of sign. So again by Lemma 4.2, [k ′ : k′′] = 2 if and only if
vP ′′(ρ2) is even for all P ′′ ∈ Pk′′(t), or equivalently, ρ2 is the product of a

square in k′′(t) (and hence in k′′[t]) and a constant in k′′, which again must
be a non-square in k′′ by the irreducibility of f(Y ) over k ′′. �

Proposition 4.4. Let K = k(t, ρ) be a biquadratic function field over a
perfect field k. Then [k′ : k] = 2 if and only if [k′ : k] 6= 4 and either
G is a non-square in k∗, or G is non-constant, H ∈ k∗, and exactly one
of −A ± 2

√
HT is the product of an element in k(

√
H)∗ and a square in

k(
√

H)[t].

Proof. Let M and k′′ be as in the proof of Proposition 4.3. Then [k ′ : k] = 2
if and only if either [k′′ : k] = 2, or k′ 6= k′′ = k. The first condition holds



AN EXPLICIT TREATMENT OF BIQUADRATIC FUNCTION FIELDS 49

if and only if k is not the full constant field of M , which by Lemma 4.2 is
equivalent to vP (G) even for all P ∈ Pk(t). As in the previous proof, this is
the case if and only if G is a non-square in k∗.

We need to establish that k′ 6= k′′ = k if and only if H is constant and
exactly one of −A ± 2

√
HT is the product of an element in k(

√
H)∗ and

a square in k(
√

H)[t]. By Lemma 4.2, k′′ = k if and only if vP (G) is odd
for some P ∈ Pk(t). Since k′(t)/k(t) is a constant field extension and hence
unramified by Theorem III.6.3 (a) of [19], this holds if and only if vP ′(G)
is odd for some P ′ ∈ Pk′(t). We thus see that k′ 6= k′′ = k if and only

[k′(t,
√

G) : k(t)] = [k′(t,
√

G) : k′(t)][k′(t) : k(t)] = 2 · 2 = 4, or equivalently,

K = k′(t,
√

G). This in turns holds if and only if ρ ∈ k ′(t,
√

G). Since ρ is
integral over k[t], and hence over k ′[t], this is the case if and only if ρ is in

the integral closure of k′[t] in K, which is k′[t,
√

G], i.e. if and only if ρ can

be written in the form ρ = C + D
√

G for some C,D ∈ k′[t].

Recall that ρ2 = (−A±S
√

G)/2 for one of the signs. Now (C +D
√

G)2 =

(−A+S
√

G)/2 if and only if (C−D
√

G)2 = (−A−S
√

G)/2, so ρ ∈ k′[t,
√

G]

if and only if there exists C,D ∈ k′[t] with (C + D
√

G)2 = (−A + S
√

G)/2,

or equivalently, C2 + D2G = −A/2 and 2CD = S/2, since 1 and
√

G are
linearly independent over k′[t]. This in turn is easily verified to hold if and
only if the equation

(4) 16Y 4 + 8AY 2 + (A2 − 4B) = 0

has a root C ∈ k′(t) (in which case D = S/(4C)); the other three roots are

−C and ±D
√

G. Since the four roots of (4) are ±
√

−A ± 2
√

B/2, we see
that (4) has a root in k′(t) if and only if B is a square in k′(t) and at least

one of −A±2
√

B is a square in k′(t). Since (−A+2
√

HT )(−A−2
√

HT ) =
A2 − 4B = GS2 is not a square in k′(t) (as G is non-constant), at most

one of −A ± 2
√

HT can be a square in k′(t). Now B is a square in k′(t)

if and only if H ∈ k∗. Then −A ± 2
√

HT ∈ k(
√

H)[t] is a square in k′(t)

if and only if the squarefree part of −A ± 2
√

HT in k(
√

H)(t) is constant,

i.e. if and only if it is the product of a constant in k(
√

H)∗ and a square in

k(
√

H)[t]. �

The squarefree factorizations of A2−4B and of B will reveal if G, respec-
tively H, is constant. To test the other conditions in Propositions 4.3 and
4.4, it suffices to check that the squarefree part of a polynomial of the form
U + V

√
h in k(

√
h)[t] (U, V ∈ k[t], h ∈ k∗) is a constant in k(

√
h). This is

in fact possible without knowing a square root of h if we use symbolic arith-
metic on the polynomial coefficients in k(

√
h) when performing the poly-

nomial divisions in the squarefree factorization algorithm over k(
√

h)[t]: as

usual, for a, b, c, d ∈ k∗, we have (a+b
√

h)± (c+d
√

h) = (a±c)+(b±d)
√

h,

(a+ b
√

h)(c + d
√

h) = (ac + bdh) + (ad + bc)
√

h, and if c and d are not both

zero, (c + d
√

h)−1 = (c − d
√

h)/(c2 − d2h).
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5. Cyclic Biquadratic Fields

A quartic Galois extension K/k(t) with char(k) 6= 2 has a Galois group
that is isomorphic to Z4 (the cyclic case) or Z2 ⊕ Z2 (the bicyclic case).
Both these groups have a subgroup of order 2, so K/k(t) has an intermedi-
ate quadratic field. It follows from Proposition 3.1 that every quartic Galois
extension is biquadratic. In fact, a cyclic quartic extension has a unique
intermediate quadratic field, while a bicyclic one has three distinct interme-
diate quadratic fields. The cyclic case can be characterized as follows (see
[12], [14] for a number field analogue).

Theorem 5.1. (Cyclic Characterization) Let K = k(t, ρ) be a biquadratic
function field. Then K/k(t) is cyclic if and only if H = a2G for some
a ∈ k∗, or equivalently, if and only if (A2 − 4B)B is a square in k[t].

Proof. Recall that ±ρ,±ω denote the four roots of f(Y ) = Y 4+AY 2+B = 0.
Suppose first that K/k(t) is cyclic, and let σ be a generator of the Galois
group Gal(K/k(t)) ∼= Z4. Since σ has order 4 in Gal(K/k(t)), we have
σ(ρ) 6= ±ρ. By switching ω and −ω if necessary, we may assume that
σ(ρ) = ω without loss of generality. Since K/k(t) is Galois, K = k(t)(ω), so
similarly σ(ω) = ±ρ, hence σ(ρω) = ±ρω. If ρω ∈ k(t), then the plus sign
would hold, implying σ2(ρ) = σ(ω) = σ(ρω)/σ(ρ) = ρω/ω = ρ, in which
case σ2 would be the identity, a contradiction to σ having order 4. Hence
ρω /∈ k(t).

Since (ρω)2 = B, we have k(t, ρω) = k(t,
√

B) = k(t,
√

H), and hence

[k(t)(ρω) : k(t)] = 2. Now M = k(t, ρ2) = k(t,
√

G) is the unique intermedi-

ate quadratic field of K/k(t), so we must have M = k(t,
√

G) = k(t,
√

H). A
simple argument shows that G and H differ by a square factor in k(t), and
the fact that G and H are squarefree implies that this factor is constant.

Conversely, suppose that H = a2G for some a ∈ k∗. Then ρω = ±
√

B ∈
k(t,

√
H) = k(t,

√
G) = k(t, ρ2), hence ω ∈ k(t, ρ), implying that K/k(t) is

Galois, with a Galois group of order 4. Let γ = (ρ2 − ω2)ρω ∈ K. Then

γ2 =
(

(ρ2 + ω2)2 − 4(ρω)2
)

(ρω)2 = (A2 − 4B)B = GS2HT 2 = (aGST )2,

so γ ∈ k[t]. Now suppose σ(ρω) = ρω for all σ ∈ Gal(K/k(t)). Then
ρω ∈ k(t), and hence B is a square in k(t). Since B and A2 − 4B differ by a
square in k(t), A2−4B is also a square in k(t), contradicting the irreducibility
of f(Y ) over k(t). Hence there exists σ ∈ Gal(K/k(t)) with σ(ρω) 6= ρω.
Since σ permutes the four roots ±ρ,±ω, this forces σ(ρω) = −ρω. If σ(ρ) =
±ρ, then σ(ω) = ∓ω for suitable sign, implying γ = σ(γ) = −γ which
is impossible. Therefore σ(ρ) = ±ω, and since σ(ρω) = −ρω, we have
σ(ω) = ∓ρ. But then σ2(ρ) = −ρ, so σ does not have order 2. Thus, σ has
order 4, and Gal(K/k(t)) ∼= Z4. �

The above cyclicity criterion only requires a comparison of two polyno-
mials and a square test in k. Note that if k = Fq is a finite field of order
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q, then b ∈ k∗ is a square in k if and only if b(q−1)/2 = 1, which is easily
verifiable.

Corollary 5.2. Let K/k(t) be a cyclic biquadratic function field. Then
k′ = k if and only if G is not a constant in k.

Proof. Clear from Proposition 4.3, Proposition 4.4 and Theorem 5.1. �

6. Radical Quartic Fields

We briefly discuss radical quartic function fields, which are fields of the
form K = k(t)( 4

√
F ) for some F ∈ k[t]. Clearly, every radical quartic func-

tion field extension K/k(t) is biquadratic (with A = 0 and B = −F ). The
following theorem gives simple necessary and sufficient conditions under
which the converse holds.

Theorem 6.1. (Radical Characterization) Let K = k(t, ρ) be a biquadratic
function field. Then K/k(t) is radical if and only if any one of the following
conditions holds:

(1) −1 is a square in k∗ and H = a2G for some a ∈ k∗;
(2) −1 is a non-square in k∗ and H = −a2G for some a ∈ k∗;

(3) B is a square in k[t] and exactly one of A± 2
√

B is a square in k[t].

Furthermore, condition 1 implies that K/k(t) is cyclic, condition 2 implies
that K is not cyclic (i.e. either not Galois or bicyclic Galois), and condition
3 implies that K/k(t) is bicyclic, −1 is a non-square in k∗, and [k′ : k] > 1.

Proof. A result by Chu and Kang [5] for quartic extensions of characteristic
different from 2 states that K/k(t) is radical if and only if either −B(A2−4B)
is a square in k(t) or (4) has a root in k(t). It is easy to see that properties
1 and 2 above are both equivalent to the first of these two conditions. As

in the proof of Proposition 4.4, the roots of (4) are ±
√

A ± 2
√

B/2, so
this equation has a root in k(t) if and only if condition 3 above holds (the

fact that at most one of A ± 2
√

B can be a square was already proved in
Proposition 4.4).

Now by Theorem 5.1, conditions 1 and 2 imply that K/k(t) is cyclic,
respectively, not cyclic. Suppose that condition 3 holds. Since B is a square
in k[t], we have H ∈ k∗, so Proposition 4.4 implies that [k ′ : k] ≥ 2. Now

ρω =
√

B ∈ k(t), so ω ∈ k(t, ρ), and K/k(t) is hence Galois. Since B is
a square and A2 − 4B is not a square in k[t], H ∈ k2 and G /∈ k2 cannot
differ by a constant square, so by Theorem 5.1, K/k(t) cannot be cyclic and
is hence bicyclic. Since K/k(t) is radical, −1 cannot be a square in k∗ by
Kummer theory. �

Note that if k = Fq is a finite field of order q, then −1 is a square in k∗ if
and only if q ≡ 1 (mod 4), which is easily verifiable.
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7. P -Signatures, Discriminant and Genus — Cyclic Perfect

Case

Throughout this and the next section, we only consider cyclic quartic
extensions over a perfect field k. While the questions discussed in Sections
7 and 8 can be addressed algorithmically for other biquadratic extensions,
it is unclear how to obtain results that are as explicit as those given below
for the special case of cyclic quartic extensions.

We begin with a simple description of any P -signature of a radical cyclic
quartic function field. First, two useful lemmas:

Lemma 7.1. (Proposition III.7.3 (b), pp. 110-111, of [19]) Let k be a perfect
field, E a function field over k, and L = E(ρ) a radical extension of E of
degree n with ρn = D ∈ E and char(k) - n. If P ∈ PE and P ′ ∈ PL lies over
P , then e(P ′|P ) = n/gcd(n, vP (D)).

Lemma 7.2. (Satz 1, p. 171, of [1] and Proposition 14.6, p. 248, of [18])
Let k be a perfect field and let M = k(t, α) with α2 = D ∈ k[t] squarefree.
Then for any P ∈ Pk(t), the P -signature in M is given as follows:

For P 6= P∞:

(e(P ), f(P ), r(P )) =























(2, 1, 1) if vP (D) = 1,
(1, 2, 1) if vP (D) = 0 and

D is a non-square in k(t)/(P ),
(1, 1, 2) if vP (D) = 0 and

D is a square in k(t)/(P ).

For P = P∞:

(e(P ), f(P ), r(P )) =























(2, 1, 1) if deg(D) is odd,,
(1, 2, 1) if deg(D) is even and

sgn(D) is a non-square in k∗,
(1, 1, 2) if deg(D) is even and

sgn(D) is a square in k∗.

Theorem 7.3. Let K = k(t, ρ) a radical cyclic function field over a perfect
field k, where ρ4 = D ∈ k[t] and D is 4-th power free. Then for any
P ∈ Pk(t), the P -signature of K/k(t) is given as follows:

r(P ) = 4, e(P ) = f(P ) = 1 if

• P 6= P∞, vP (D) ≡ 0 (mod 4), and D/P vP (D) is a 4-th power in
k[t]/(P ),

• P = P∞, deg(D) ≡ 0 (mod 4), and sgn(D) is a 4-th power in k∗,

r(P ) = 2, e(P ) = 1, f(P ) = 2 if

• P 6= P∞, vP (D) ≡ 0 (mod 4), and D/P vP (D) is a square but not a
4-th power in k[t]/(P ),

• P = P∞, deg(D) ≡ 0 (mod 4), and sgn(D) is a square but not a
4-th power in k∗,
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r(P ) = 2, e(P ) = 2, f(P ) = 1 if

• P 6= P∞, vP (D) ≡ 2 (mod 4), and D/P vP (D) is a square in k[t]/(P ),
• P = P∞, deg(D) ≡ 2 (mod 4), and sgn(D) is a square in k∗,

r(P ) = e(P ) = 1, f(P ) = 4 if

• P 6= P∞, vP (D) ≡ 0 (mod 4), and D/P vP (D) is not a square in
k[t]/(P ),

• P = P∞, deg(D) ≡ 0 (mod 4), and sgn(D) is not a square in k∗,

r(P ) = 1, e(P ) = f(P ) = 2 if

• P 6= P∞, vP (D) ≡ 2 (mod 4), and D/P vP (D) is not a square in
k[t]/(P ),

• P = P∞, deg(D) ≡ 2 (mod 4), and sgn(D) is not a square in k∗,

r(P ) = 1, e(P ) = 4, f(P ) = 1 if

• P 6= P∞ and vP (D) is odd,
• P = P∞ and deg(D) is odd.

Proof. Set M = k(t, ρ2). Let P ′ ∈ PM lie over P and P ′′ ∈ PK lie over
P ′. The values for e(P ′′|P ) follow immediately from Lemma 7.1. If vP (D)
is odd, then e(P ′′|P ) = 4, so assume now that vP (D) is even, which forces
e(P ′′|P ) = 2 or 1.

If e(P ′′|P ) = 2, then M = k(t, β) with β2 = D/P vP (D), and we can find
the values of f(P ′|P ) and r(P ′|P ) using Lemma 7.2. By using f(P ′′|P ) =
f(P ′′|P ′)f(P ′|P ) (similarly for r(P ′′|P )), this yields our signatures.

If e(P ′′|P ) = 1, then vP (D) ≡ 0 (mod 4) by Lemma 7.1, so K = k(t, γ)
with γ4 = D/P vP (D). By Theorem III.3.7, p. 76, of [19], r(P ′′|P ) is equal to

the number of distinct irreducible factors of Y 4 − D/P vP (D) (mod P ), and
f(P ′′|P ) = 4/r(P ′′|P ) is equal to the degree of each such factor. �

For biquadratic cyclic (but not necessarily radical) function fields, we only
compute the ramification index (rather than the whole signature) for each
place of k(t), since it is sufficient for finding the genus and the discriminant
by (2) and our remarks at the end of Section 2. We find all these ramification
indices by making use of Lemma 7.1.

Theorem 7.4. Let K = k(t, ρ) be a cyclic biquadratic function field in
standard form over a perfect field k. Then for any P ∈ Pk(t), we have

e(P ) =























1 if vP (A2 − 4B) is even and
min{vP (A), vP (A2 − 4B)/2} is even,

2 if vP (A2 − 4B) is even and
min{vP (A), vP (A2 − 4B)/2} is odd,

4 if vP (A2 − 4B) is odd.

Proof. As before, set M = k(t,
√

G) = k(t,
√

A2 − 4B), and let α ∈ K with
α2 ∈ M , so K = M(α). Let P ′ ∈ PM lie over P and P ′′ ∈ PK lie over P ′.
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Then by Lemma 7.1,

e(P ′|P ) =
2

gcd(2, vP (A2 − 4B))
, e(P ′′|P ′) =

2

gcd(2, vP ′(α2))
.

Note that since K/k(t) is Galois, we can choose α = ρ or α = ω, in which

case α2 = (−A ±
√

A2 − 4B)/2 for one choice of sign. Since e(P ′′|P ′) is
independent of the choice of α, vP ′(ρ2) and vP ′(ω2) must have the same
parity, and for one of these choices, we must have

(5) vP ′(α2) = min{vP ′(A), vP ′(
√

A2 − 4B)}.

Assume first that vP (A2 − 4B) is odd, so e(P ′|P ) = 2. Since K/k(t) is
cyclic, (A2 − 4B)B is a square by Theorem 5.1, so vP (B) is odd as well.
Since vP (A2) is even, the the strict triangle inequality yields vP (A2 −4B) =
min{vP (A2), vP (B)} = vP (B) < vP (A2). If follows that the minimum in (5)

is vP ′(
√

A2 − 4B) = vP (A2−4B) which is also odd. Therefore, e(P ′′|P ′) = 2
and hence e(P ′′|P ) = e(P ′′|P ′)e(P ′|P ) = 4.

Suppose now that vP (A2 − 4B) is even, so e(P ′|P ) = 1, and hence

vP ′(α2) = vP (α2) = min{vP (A), vP (A2 − 4B)/2}.

If this minimum is odd, then e(P ′′|P ′) = 2 and hence e(P ′′|P ) = 2, whereas
if the minimum is even, then e(P ′′|P ′) = 1, implying e(P ′′|P ) = 1. �

Corollary 7.5. Let K = k(t, ρ) be a cyclic biquadratic function field in
standard form over a perfect field k. Then for any P ∈ Pk(t), we have

δK(P ) =























0 if vP (A2 − 4B) is even and
min{vP (A), vP (A2 − 4B)/2} is even,

2 if vP (A2 − 4B) is even and
min{vP (A), vP (A2 − 4B)/2} is odd,

3 if vP (A2 − 4B) is odd,

where δK(P ) = δK/k(t)(P ) was defined in (1).

Using Corollary 7.5, we can now explicitly state the discriminant (The-
orem 7.6) and the genus (Corollary 7.7) of a cyclic biquadratic function
field.

Theorem 7.6. Let K = k(t, ρ) be a cyclic biquadratic function field in
standard form over a perfect field k. Then

disc(K) = 16G3 gcd(S, T )2/ gcd(G,S, T )2.

Proof. For brevity, set D = gcd(S, T ). Then we need to prove that the
leading coefficients of disc(K) and 16G3 match, and that vP (disc(K)) =
vP (G3D2/ gcd(G,D)2) for every finite P ∈ Pk(t).

By direct computation, we obtain that the discriminant of ρ is disc(ρ) =
16G3S4T 2, so 16 sgn(G)3 = sgn(disc(ρ)) = sgn(disc(K)), since the two
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discriminants differ by a factor that is a monic polynomial. Now recall
from Section 2 that vP (disc(K)) = δK(P ), so it suffices to show that

vP (G3D2/ gcd(G,D)2) = δK(P ),

for each P ∈ Pk(t) \ {P∞}. We compute vP (G3D2/ gcd(G,D)2) for every
possibility of P dividing any combination of G,S, T (including dividing none
of them), and compare this value with that of δK(P ) given in Theorem 7.4
for each possibility.

Let P be any finite place of k(t). We first claim that vP (D) ≤ 1. To that
end, suppose that P 2 | D. Then P 4 | T 2 | B and P 4 | GS2 +4B = A2, hence
P 2 | A. But this violates the standard form assumption. So vP (D) ≤ 1.

We now divide our proof into different cases, according to which of G,S, T
(if any) P divides.

Case 1: P - GST :
Then vP (G3D2/ gcd(G,D)2) = 0 and vP (disc(K)) = 0, since vP (disc(ρ))
= 0 and disc(K) divides disc(ρ).

Case 2: P | G:
Then vP (G) = 1, since G is squarefree. If P | D, then vP (D) =
vP (gcd(G,D)) = 1, so vP (G3D2/ gcd(G,D)2) = 5 − 2 = 3. If P - D,
then vP (D) = vP (gcd(G,D)) = 0, so vP (G3D2/ gcd(G,D)2) = 3− 0 = 3
also. On the other hand, vP (A2 − 4B) is odd (again as G is square-
free), so δK(P ) = 3 by Corollary 7.5. It follows that vP (disc(K)) =
vP (G3D2/ gcd(G,D)2).

Case 3: P - G, P | ST :
Then vP (G3D2/ gcd(G,D)2) = 2vP (D), so we need to show that δK(P )
= 2vP (D). We see that vP (A2 − 4B) = vP (GS2) = 2vP (S) is even. As
in the proof of Theorem 7.4, we have A2 = G(S2 + 4a2T 2), so 2vP (A) =
vP (S2 + 4a2T 2).

Case 3.1: P - D:
Then P divides exactly one of S and T . In both cases, vP (A) =
vP (S2+4a2T 2)/2 = 0 by the strict triangle inequality, so min{vP (A),
vP (A2−4B)/2} = 0 is even. By Corollary 7.5, δK(P ) = 0 = 2vP (D).

Case 3.2: P | D:
Then min{vP (S), vP (T )} = vP (D) = 1.

Case 3.2.1: vP (S) 6= vP (T ):
Then vP (A) = min{vP (S), vP (T )} = 1 is odd, by the strict trian-
gle inequality. Since vP (A2−4B)/2 = vP (S) ≥ vP (A), we see that
min{vP (A), vP (A2 − 4B)/2} = vP (A) = 1 is odd, so by Corollary
7.5, δK(P ) = 2 = 2vP (D).

Case 3.2.2: vP (S) = vP (T ):
Then vP (S) = vP (T ) = 1, since vP (D) = 1. So vP (A) ≥
min{vP (S), vP (T )} = 1 and vP (A2 − 4B)/2 = vP (S) = 1. It
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follows that min{vP (A), vP (A2 − 4B)/2} = vP (A2 − 4B)/2 = 1
is odd, so once again by Corollary 7.5, δK(P ) = 2 = 2vP (D).

�

Note that the analogue to Theorem 7.6 does not hold in general for num-
ber fields, due to the fact that the equality δP (K) = vP (disc(K)) is only
true for tamely ramified P after localization and completion on P .

Corollary 7.7. Let K = k(t, ρ) be a cyclic biquadratic function field in
standard form over a perfect field k and with constant field k ′. Then K has
genus

g =
3deg(G) + 2 deg(gcd(S, T )) − 2 deg(gcd(G,S, T )) + ε − 8

2[k′ : k]
+ 1,

where

ε =























0 if deg(A2 − 4B) is even and
max{deg(A), deg(A2 − 4B)/2} is even,

2 if deg(A2 − 4B) is even and
max{deg(A), deg(A2 − 4B)/2} is odd,

3 ifdeg(A2 − 4B) is odd.

Proof. This follows immediately from Theorem 7.6, (2) and the fact that
ε = δK(P∞) by Corollary 7.5. �

8. Integral Basis – Cyclic Perfect Case

We conclude our investigation by giving a computationally very suitable
integral basis of a cyclic biquadratic function field in standard form over a
perfect field. This basis can be found easily from the polynomials G,S, T in
(3), and has no number field analogue.

The construction for such a basis is combinatorial and is aided by the
explicit formula for disc(K) given in Theorem 7.6. It makes use of the
fact that a set of linearly independent elements in K is an integral basis if
and only if every element is integral and the set has the right discriminant,
namely disc(K). To that end, we first start with a set of linearly independent
integral elements; without loss of generality, the coefficients of these elements
with respect to the k(t)-basis {1, ρ, ρ2, ρ3} of K form a triangular 4×4 matrix
with entries in k(t). The assumption that K/k(t) is cyclic Galois further
forces certain of the coefficients to vanish. We then maximize the degrees of
the denominators of the non-zero coefficients one by one, while still keeping
the integrality of every element in the set. The integral basis is obtained
when all the degrees of the denominators become maximal. We spare the
reader the details of deriving the particular form of our integral basis, i.e.
the proof given below is simply a validation of the statement of Theorem 8.1.
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Theorem 8.1. Let K = k(t, ρ) be a cyclic biquadratic function field in
standard form over a perfect field k. Then an integral basis of K is given by

{

1, ρ,
ρ2 + A/2

S
,

ρ3 + Cρ

ED

}

with polynomials C,D,E, F, L1,M1, L2,M2 ∈ k[t] given by

D = gcd(G,S, T ), E = lcm(S, T ), F = gcd(S, T ),

L1S + M1T = F, L2E + M2D
2 = gcd(E,D2) = D,

C = M2AD
M1T/2 + L1S

F
.

Proof. We first show that D = gcd(E,D2). It is clear that D | gcd(E,D2).
To show equality, let P ∈ Pk(t) \ {P∞} with P | gcd(E,D2). Then P | D,

so if suffices to show that vP (E) = 1 as D is squarefree. Since B = a2GT 2

for some a ∈ k∗ by Theorem 5.1, we see as in the proof of Theorem 7.6
that vP (A2) = vP (G(S2 + 4a2T 2)) ≥ 3, so vP (A) ≥ 2. Since K is in
standard form, we must have vP (B) ≤ 3, so vP (G) = vP (T ) = 1 and
vP (GS2) = vP (A2 − 4a2GT 2) = 3 by the strict triangle inequality. Hence
vP (S) = 1, implying vP (E) = 1.

It now follows that the polynomials L1,M1, L2,M2, C are all well-defined.
Set α = (ρ2 +A/2)/S ∈ K, and β = (ρ3 +Cρ)/ED ∈ K. Then the minimal
polynomial of α is easily verified to be g(Y ) = Y 2 − G/4 ∈ k[t][Y ], so α is
integral over k[t].

To prove the integrality of β, consider any element of the form γ = (ρ3 +
Uρ)/V ∈ K with U, V ∈ k[t], V 6= 0. We establish necessary and sufficient
conditions on U and V under which γ is integral over k[t]. A straightforward,
though tedious computation yields that the minimal polynomial of γ over
k(t) is of the form Y 4 + H2Y

2 + H0 where H2, H0 ∈ k(t) are determined
uniquely by U and V , and

(4A3B − 3AB2 − A5) + 4U(A4 − 3A2B + B2) + 6U2(2AB − A3)

+4U3(A2 − B) − U4A + V 2H2((A
2 − B) − 2AU + U 2) = 0,(6)

(3A2B2 − A4B − B3) + 4U(A3B − 2AB2) + 6U2(B2 − A2B)

+4U3AB − U4B + V 2H2(AB − 2BU) + H0V
4 = 0.(7)

We wish to simplify (6) by dividing by U 2 − 2AU + (A2 − B), so we need
to ensure that this quantity is non-zero. By Theorem 5.1 and (3), B and
A2−4B differ by a square factor in k(t); in particular, B cannot be a square
in k[t] as otherwise A2 − 4B would be a square, making f(Y ) reducible
over k(t). It follows that the polynomial h(Y ) = Y 2 − 2AY + (A2 − B) of
discriminant 4B is irreducible over k[t]; in particular, h(U) 6= 0.

Dividing both sides of (6) by h(U) simplifies (6) to

(8) V 2H2 = (A3 − 3AB) + U(4B − 2A2) + U2A.
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Substituting (8) into (7), we obtain

(9) V 4H0 = B(B − AU + U 2)2.

So we see that γ is integral over k[t] if and only if (8) and (9) have solutions
(U, V,H2,H0) with U, V,H2,H0 ∈ k[t].

It is easy to verify that (A, T,HA,H3T 2) and (A/2, S,GA/4, G2B/16) are
two such solutions, so (ρ3 + Aρ)/T and (ρ3 + (A/2)ρ)/S are both integral
over k[t]. Using the identities M1T + L1S = F and ST = EF , we obtain

L1
ρ3 + Aρ

T
+ M1

ρ3 + (A/2)ρ

S
=

Fρ3 + (M1TA/2 + L1SA)ρ

ST
=

ρ3 + C0ρ

E
,

with C0 = A(M1T/2+L1S)/F . It follows that (ρ3 +C0ρ)/E is also integral
over k[t].

Since D is squarefree, we have vD(G) = vD(S) = vD(T ) = 1, where

vD(F ) refers to the non-negative integer such that DvD(F ) divides F ex-
actly in k[t]. So vD(B) = 3, hence B3/D8 ∈ k[t]. Furthermore, we saw
earlier that vD(A) ≥ 2, so vD(A3 − 3AB) = vD(AG(S2 + a2T 2)) ≥ 5, and
hence (A3 − 3AB)/D4 ∈ k[t]. It is now easy to verify that (U, V,H2,H0) =
(0, D2, (A3 − 3AB)/D4, B3/D8) is another integral solution of (8) and (9),
so ρ3/D2 is integral over k[t]. Since L2E + M2D

2 = D and lcm(E,D2) =
ED2/ gcd(E,D2) = ED, we obtain

M2
ρ3 + C0ρ

E
+ L2

ρ3

D2
=

Dρ3 + M2C0D
2ρ

ED2
=

ρ3 + Cρ

ED
= β,

so β is integral over k[t].
It follows that the elements 1, ρ, α, β in K are all integral over k[t]. Since

EF = ST , we obtain from Theorem 7.6 that

disc(1, ρ, α, β) =
disc(ρ)

(SED)2
=

16G3S2T 2

E2D2
=

16G3F 2

D2
= disc(K).

Therefore, {1, ρ, α, β} is an integral basis of K. �

Note that calculating the integral basis of Theorem 8.1 requires only the
squarefree factorizations given in (3) as well as a few extended gcd compu-
tations in k[t].

We point out that Theorem 8.1 is based on Theorem 7.6, which does not
hold in the number field case. In fact, the simplest integral basis of a cyclic
biquadratic number field has a much more complicated and non-uniform
description [10], and a sparse integral basis of the form given in Theorem
8.1 need not exist for a biquadratic number field K = Q(ρ).

For example, let ζ be a primitive 5-th root of unity, and set K = Q(ζ).
Then K = Q(ρ) with ρ = ζ−ζ−1. Since the minimal polynomial of ρ over Q
is f(Y ) = Y 4 + 5Y 2 + 5, K is a cyclic biquadratic number field in standard
form. Using the fact that {1, ζ, ζ2, ζ3} is an integral basis of K/Q and that
β = (ρ2 + ρ + 1)/2 = ζ3 + ζ2 + ζ is integral over Z, we see that the third
element of any integral basis of K containing 1 and ρ cannot be of the form
(ρ2 + a)/b with a, b ∈ Z.
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